nielsr HF Staff commited on
Commit
0723c60
·
verified ·
1 Parent(s): c786ead

Improve model card and add metadata

Browse files

This PR enhances the model card by:

- Adding essential metadata including the license and library name. The `library_name` is set to `pytorch` as the model is implemented using PyTorch.
- Providing a clearer structure and description of the `xvr` package and its functionality.
- Including links to the Colab notebook and Hugging Face Model and Dataset pages, already present in the original README.


This improves discoverability and clarity for users interested in X-ray to volume registration. Since `xvr` is a training framework rather than a directly usable model, a `pipeline_tag` might not be as relevant. However, it's included for better searchability and discoverability on the Hugging Face Hub. More descriptive tags could be considered in future improvements.

Files changed (1) hide show
  1. README.md +87 -3
README.md CHANGED
@@ -1,3 +1,87 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: pytorch
4
+ pipeline_tag: image-to-image
5
+ tags:
6
+ - medical-imaging
7
+ - registration
8
+ - 3d-registration
9
+ - x-ray
10
+ - ct
11
+ - mri
12
+ ---
13
+
14
+ # `xvr`: X-ray to Volume Registration
15
+
16
+ [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE)
17
+ <a href="https://colab.research.google.com/drive/1K9lBPxcLh55mr8o50Y7aHkjzjEWKPCrM?usp=sharing"><img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a>
18
+ <a href="https://huggingface.co/eigenvivek/xvr/tree/main" target="_blank"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-ffc107?color=ffc107&logoColor=white"/></a>
19
+ <a href="https://huggingface.co/datasets/eigenvivek/xvr-data/tree/main" target="_blank"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Data-ffc107?color=ffc107&logoColor=white"/></a>
20
+ [![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)
21
+
22
+ **`xvr` is a PyTorch package for training, fine-tuning, and performing 2D/3D X-ray to CT/MR registration using pose regression models.** It provides a streamlined CLI and API for training patient-specific registration models efficiently. Key features include significantly faster training than comparable methods, submillimeter registration accuracy, and human-interpretable pose parameters.
23
+
24
+
25
+ <p align="center">
26
+ <img width="410" alt="image" src="https://github.com/user-attachments/assets/8a01c184-f6f1-420e-82b9-1cbe733adf7f" />
27
+ </p>
28
+
29
+ ## Key Features
30
+
31
+ - 🚀 Single CLI/API for training and registration.
32
+ - ⚡️ Significantly faster training than existing methods.
33
+ - 📐 Submillimeter registration accuracy.
34
+ - 🩺 Human-interpretable pose parameters.
35
+ - 🐍 Pure Python/PyTorch implementation.
36
+ - 🖥️ Cross-platform support (macOS, Linux, Windows).
37
+
38
+ `xvr` leverages [`DiffDRR`](https://github.com/eigenvivek/DiffDRR), the differentiable X-ray renderer.
39
+
40
+ ## Installation and Usage
41
+
42
+ Refer to the [GitHub repository](https://github.com/eigenvivek/xvr) for detailed installation instructions, usage examples, and documentation on training, finetuning, and registration.
43
+
44
+
45
+ ## Experiments
46
+
47
+ #### Models
48
+
49
+ Pretrained models are available [here](https://huggingface.co/eigenvivek/xvr/tree/main).
50
+
51
+ #### Data
52
+
53
+ Benchmarks datasets, reformatted into DICOM/NIfTI files, are available [here](https://huggingface.co/datasets/eigenvivek/xvr-data/tree/main).
54
+
55
+ If you use the [`DeepFluoro`](https://github.com/rg2/DeepFluoroLabeling-IPCAI2020) dataset, please cite:
56
+
57
+ @article{grupp2020automatic,
58
+ title={Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration},
59
+ author={Grupp, Robert B and Unberath, Mathias and Gao, Cong and Hegeman, Rachel A and Murphy, Ryan J and Alexander, Clayton P and Otake, Yoshito and McArthur, Benjamin A and Armand, Mehran and Taylor, Russell H},
60
+ journal={International journal of computer assisted radiology and surgery},
61
+ volume={15},
62
+ pages={759--769},
63
+ year={2020},
64
+ publisher={Springer}
65
+ }
66
+
67
+ If you use the [`Ljubljana`](https://lit.fe.uni-lj.si/en/research/resources/3D-2D-GS-CA/) dataset, please cite:
68
+
69
+ @article{pernus20133d,
70
+ title={3D-2D registration of cerebral angiograms: A method and evaluation on clinical images},
71
+ author={Mitrović, Uros˘ and S˘piclin, Z˘iga and Likar, Bos˘tjan and Pernus˘, Franjo},
72
+ journal={IEEE transactions on medical imaging},
73
+ volume={32},
74
+ number={8},
75
+ pages={1550--1563},
76
+ year={2013},
77
+ publisher={IEEE}
78
+ }
79
+
80
+
81
+ #### Logging
82
+
83
+ We use `wandb` to log experiments. To use this feature, set the `WANDB_API_KEY` environment variable by adding the following line to your `.zshrc` or `.bashrc` file:
84
+
85
+ ```zsh
86
+ export WANDB_API_KEY=your_api_key
87
+ ```