Upload folder using huggingface_hub
Browse files- .gitattributes +9 -0
- README.md +80 -0
- added_tokens.json +3 -0
- config.json +71 -0
- generation_config.json +7 -0
- mteb_results_by_task.png +3 -0
- mteb_total_scores.png +3 -0
- onnx/model.onnx +3 -0
- special_tokens_map.json +33 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
onnx/model.onnx_data filter=lfs diff=lfs merge=lfs -text
|
37 |
+
onnx/model_fp16.onnx_data filter=lfs diff=lfs merge=lfs -text
|
38 |
+
onnx/model_q4.onnx_data filter=lfs diff=lfs merge=lfs -text
|
39 |
+
onnx/model_q4f16.onnx_data filter=lfs diff=lfs merge=lfs -text
|
40 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
41 |
+
onnx/model_quantized.onnx_data filter=lfs diff=lfs merge=lfs -text
|
42 |
+
onnx/model_no_gather_q4.onnx_data filter=lfs diff=lfs merge=lfs -text
|
43 |
+
mteb_results_by_task.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
mteb_total_scores.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
base_model:
|
4 |
+
- google/embeddinggemma-300m
|
5 |
+
pipeline_tag: sentence-similarity
|
6 |
+
library_name: transformers.js
|
7 |
+
tags:
|
8 |
+
- text-embeddings-inference
|
9 |
+
---
|
10 |
+
|
11 |
+
# embeddinggemma-300m-ONNX-uint8
|
12 |
+
|
13 |
+
This is based on https://huggingface.co/onnx-community/embeddinggemma-300m-ONNX/blob/main/onnx/model_quantized.onnx, but it outputs a uint8 tensor instead of an f32 one.
|
14 |
+
|
15 |
+
This model is compatible with Qdrant, but I'm not sure what other vector DBs it's compatible with.
|
16 |
+
|
17 |
+
For calibration data I used my own multilingual dataset of around 1.5m tokens: https://github.com/electroglyph/dataset_build
|
18 |
+
|
19 |
+
I ran all 1.5m tokens through the model and logged the highest/lowest values seen. I found a range of: -0.19112960994243622 to 0.22116543352603912
|
20 |
+
|
21 |
+
So I hacked on the sentence_embedding output of the ONNX model and added QuantizeLinear node based on the range of -0.22116543352603912 to 0.22116543352603912 to keep it symmetric. It would be cool if Qdrant let me specify my own zero point for a little more accuracy, but symmetric will have to do.
|
22 |
+
|
23 |
+
# Benchmarks
|
24 |
+
|
25 |
+
For benchmarking with MTEB I dequantize the uint8 output to the f32 that MTEB expects.
|
26 |
+
|
27 |
+
These retrieval benchmarks are a little wild. All the benchmarks used the `task: search result` query format. I have no idea why this model benchmarks better than the base model on most retrieval tasks, but I'll take it.
|
28 |
+
|
29 |
+

|
30 |
+
|
31 |
+

|
32 |
+
|
33 |
+
# Benchmark example code
|
34 |
+
|
35 |
+
```python
|
36 |
+
import mteb
|
37 |
+
from mteb.encoder_interface import PromptType
|
38 |
+
import numpy as np
|
39 |
+
import onnxruntime as rt
|
40 |
+
from transformers import AutoTokenizer
|
41 |
+
|
42 |
+
class CustomModel:
|
43 |
+
def __init__(self) -> None:
|
44 |
+
self.tokenizer = AutoTokenizer.from_pretrained("C:/LLM/embeddinggemma-300m-ONNX-uint8")
|
45 |
+
self.session = rt.InferenceSession("C:/LLM/embeddinggemma-300m-ONNX-uint8/onnx/model.onnx", providers=["CPUExecutionProvider"])
|
46 |
+
self.scale = 0.22116543352603912 / 127.0
|
47 |
+
|
48 |
+
def dequantize(self, quantized: list | np.ndarray, scale: float) -> np.ndarray:
|
49 |
+
quantized = np.array(quantized)
|
50 |
+
dequant = (quantized.astype(np.float32) - 128) * scale
|
51 |
+
if dequant.ndim == 3 and dequant.shape[0] == 1:
|
52 |
+
return np.squeeze(dequant, axis=0)
|
53 |
+
return dequant
|
54 |
+
|
55 |
+
def encode(
|
56 |
+
self,
|
57 |
+
sentences: list[str],
|
58 |
+
task_name: str,
|
59 |
+
prompt_type: PromptType | None = None,
|
60 |
+
**kwargs,
|
61 |
+
) -> np.ndarray:
|
62 |
+
if prompt_type == PromptType.query:
|
63 |
+
sentences = [f"task: search result | query: {s}" for s in sentences]
|
64 |
+
inputs = self.tokenizer(sentences, padding=True, truncation=True, return_tensors="np")
|
65 |
+
q = self.session.run(["sentence_embedding"], dict(inputs))
|
66 |
+
return self.dequantize(q, self.scale)
|
67 |
+
|
68 |
+
|
69 |
+
model = CustomModel()
|
70 |
+
benchmark = mteb.get_benchmark("NanoBEIR")
|
71 |
+
evaluation = mteb.MTEB(tasks=benchmark)
|
72 |
+
results = evaluation.run(model, corpus_chunk_size=128)
|
73 |
+
for r in results:
|
74 |
+
print(r)
|
75 |
+
|
76 |
+
```
|
77 |
+
|
78 |
+
# FastEmbed usage
|
79 |
+
|
80 |
+
You should be able to use this as a custom model with no pooling and no normalization. The sentence_embedding output is ready to use.
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<image_soft_token>": 262144
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_sliding_window_pattern": 6,
|
3 |
+
"architectures": [
|
4 |
+
"Gemma3TextModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"attn_logit_softcapping": null,
|
9 |
+
"bos_token_id": 2,
|
10 |
+
"dtype": "float32",
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"final_logit_softcapping": null,
|
13 |
+
"head_dim": 256,
|
14 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
15 |
+
"hidden_size": 768,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 1152,
|
18 |
+
"layer_types": [
|
19 |
+
"sliding_attention",
|
20 |
+
"sliding_attention",
|
21 |
+
"sliding_attention",
|
22 |
+
"sliding_attention",
|
23 |
+
"sliding_attention",
|
24 |
+
"full_attention",
|
25 |
+
"sliding_attention",
|
26 |
+
"sliding_attention",
|
27 |
+
"sliding_attention",
|
28 |
+
"sliding_attention",
|
29 |
+
"sliding_attention",
|
30 |
+
"full_attention",
|
31 |
+
"sliding_attention",
|
32 |
+
"sliding_attention",
|
33 |
+
"sliding_attention",
|
34 |
+
"sliding_attention",
|
35 |
+
"sliding_attention",
|
36 |
+
"full_attention",
|
37 |
+
"sliding_attention",
|
38 |
+
"sliding_attention",
|
39 |
+
"sliding_attention",
|
40 |
+
"sliding_attention",
|
41 |
+
"sliding_attention",
|
42 |
+
"full_attention"
|
43 |
+
],
|
44 |
+
"max_position_embeddings": 2048,
|
45 |
+
"model_type": "gemma3_text",
|
46 |
+
"num_attention_heads": 3,
|
47 |
+
"num_hidden_layers": 24,
|
48 |
+
"num_key_value_heads": 1,
|
49 |
+
"pad_token_id": 0,
|
50 |
+
"query_pre_attn_scalar": 256,
|
51 |
+
"rms_norm_eps": 1e-06,
|
52 |
+
"rope_local_base_freq": 10000.0,
|
53 |
+
"rope_scaling": null,
|
54 |
+
"rope_theta": 1000000.0,
|
55 |
+
"sliding_window": 512,
|
56 |
+
"transformers_version": "4.57.0.dev0",
|
57 |
+
"use_bidirectional_attention": true,
|
58 |
+
"use_cache": true,
|
59 |
+
"vocab_size": 262144,
|
60 |
+
"transformers.js_config": {
|
61 |
+
"use_external_data_format": {
|
62 |
+
"model.onnx": 1,
|
63 |
+
"model_fp16.onnx": 1,
|
64 |
+
"model_quantized.onnx": 1,
|
65 |
+
"model_q4.onnx": 1,
|
66 |
+
"model_q4f16.onnx": 1,
|
67 |
+
"model_no_gather_q4.onnx": 1
|
68 |
+
},
|
69 |
+
"kv_cache_dtype": false
|
70 |
+
}
|
71 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cache_implementation": "hybrid",
|
3 |
+
"do_sample": true,
|
4 |
+
"top_k": 64,
|
5 |
+
"top_p": 0.95,
|
6 |
+
"transformers_version": "4.57.0.dev0"
|
7 |
+
}
|
mteb_results_by_task.png
ADDED
![]() |
Git LFS Details
|
mteb_total_scores.png
ADDED
![]() |
Git LFS Details
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21585443cf1ee0e87ba306ba9b1b97761d0aa3666f96947f8e65123dfee06688
|
3 |
+
size 309435349
|
special_tokens_map.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"boi_token": "<start_of_image>",
|
3 |
+
"bos_token": {
|
4 |
+
"content": "<bos>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
"eoi_token": "<end_of_image>",
|
11 |
+
"eos_token": {
|
12 |
+
"content": "<eos>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"image_token": "<image_soft_token>",
|
19 |
+
"pad_token": {
|
20 |
+
"content": "<pad>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"unk_token": {
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dda02faaf32bc91031dc8c88457ac272b00c1016cc679757d1c441b248b9c47
|
3 |
+
size 20323312
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
|
3 |
+
size 4689074
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|