Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +625 -0
- added_tokens.json +28 -0
- config.json +32 -0
- dynamic_int4.onnx +3 -0
- merges.txt +0 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- Qwen/Qwen3-0.6B-Base
|
5 |
+
tags:
|
6 |
+
- transformers
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
---
|
11 |
+
|
12 |
+
# Qwen3-Embedding-0.6B-onnx-int4
|
13 |
+
|
14 |
+
This is an onnx version of https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
|
15 |
+
|
16 |
+
This model has been dynamically quantized to int4/uint8, and further modified to output a uint8 1024 dim tensor.
|
17 |
+
|
18 |
+
You probably don't want to use this model on CPU. I've tested on a Ryzen CPU with VNNI, and it's the same speed as the base f32 model, but with 2% less retrieval accuracy. I'm posting it here in case it's useful for GPU users. Not sure if it actually is, but I already made it so here it is.
|
19 |
+
|
20 |
+
This model is compatible with qdrant fastembed, please note these details:
|
21 |
+
|
22 |
+
- Execute model without pooling and without normalization
|
23 |
+
- Pay attention to the example query format in the code below
|
24 |
+
|
25 |
+
# Quantization method
|
26 |
+
|
27 |
+
I did an int4 quantization pass with block size == 128 (block size 32 was extremely close in accuracy), with the same nodes excluded as from my uint8 model.
|
28 |
+
|
29 |
+
Then I quantized the remaining non-excluded nodes to uint8 the same way as here: https://huggingface.co/electroglyph/Qwen3-Embedding-0.6B-onnx-uint8
|
30 |
+
|
31 |
+
<details>
|
32 |
+
<summary>Here are the nodes I excluded</summary>
|
33 |
+
|
34 |
+
```python
|
35 |
+
["/0/auto_model/ConstantOfShape",
|
36 |
+
"/0/auto_model/Constant_28",
|
37 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Pow",
|
38 |
+
"/0/auto_model/layers.26/input_layernorm/Pow",
|
39 |
+
"/0/auto_model/layers.25/input_layernorm/Pow",
|
40 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Pow",
|
41 |
+
"/0/auto_model/layers.24/input_layernorm/Pow",
|
42 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Pow",
|
43 |
+
"/0/auto_model/layers.23/input_layernorm/Pow",
|
44 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Pow",
|
45 |
+
"/0/auto_model/layers.22/input_layernorm/Pow",
|
46 |
+
"/0/auto_model/layers.3/input_layernorm/Pow",
|
47 |
+
"/0/auto_model/layers.4/input_layernorm/Pow",
|
48 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Pow",
|
49 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Pow",
|
50 |
+
"/0/auto_model/layers.5/input_layernorm/Pow",
|
51 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Pow",
|
52 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Pow",
|
53 |
+
"/0/auto_model/layers.6/input_layernorm/Pow",
|
54 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Pow",
|
55 |
+
"/0/auto_model/layers.7/input_layernorm/Pow",
|
56 |
+
"/0/auto_model/layers.8/input_layernorm/Pow",
|
57 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Pow",
|
58 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Pow",
|
59 |
+
"/0/auto_model/layers.9/input_layernorm/Pow",
|
60 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Pow",
|
61 |
+
"/0/auto_model/layers.21/input_layernorm/Pow",
|
62 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Pow",
|
63 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Pow",
|
64 |
+
"/0/auto_model/layers.10/input_layernorm/Pow",
|
65 |
+
"/0/auto_model/layers.20/input_layernorm/Pow",
|
66 |
+
"/0/auto_model/layers.11/input_layernorm/Pow",
|
67 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Pow",
|
68 |
+
"/0/auto_model/layers.12/input_layernorm/Pow",
|
69 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Pow",
|
70 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Pow",
|
71 |
+
"/0/auto_model/layers.13/input_layernorm/Pow",
|
72 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Pow",
|
73 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Pow",
|
74 |
+
"/0/auto_model/layers.14/input_layernorm/Pow",
|
75 |
+
"/0/auto_model/layers.19/input_layernorm/Pow",
|
76 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Pow",
|
77 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Pow",
|
78 |
+
"/0/auto_model/layers.15/input_layernorm/Pow",
|
79 |
+
"/0/auto_model/layers.16/input_layernorm/Pow",
|
80 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Pow",
|
81 |
+
"/0/auto_model/layers.18/input_layernorm/Pow",
|
82 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Pow",
|
83 |
+
"/0/auto_model/layers.17/input_layernorm/Pow",
|
84 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Pow",
|
85 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Pow",
|
86 |
+
"/0/auto_model/layers.27/input_layernorm/Pow",
|
87 |
+
"/0/auto_model/norm/Pow",
|
88 |
+
"/0/auto_model/layers.25/post_attention_layernorm/ReduceMean",
|
89 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Add",
|
90 |
+
"/0/auto_model/layers.26/input_layernorm/Add",
|
91 |
+
"/0/auto_model/layers.26/input_layernorm/ReduceMean",
|
92 |
+
"/0/auto_model/layers.25/input_layernorm/ReduceMean",
|
93 |
+
"/0/auto_model/layers.25/input_layernorm/Add",
|
94 |
+
"/0/auto_model/layers.24/post_attention_layernorm/ReduceMean",
|
95 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Add",
|
96 |
+
"/0/auto_model/layers.24/input_layernorm/Add",
|
97 |
+
"/0/auto_model/layers.24/input_layernorm/ReduceMean",
|
98 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Add",
|
99 |
+
"/0/auto_model/layers.23/post_attention_layernorm/ReduceMean",
|
100 |
+
"/0/auto_model/layers.23/input_layernorm/ReduceMean",
|
101 |
+
"/0/auto_model/layers.23/input_layernorm/Add",
|
102 |
+
"/0/auto_model/layers.22/post_attention_layernorm/ReduceMean",
|
103 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Add",
|
104 |
+
"/0/auto_model/layers.26/post_attention_layernorm/ReduceMean",
|
105 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Add",
|
106 |
+
"/0/auto_model/layers.22/input_layernorm/ReduceMean",
|
107 |
+
"/0/auto_model/layers.22/input_layernorm/Add",
|
108 |
+
"/0/auto_model/layers.3/input_layernorm/Add",
|
109 |
+
"/0/auto_model/layers.3/input_layernorm/ReduceMean",
|
110 |
+
"/0/auto_model/layers.21/post_attention_layernorm/ReduceMean",
|
111 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Add",
|
112 |
+
"/0/auto_model/layers.4/input_layernorm/Add",
|
113 |
+
"/0/auto_model/layers.4/input_layernorm/ReduceMean",
|
114 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Add",
|
115 |
+
"/0/auto_model/layers.3/post_attention_layernorm/ReduceMean",
|
116 |
+
"/0/auto_model/layers.5/input_layernorm/Add",
|
117 |
+
"/0/auto_model/layers.5/input_layernorm/ReduceMean",
|
118 |
+
"/0/auto_model/layers.4/post_attention_layernorm/ReduceMean",
|
119 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Add",
|
120 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Add",
|
121 |
+
"/0/auto_model/layers.5/post_attention_layernorm/ReduceMean",
|
122 |
+
"/0/auto_model/layers.6/input_layernorm/Add",
|
123 |
+
"/0/auto_model/layers.6/input_layernorm/ReduceMean",
|
124 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Add",
|
125 |
+
"/0/auto_model/layers.6/post_attention_layernorm/ReduceMean",
|
126 |
+
"/0/auto_model/layers.7/input_layernorm/Add",
|
127 |
+
"/0/auto_model/layers.7/input_layernorm/ReduceMean",
|
128 |
+
"/0/auto_model/layers.8/input_layernorm/ReduceMean",
|
129 |
+
"/0/auto_model/layers.8/input_layernorm/Add",
|
130 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Add",
|
131 |
+
"/0/auto_model/layers.7/post_attention_layernorm/ReduceMean",
|
132 |
+
"/0/auto_model/layers.9/input_layernorm/Add",
|
133 |
+
"/0/auto_model/layers.9/input_layernorm/ReduceMean",
|
134 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Add",
|
135 |
+
"/0/auto_model/layers.8/post_attention_layernorm/ReduceMean",
|
136 |
+
"/0/auto_model/layers.21/input_layernorm/Add",
|
137 |
+
"/0/auto_model/layers.21/input_layernorm/ReduceMean",
|
138 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Add",
|
139 |
+
"/0/auto_model/layers.20/post_attention_layernorm/ReduceMean",
|
140 |
+
"/0/auto_model/layers.9/post_attention_layernorm/ReduceMean",
|
141 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Add",
|
142 |
+
"/0/auto_model/layers.10/input_layernorm/ReduceMean",
|
143 |
+
"/0/auto_model/layers.10/input_layernorm/Add",
|
144 |
+
"/0/auto_model/layers.20/input_layernorm/Add",
|
145 |
+
"/0/auto_model/layers.20/input_layernorm/ReduceMean",
|
146 |
+
"/0/auto_model/layers.11/input_layernorm/ReduceMean",
|
147 |
+
"/0/auto_model/layers.11/input_layernorm/Add",
|
148 |
+
"/0/auto_model/layers.10/post_attention_layernorm/ReduceMean",
|
149 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Add",
|
150 |
+
"/0/auto_model/layers.12/input_layernorm/ReduceMean",
|
151 |
+
"/0/auto_model/layers.12/input_layernorm/Add",
|
152 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Add",
|
153 |
+
"/0/auto_model/layers.11/post_attention_layernorm/ReduceMean",
|
154 |
+
"/0/auto_model/layers.12/post_attention_layernorm/ReduceMean",
|
155 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Add",
|
156 |
+
"/0/auto_model/layers.13/input_layernorm/Add",
|
157 |
+
"/0/auto_model/layers.13/input_layernorm/ReduceMean",
|
158 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Add",
|
159 |
+
"/0/auto_model/layers.19/post_attention_layernorm/ReduceMean",
|
160 |
+
"/0/auto_model/layers.13/post_attention_layernorm/ReduceMean",
|
161 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Add",
|
162 |
+
"/0/auto_model/layers.14/input_layernorm/Add",
|
163 |
+
"/0/auto_model/layers.14/input_layernorm/ReduceMean",
|
164 |
+
"/0/auto_model/layers.19/input_layernorm/ReduceMean",
|
165 |
+
"/0/auto_model/layers.19/input_layernorm/Add",
|
166 |
+
"/0/auto_model/layers.18/post_attention_layernorm/ReduceMean",
|
167 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Add",
|
168 |
+
"/0/auto_model/layers.14/post_attention_layernorm/ReduceMean",
|
169 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Add",
|
170 |
+
"/0/auto_model/layers.15/input_layernorm/ReduceMean",
|
171 |
+
"/0/auto_model/layers.15/input_layernorm/Add",
|
172 |
+
"/0/auto_model/layers.16/input_layernorm/Add",
|
173 |
+
"/0/auto_model/layers.16/input_layernorm/ReduceMean",
|
174 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Add",
|
175 |
+
"/0/auto_model/layers.15/post_attention_layernorm/ReduceMean",
|
176 |
+
"/0/auto_model/layers.18/input_layernorm/Add",
|
177 |
+
"/0/auto_model/layers.18/input_layernorm/ReduceMean",
|
178 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Add",
|
179 |
+
"/0/auto_model/layers.17/post_attention_layernorm/ReduceMean",
|
180 |
+
"/0/auto_model/layers.17/input_layernorm/ReduceMean",
|
181 |
+
"/0/auto_model/layers.17/input_layernorm/Add",
|
182 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Add",
|
183 |
+
"/0/auto_model/layers.16/post_attention_layernorm/ReduceMean",
|
184 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Add",
|
185 |
+
"/0/auto_model/layers.27/post_attention_layernorm/ReduceMean",
|
186 |
+
"/0/auto_model/layers.27/input_layernorm/Add",
|
187 |
+
"/0/auto_model/layers.27/input_layernorm/ReduceMean",
|
188 |
+
"/0/auto_model/layers.27/self_attn/q_norm/Pow",
|
189 |
+
"/0/auto_model/layers.14/self_attn/k_norm/Pow",
|
190 |
+
"/0/auto_model/layers.26/self_attn/q_norm/Pow",
|
191 |
+
"/0/auto_model/layers.25/self_attn/q_norm/Pow",
|
192 |
+
"/0/auto_model/layers.26/self_attn/k_norm/Pow",
|
193 |
+
"/0/auto_model/layers.8/self_attn/k_norm/Pow",
|
194 |
+
"/0/auto_model/layers.24/self_attn/k_norm/Pow",
|
195 |
+
"/0/auto_model/layers.24/self_attn/q_norm/Pow",
|
196 |
+
"/0/auto_model/layers.25/self_attn/k_norm/Pow",
|
197 |
+
"/0/auto_model/layers.23/self_attn/q_norm/Pow",
|
198 |
+
"/0/auto_model/layers.27/self_attn/k_norm/Pow",
|
199 |
+
"/0/auto_model/layers.12/self_attn/k_norm/Pow",
|
200 |
+
"/0/auto_model/layers.13/self_attn/k_norm/Pow",
|
201 |
+
"/0/auto_model/layers.2/mlp/down_proj/MatMul",
|
202 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Cast",
|
203 |
+
"/0/auto_model/layers.3/Add",
|
204 |
+
"/0/auto_model/layers.3/Add_1",
|
205 |
+
"/0/auto_model/layers.4/input_layernorm/Cast",
|
206 |
+
"/0/auto_model/layers.3/input_layernorm/Cast",
|
207 |
+
"/0/auto_model/layers.2/Add_1",
|
208 |
+
"/0/auto_model/layers.4/Add",
|
209 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Cast",
|
210 |
+
"/0/auto_model/layers.5/input_layernorm/Cast",
|
211 |
+
"/0/auto_model/layers.4/Add_1",
|
212 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Cast",
|
213 |
+
"/0/auto_model/layers.5/Add",
|
214 |
+
"/0/auto_model/layers.5/Add_1",
|
215 |
+
"/0/auto_model/layers.6/input_layernorm/Cast",
|
216 |
+
"/0/auto_model/layers.7/Add_1",
|
217 |
+
"/0/auto_model/layers.8/input_layernorm/Cast",
|
218 |
+
"/0/auto_model/layers.7/Add",
|
219 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Cast",
|
220 |
+
"/0/auto_model/layers.6/Add",
|
221 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Cast",
|
222 |
+
"/0/auto_model/layers.6/Add_1",
|
223 |
+
"/0/auto_model/layers.7/input_layernorm/Cast",
|
224 |
+
"/0/auto_model/layers.8/Add",
|
225 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Cast",
|
226 |
+
"/0/auto_model/layers.9/input_layernorm/Cast",
|
227 |
+
"/0/auto_model/layers.8/Add_1",
|
228 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Cast",
|
229 |
+
"/0/auto_model/layers.9/Add",
|
230 |
+
"/0/auto_model/layers.9/Add_1",
|
231 |
+
"/0/auto_model/layers.10/input_layernorm/Cast",
|
232 |
+
"/0/auto_model/layers.11/input_layernorm/Cast",
|
233 |
+
"/0/auto_model/layers.10/Add_1",
|
234 |
+
"/0/auto_model/layers.10/Add",
|
235 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Cast",
|
236 |
+
"/0/auto_model/layers.11/Add",
|
237 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Cast",
|
238 |
+
"/0/auto_model/layers.11/Add_1",
|
239 |
+
"/0/auto_model/layers.12/input_layernorm/Cast",
|
240 |
+
"/0/auto_model/layers.12/Add",
|
241 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Cast",
|
242 |
+
"/0/auto_model/layers.12/Add_1",
|
243 |
+
"/0/auto_model/layers.13/input_layernorm/Cast",
|
244 |
+
"/0/auto_model/layers.13/Add",
|
245 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Cast",
|
246 |
+
"/0/auto_model/layers.14/input_layernorm/Cast",
|
247 |
+
"/0/auto_model/layers.13/Add_1",
|
248 |
+
"/0/auto_model/layers.14/Add_1",
|
249 |
+
"/0/auto_model/layers.15/input_layernorm/Cast",
|
250 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Cast",
|
251 |
+
"/0/auto_model/layers.14/Add",
|
252 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Cast",
|
253 |
+
"/0/auto_model/layers.15/Add_1",
|
254 |
+
"/0/auto_model/layers.16/input_layernorm/Cast",
|
255 |
+
"/0/auto_model/layers.15/Add",
|
256 |
+
"/0/auto_model/layers.17/input_layernorm/Cast",
|
257 |
+
"/0/auto_model/layers.16/Add_1",
|
258 |
+
"/0/auto_model/layers.16/Add",
|
259 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Cast",
|
260 |
+
"/0/auto_model/layers.19/input_layernorm/Cast",
|
261 |
+
"/0/auto_model/layers.18/Add_1",
|
262 |
+
"/0/auto_model/layers.18/input_layernorm/Cast",
|
263 |
+
"/0/auto_model/layers.17/Add_1",
|
264 |
+
"/0/auto_model/layers.17/Add",
|
265 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Cast",
|
266 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Cast",
|
267 |
+
"/0/auto_model/layers.18/Add",
|
268 |
+
"/0/auto_model/layers.19/Add",
|
269 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Cast",
|
270 |
+
"/0/auto_model/layers.22/Add_1",
|
271 |
+
"/0/auto_model/layers.23/input_layernorm/Cast",
|
272 |
+
"/0/auto_model/layers.20/Add_1",
|
273 |
+
"/0/auto_model/layers.21/input_layernorm/Cast",
|
274 |
+
"/0/auto_model/layers.21/Add_1",
|
275 |
+
"/0/auto_model/layers.22/input_layernorm/Cast",
|
276 |
+
"/0/auto_model/layers.19/Add_1",
|
277 |
+
"/0/auto_model/layers.20/input_layernorm/Cast",
|
278 |
+
"/0/auto_model/layers.24/input_layernorm/Cast",
|
279 |
+
"/0/auto_model/layers.23/Add_1",
|
280 |
+
"/0/auto_model/layers.22/Add",
|
281 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Cast",
|
282 |
+
"/0/auto_model/layers.21/Add",
|
283 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Cast",
|
284 |
+
"/0/auto_model/layers.20/Add",
|
285 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Cast",
|
286 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Cast",
|
287 |
+
"/0/auto_model/layers.23/Add",
|
288 |
+
"/0/auto_model/layers.25/input_layernorm/Cast",
|
289 |
+
"/0/auto_model/layers.24/Add_1",
|
290 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Cast",
|
291 |
+
"/0/auto_model/layers.24/Add",
|
292 |
+
"/0/auto_model/layers.25/Add",
|
293 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Cast",
|
294 |
+
"/0/auto_model/layers.25/Add_1",
|
295 |
+
"/0/auto_model/layers.26/input_layernorm/Cast",
|
296 |
+
"/0/auto_model/layers.26/Add",
|
297 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Cast",
|
298 |
+
"/0/auto_model/layers.21/self_attn/q_norm/Pow",
|
299 |
+
"/0/auto_model/layers.26/Add_1",
|
300 |
+
"/0/auto_model/layers.27/input_layernorm/Cast",
|
301 |
+
"/0/auto_model/layers.27/Add",
|
302 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Cast",
|
303 |
+
"/0/auto_model/norm/Add",
|
304 |
+
"/0/auto_model/norm/ReduceMean",
|
305 |
+
"/0/auto_model/layers.23/self_attn/k_norm/Pow",
|
306 |
+
"/0/auto_model/layers.21/self_attn/k_norm/Pow",
|
307 |
+
"/0/auto_model/layers.22/self_attn/k_norm/Pow",
|
308 |
+
"/0/auto_model/layers.10/self_attn/k_norm/Pow",
|
309 |
+
"/0/auto_model/layers.19/self_attn/q_norm/Pow",
|
310 |
+
"/0/auto_model/layers.2/mlp/Mul",
|
311 |
+
"/0/auto_model/layers.22/self_attn/q_norm/Pow",
|
312 |
+
"/0/auto_model/layers.11/self_attn/k_norm/Pow",
|
313 |
+
"/0/auto_model/layers.20/self_attn/q_norm/Pow",
|
314 |
+
"/0/auto_model/layers.20/self_attn/k_norm/Pow",
|
315 |
+
"/0/auto_model/layers.18/self_attn/q_norm/Pow",
|
316 |
+
"/0/auto_model/layers.17/self_attn/q_norm/Pow",
|
317 |
+
"/0/auto_model/layers.27/mlp/down_proj/MatMul",
|
318 |
+
"/0/auto_model/layers.19/self_attn/k_norm/Pow",
|
319 |
+
"/0/auto_model/layers.27/Add_1",
|
320 |
+
"/0/auto_model/norm/Cast",
|
321 |
+
"/0/auto_model/layers.16/self_attn/k_norm/Pow",
|
322 |
+
"/0/auto_model/layers.18/self_attn/k_norm/Pow",
|
323 |
+
"/0/auto_model/layers.11/self_attn/q_norm/Pow",
|
324 |
+
"/0/auto_model/layers.9/self_attn/q_norm/Pow",
|
325 |
+
"/0/auto_model/layers.26/self_attn/q_norm/Add",
|
326 |
+
"/0/auto_model/layers.26/self_attn/q_norm/ReduceMean",
|
327 |
+
"/0/auto_model/layers.14/self_attn/k_norm/Add",
|
328 |
+
"/0/auto_model/layers.14/self_attn/k_norm/ReduceMean",
|
329 |
+
"/0/auto_model/layers.16/self_attn/q_norm/Pow",
|
330 |
+
"/0/auto_model/layers.27/mlp/Mul",
|
331 |
+
"/0/auto_model/layers.27/self_attn/q_norm/ReduceMean",
|
332 |
+
"/0/auto_model/layers.27/self_attn/q_norm/Add",
|
333 |
+
"/0/auto_model/layers.9/self_attn/k_norm/Pow",
|
334 |
+
"/0/auto_model/layers.17/self_attn/k_norm/Pow",
|
335 |
+
"/0/auto_model/layers.26/self_attn/k_norm/ReduceMean",
|
336 |
+
"/0/auto_model/layers.26/self_attn/k_norm/Add",
|
337 |
+
"/0/auto_model/layers.25/self_attn/k_norm/Add",
|
338 |
+
"/0/auto_model/layers.25/self_attn/k_norm/ReduceMean",
|
339 |
+
"/0/auto_model/layers.13/self_attn/k_norm/Add",
|
340 |
+
"/0/auto_model/layers.13/self_attn/k_norm/ReduceMean",
|
341 |
+
"/0/auto_model/layers.10/self_attn/q_norm/Pow",
|
342 |
+
"/0/auto_model/layers.25/input_layernorm/Mul_1",
|
343 |
+
"/0/auto_model/layers.27/self_attn/k_norm/ReduceMean",
|
344 |
+
"/0/auto_model/layers.27/self_attn/k_norm/Add",
|
345 |
+
"/0/auto_model/layers.26/input_layernorm/Mul_1",
|
346 |
+
"/0/auto_model/layers.15/self_attn/q_norm/Pow",
|
347 |
+
"/0/auto_model/layers.12/self_attn/k_norm/Add",
|
348 |
+
"/0/auto_model/layers.12/self_attn/k_norm/ReduceMean",
|
349 |
+
"/0/auto_model/layers.25/self_attn/q_norm/Add",
|
350 |
+
"/0/auto_model/layers.25/self_attn/q_norm/ReduceMean",
|
351 |
+
"/0/auto_model/layers.24/input_layernorm/Mul_1",
|
352 |
+
"/0/auto_model/layers.12/self_attn/q_norm/Pow",
|
353 |
+
"/0/auto_model/layers.24/self_attn/q_norm/ReduceMean",
|
354 |
+
"/0/auto_model/layers.24/self_attn/q_norm/Add",
|
355 |
+
"/0/auto_model/layers.24/self_attn/k_norm/ReduceMean",
|
356 |
+
"/0/auto_model/layers.24/self_attn/k_norm/Add",
|
357 |
+
"/0/auto_model/layers.22/mlp/Mul",
|
358 |
+
"/0/auto_model/layers.2/post_attention_layernorm/Pow",
|
359 |
+
"/0/auto_model/layers.23/mlp/Mul",
|
360 |
+
"/0/auto_model/layers.24/mlp/Mul",
|
361 |
+
"/0/auto_model/layers.23/input_layernorm/Mul_1",
|
362 |
+
"/0/auto_model/layers.14/self_attn/q_norm/Pow",
|
363 |
+
"/0/auto_model/layers.14/self_attn/k_proj/MatMul",
|
364 |
+
"/0/auto_model/layers.14/self_attn/k_norm/Cast",
|
365 |
+
"/0/auto_model/layers.14/self_attn/Reshape_1",
|
366 |
+
"/0/auto_model/layers.21/mlp/Mul",
|
367 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Sqrt",
|
368 |
+
"/0/auto_model/layers.3/input_layernorm/Sqrt",
|
369 |
+
"/0/auto_model/layers.4/input_layernorm/Sqrt",
|
370 |
+
"/0/auto_model/layers.5/input_layernorm/Sqrt",
|
371 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Sqrt",
|
372 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Sqrt",
|
373 |
+
"/0/auto_model/layers.6/input_layernorm/Sqrt",
|
374 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Sqrt",
|
375 |
+
"/0/auto_model/layers.8/input_layernorm/Sqrt",
|
376 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Sqrt",
|
377 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Sqrt",
|
378 |
+
"/0/auto_model/layers.7/input_layernorm/Sqrt",
|
379 |
+
"/0/auto_model/layers.9/input_layernorm/Sqrt",
|
380 |
+
"/0/auto_model/layers.10/input_layernorm/Sqrt",
|
381 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Sqrt",
|
382 |
+
"/0/auto_model/layers.11/input_layernorm/Sqrt",
|
383 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Sqrt",
|
384 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Sqrt",
|
385 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Sqrt",
|
386 |
+
"/0/auto_model/layers.12/input_layernorm/Sqrt",
|
387 |
+
"/0/auto_model/layers.13/input_layernorm/Sqrt",
|
388 |
+
"/0/auto_model/layers.14/input_layernorm/Sqrt",
|
389 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Sqrt",
|
390 |
+
"/0/auto_model/layers.15/input_layernorm/Sqrt",
|
391 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Sqrt",
|
392 |
+
"/0/auto_model/layers.16/input_layernorm/Sqrt",
|
393 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Sqrt",
|
394 |
+
"/0/auto_model/layers.17/input_layernorm/Sqrt",
|
395 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Sqrt",
|
396 |
+
"/0/auto_model/layers.19/input_layernorm/Sqrt",
|
397 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Sqrt",
|
398 |
+
"/0/auto_model/layers.18/input_layernorm/Sqrt",
|
399 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Sqrt",
|
400 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Sqrt",
|
401 |
+
"/0/auto_model/layers.23/input_layernorm/Sqrt",
|
402 |
+
"/0/auto_model/layers.20/input_layernorm/Sqrt",
|
403 |
+
"/0/auto_model/layers.21/input_layernorm/Sqrt",
|
404 |
+
"/0/auto_model/layers.22/input_layernorm/Sqrt",
|
405 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Sqrt",
|
406 |
+
"/0/auto_model/layers.24/input_layernorm/Sqrt",
|
407 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Sqrt",
|
408 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Sqrt",
|
409 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Sqrt",
|
410 |
+
"/0/auto_model/layers.25/input_layernorm/Sqrt",
|
411 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Sqrt",
|
412 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Sqrt",
|
413 |
+
"/0/auto_model/layers.26/input_layernorm/Sqrt",
|
414 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Sqrt",
|
415 |
+
"/0/auto_model/layers.15/self_attn/k_norm/Pow",
|
416 |
+
"/0/auto_model/layers.27/input_layernorm/Sqrt",
|
417 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Sqrt",
|
418 |
+
"/0/auto_model/layers.2/input_layernorm/Pow",
|
419 |
+
"/0/auto_model/layers.26/mlp/Mul",
|
420 |
+
"/0/auto_model/layers.23/self_attn/q_norm/Add",
|
421 |
+
"/0/auto_model/layers.23/self_attn/q_norm/ReduceMean",
|
422 |
+
"/0/auto_model/layers.13/self_attn/q_norm/Pow",
|
423 |
+
"/0/auto_model/layers.21/self_attn/q_norm/Add",
|
424 |
+
"/0/auto_model/layers.21/self_attn/q_norm/ReduceMean",
|
425 |
+
"/0/auto_model/layers.6/self_attn/q_norm/Pow",
|
426 |
+
"/0/auto_model/layers.27/self_attn/Reshape_7",
|
427 |
+
"/0/auto_model/layers.27/self_attn/MatMul_1",
|
428 |
+
"/0/auto_model/layers.27/self_attn/Transpose_4",
|
429 |
+
"/0/auto_model/layers.26/self_attn/Expand_1",
|
430 |
+
"/0/auto_model/layers.26/self_attn/Unsqueeze_19",
|
431 |
+
"/0/auto_model/layers.26/self_attn/v_proj/MatMul",
|
432 |
+
"/0/auto_model/layers.26/self_attn/Transpose_2",
|
433 |
+
"/0/auto_model/layers.26/self_attn/Reshape_6",
|
434 |
+
"/0/auto_model/layers.26/self_attn/Reshape_2",
|
435 |
+
"/0/auto_model/layers.11/self_attn/k_norm/ReduceMean",
|
436 |
+
"/0/auto_model/layers.11/self_attn/k_norm/Add",
|
437 |
+
"/0/auto_model/layers.22/input_layernorm/Mul_1",
|
438 |
+
"/0/auto_model/layers.25/mlp/Mul",
|
439 |
+
"/0/auto_model/layers.8/self_attn/k_norm/Cast",
|
440 |
+
"/0/auto_model/layers.8/self_attn/k_proj/MatMul",
|
441 |
+
"/0/auto_model/layers.8/self_attn/Reshape_1",
|
442 |
+
"/0/auto_model/layers.21/input_layernorm/Mul_1",
|
443 |
+
"/0/auto_model/layers.5/self_attn/q_norm/Pow",
|
444 |
+
"/0/auto_model/layers.22/self_attn/q_norm/ReduceMean",
|
445 |
+
"/0/auto_model/layers.22/self_attn/q_norm/Add",
|
446 |
+
"/0/auto_model/layers.22/mlp/down_proj/MatMul",
|
447 |
+
"/0/auto_model/layers.23/self_attn/k_norm/ReduceMean",
|
448 |
+
"/0/auto_model/layers.23/self_attn/k_norm/Add",
|
449 |
+
"/0/auto_model/layers.23/mlp/down_proj/MatMul",
|
450 |
+
"/0/auto_model/layers.26/mlp/down_proj/MatMul",
|
451 |
+
"/0/auto_model/layers.1/self_attn/Add_2",
|
452 |
+
"/0/auto_model/layers.2/self_attn/Add_2",
|
453 |
+
"/0/auto_model/layers.6/self_attn/Add_2",
|
454 |
+
"/0/auto_model/layers.11/self_attn/Add_2",
|
455 |
+
"/0/auto_model/layers.12/self_attn/Add_2",
|
456 |
+
"/0/auto_model/layers.16/self_attn/Add_2",
|
457 |
+
"/0/auto_model/layers.21/self_attn/Add_2",
|
458 |
+
"/0/auto_model/layers.24/self_attn/Add_2",
|
459 |
+
"/0/auto_model/layers.0/self_attn/Add_2",
|
460 |
+
"/0/auto_model/layers.8/self_attn/Add_2",
|
461 |
+
"/0/auto_model/layers.13/self_attn/Add_2",
|
462 |
+
"/0/auto_model/layers.26/self_attn/Add_2",
|
463 |
+
"/0/auto_model/layers.3/self_attn/Add_2",
|
464 |
+
"/0/auto_model/layers.15/self_attn/Add_2",
|
465 |
+
"/0/auto_model/layers.25/self_attn/Add_2",
|
466 |
+
"/0/auto_model/layers.4/self_attn/Add_2",
|
467 |
+
"/0/auto_model/layers.14/self_attn/Add_2",
|
468 |
+
"/0/auto_model/layers.22/self_attn/Add_2",
|
469 |
+
"/0/auto_model/layers.9/self_attn/Add_2",
|
470 |
+
"/0/auto_model/layers.23/self_attn/Add_2",
|
471 |
+
"/0/auto_model/layers.10/self_attn/Add_2",
|
472 |
+
"/0/auto_model/layers.5/self_attn/Add_2",
|
473 |
+
"/0/auto_model/layers.19/self_attn/Add_2",
|
474 |
+
"/0/auto_model/layers.7/self_attn/Add_2",
|
475 |
+
"/0/auto_model/layers.27/self_attn/Add_2",
|
476 |
+
"/0/auto_model/layers.18/self_attn/Add_2",
|
477 |
+
"/0/auto_model/layers.20/self_attn/Add_2",
|
478 |
+
"/0/auto_model/layers.17/self_attn/Add_2",
|
479 |
+
"/0/auto_model/Slice_1",
|
480 |
+
"/0/auto_model/layers.5/self_attn/Slice_4",
|
481 |
+
"/0/auto_model/layers.12/self_attn/Slice_4",
|
482 |
+
"/0/auto_model/layers.18/self_attn/Slice_4",
|
483 |
+
"/0/auto_model/layers.3/self_attn/Slice_4",
|
484 |
+
"/0/auto_model/layers.11/self_attn/Slice_4",
|
485 |
+
"/0/auto_model/layers.22/self_attn/Slice_4",
|
486 |
+
"/0/auto_model/Expand",
|
487 |
+
"/0/auto_model/layers.4/self_attn/Slice_4",
|
488 |
+
"/0/auto_model/Slice_2",
|
489 |
+
"/0/auto_model/layers.8/self_attn/Slice_4",
|
490 |
+
"/0/auto_model/layers.2/self_attn/Slice_4",
|
491 |
+
"/0/auto_model/layers.15/self_attn/Slice_4",
|
492 |
+
"/0/auto_model/layers.26/self_attn/Slice_4",
|
493 |
+
"/0/auto_model/layers.24/self_attn/Slice_4",
|
494 |
+
"/0/auto_model/Expand_1",
|
495 |
+
"/0/auto_model/layers.14/self_attn/Slice_4",
|
496 |
+
"/0/auto_model/layers.21/self_attn/Slice_4",
|
497 |
+
"/0/auto_model/layers.1/self_attn/Slice_4",
|
498 |
+
"/0/auto_model/Reshape_2",
|
499 |
+
"/0/auto_model/layers.19/self_attn/Slice_4",
|
500 |
+
"/0/auto_model/Slice",
|
501 |
+
"/0/auto_model/layers.6/self_attn/Slice_4",
|
502 |
+
"/0/auto_model/layers.0/self_attn/Slice_4",
|
503 |
+
"/0/auto_model/layers.25/self_attn/Slice_4",
|
504 |
+
"/0/auto_model/Unsqueeze_4",
|
505 |
+
"/0/auto_model/layers.10/self_attn/Slice_4",
|
506 |
+
"/0/auto_model/layers.23/self_attn/Slice_4",
|
507 |
+
"/0/auto_model/layers.17/self_attn/Slice_4",
|
508 |
+
"/0/auto_model/Where_1",
|
509 |
+
"/0/auto_model/layers.27/self_attn/Slice_4",
|
510 |
+
"/0/auto_model/layers.20/self_attn/Slice_4",
|
511 |
+
"/0/auto_model/Add",
|
512 |
+
"/0/auto_model/Mul",
|
513 |
+
"/0/auto_model/layers.7/self_attn/Slice_4",
|
514 |
+
"/0/auto_model/layers.13/self_attn/Slice_4",
|
515 |
+
"/0/auto_model/layers.9/self_attn/Slice_4",
|
516 |
+
"/0/auto_model/layers.16/self_attn/Slice_4",
|
517 |
+
"/0/auto_model/Unsqueeze_3",
|
518 |
+
"/0/auto_model/ScatterND"]
|
519 |
+
```
|
520 |
+
|
521 |
+
</details>
|
522 |
+
|
523 |
+
# Benchmarks
|
524 |
+
|
525 |
+
## Speed
|
526 |
+
|
527 |
+
Method = Big chunk of text x10 runs
|
528 |
+
|
529 |
+
Seconds elapsed for dynamic_int4.onnx: 45.37 (this model)
|
530 |
+
|
531 |
+
Seconds elapsed for opt_f32.onnx: 46.07 (base f32 model ready for quantization)
|
532 |
+
|
533 |
+
Seconds elapsed for dynamic_uint8.onnx: 34.61 (probably the one you want to use on CPU)
|
534 |
+
|
535 |
+
Verdict: This model kinda sucks on CPU. Let me know how it is on GPU please.
|
536 |
+
|
537 |
+
## Accuracy
|
538 |
+
|
539 |
+
I used beir-qdrant with the scifact dataset.
|
540 |
+
|
541 |
+
This retrieval benchmark isn't the greatest result.
|
542 |
+
|
543 |
+
I welcome any additional benchmarks by the community, please feel free to share any further results.
|
544 |
+
|
545 |
+
If someone wants to sponsor me with an NVIDIA GPU I can have a much faster turnaround time with my model experiments and explore some different quantization strategies.
|
546 |
+
|
547 |
+
|
548 |
+
onnx f32 model with f32 output (baseline):
|
549 |
+
|
550 |
+
```
|
551 |
+
ndcg: {'NDCG@1': 0.57, 'NDCG@3': 0.65655, 'NDCG@5': 0.68177, 'NDCG@10': 0.69999, 'NDCG@100': 0.72749, 'NDCG@1000': 0.73301}
|
552 |
+
recall: {'Recall@1': 0.53828, 'Recall@3': 0.71517, 'Recall@5': 0.77883, 'Recall@10': 0.83056, 'Recall@100': 0.95333, 'Recall@1000': 0.99667}
|
553 |
+
precision: {'P@1': 0.57, 'P@3': 0.26111, 'P@5': 0.17467, 'P@10': 0.09467, 'P@100': 0.01083, 'P@1000': 0.00113}
|
554 |
+
```
|
555 |
+
|
556 |
+
onnx dynamic int4/uint8 model with f32 output (this model's parent):
|
557 |
+
|
558 |
+
```
|
559 |
+
ndcg: {'NDCG@1': 0.55333, 'NDCG@3': 0.6491, 'NDCG@5': 0.6674, 'NDCG@10': 0.69277, 'NDCG@100': 0.7183, 'NDCG@1000': 0.72434}
|
560 |
+
recall: {'Recall@1': 0.52161, 'Recall@3': 0.71739, 'Recall@5': 0.7645, 'Recall@10': 0.83656, 'Recall@100': 0.95, 'Recall@1000': 0.99667}
|
561 |
+
precision: {'P@1': 0.55333, 'P@3': 0.26222, 'P@5': 0.17067, 'P@10': 0.095, 'P@100': 0.0108, 'P@1000': 0.00113}
|
562 |
+
```
|
563 |
+
|
564 |
+
onnx dynamic int4/uint8 model with uint8 output (this model):
|
565 |
+
|
566 |
+
```
|
567 |
+
ndcg: {'NDCG@1': 0.55333, 'NDCG@3': 0.64613, 'NDCG@5': 0.67406, 'NDCG@10': 0.68834, 'NDCG@100': 0.71482, 'NDCG@1000': 0.72134}
|
568 |
+
recall: {'Recall@1': 0.52161, 'Recall@3': 0.70961, 'Recall@5': 0.77828, 'Recall@10': 0.81822, 'Recall@100': 0.94333, 'Recall@1000': 0.99333}
|
569 |
+
precision: {'P@1': 0.55333, 'P@3': 0.25889, 'P@5': 0.17533, 'P@10': 0.09333, 'P@100': 0.01073, 'P@1000': 0.00112}
|
570 |
+
```
|
571 |
+
|
572 |
+
# Example inference/benchmark code and how to use the model with Fastembed
|
573 |
+
|
574 |
+
After installing beir-qdrant make sure to upgrade fastembed.
|
575 |
+
|
576 |
+
```python
|
577 |
+
# pip install qdrant_client beir-qdrant
|
578 |
+
# pip install -U fastembed
|
579 |
+
from fastembed import TextEmbedding
|
580 |
+
from fastembed.common.model_description import PoolingType, ModelSource
|
581 |
+
from beir import util
|
582 |
+
from beir.datasets.data_loader import GenericDataLoader
|
583 |
+
from beir.retrieval.evaluation import EvaluateRetrieval
|
584 |
+
from qdrant_client import QdrantClient
|
585 |
+
from qdrant_client.models import Datatype
|
586 |
+
from beir_qdrant.retrieval.models.fastembed import DenseFastEmbedModelAdapter
|
587 |
+
from beir_qdrant.retrieval.search.dense import DenseQdrantSearch
|
588 |
+
|
589 |
+
TextEmbedding.add_custom_model(
|
590 |
+
model="electroglyph/Qwen3-Embedding-0.6B-onnx-uint8",
|
591 |
+
pooling=PoolingType.DISABLED,
|
592 |
+
normalization=False,
|
593 |
+
sources=ModelSource(hf="electroglyph/Qwen3-Embedding-0.6B-onnx-uint8"),
|
594 |
+
dim=1024,
|
595 |
+
model_file="dynamic_int4.onnx",
|
596 |
+
)
|
597 |
+
|
598 |
+
dataset = "scifact"
|
599 |
+
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
|
600 |
+
data_path = util.download_and_unzip(url, "datasets")
|
601 |
+
corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split="test")
|
602 |
+
|
603 |
+
# IMPORTANT: USE THIS (OR A SIMILAR) QUERY FORMAT WITH THIS MODEL:
|
604 |
+
for k in queries.keys():
|
605 |
+
queries[k] = (
|
606 |
+
f"Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: {queries[k]}"
|
607 |
+
)
|
608 |
+
|
609 |
+
qdrant_client = QdrantClient("http://localhost:6333")
|
610 |
+
|
611 |
+
model = DenseQdrantSearch(
|
612 |
+
qdrant_client,
|
613 |
+
model=DenseFastEmbedModelAdapter(model_name="Qwen3-Embedding-0.6B-onnx-uint8"),
|
614 |
+
collection_name="scifact-qwen3-uint8",
|
615 |
+
initialize=True,
|
616 |
+
datatype=Datatype.UINT8,
|
617 |
+
)
|
618 |
+
|
619 |
+
retriever = EvaluateRetrieval(model)
|
620 |
+
results = retriever.retrieve(corpus, queries)
|
621 |
+
|
622 |
+
ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values)
|
623 |
+
print(f"ndcg: {ndcg}\nrecall: {recall}\nprecision: {precision}")
|
624 |
+
|
625 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"architectures": [
|
4 |
+
"Qwen3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 151643,
|
9 |
+
"eos_token_id": 151643,
|
10 |
+
"export_model_type": "transformer",
|
11 |
+
"head_dim": 128,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 1024,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"max_position_embeddings": 32768,
|
17 |
+
"max_window_layers": 28,
|
18 |
+
"model_type": "qwen3",
|
19 |
+
"num_attention_heads": 16,
|
20 |
+
"num_hidden_layers": 28,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"rms_norm_eps": 1e-06,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 1000000,
|
25 |
+
"sliding_window": null,
|
26 |
+
"tie_word_embeddings": true,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.51.3",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_sliding_window": false,
|
31 |
+
"vocab_size": 151669
|
32 |
+
}
|
dynamic_int4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f353ee6a1ca54dbddbc19d1992e8cedfeb012e8fd68f4d3e9db061ffb7aa70e
|
3 |
+
size 457148700
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:def76fb086971c7867b829c23a26261e38d9d74e02139253b38aeb9df8b4b50a
|
3 |
+
size 11423705
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"extra_special_tokens": {},
|
235 |
+
"model_max_length": 131072,
|
236 |
+
"pad_token": "<|endoftext|>",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|