eolang commited on
Commit
31bf773
·
1 Parent(s): 0f24858
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -6.07 +/- 2.76
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -7.00 +/- 1.65
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:14fd88e8f3e1e15956f80846a8fc9b0412af850d2634a6d11d60209205f1bd6f
3
- size 108023
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd1e50ffd60972c7d6fc18094a6c65f419727ea850ef27ce0a6cbd5c8291a503
3
+ size 108054
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff2943f7c10>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7ff2943f1a80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -21,7 +21,7 @@
21
  },
22
  "observation_space": {
23
  ":type:": "<class 'gym.spaces.dict.Dict'>",
24
- ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
  "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
  "_shape": null,
27
  "dtype": null,
@@ -29,7 +29,7 @@
29
  },
30
  "action_space": {
31
  ":type:": "<class 'gym.spaces.box.Box'>",
32
- ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
  "dtype": "float32",
34
  "_shape": [
35
  3
@@ -46,19 +46,19 @@
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1677768370891866386,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjUXxPmsDh7zcUxc/jUXxPmsDh7zcUxc/jUXxPmsDh7zcUxc/jUXxPmsDh7zcUxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfe2av3EAI7/IJKK/ipR3PjyvrT/BdYq9+HRNPi67yj803Je/cUmHPjJzOb+Xjmi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNRfE+awOHvNxTFz8lSRY9eVF8utfhIz2NRfE+awOHvNxTFz8lSRY9eVF8utfhIz2NRfE+awOHvNxTFz8lSRY9eVF8utfhIz2NRfE+awOHvNxTFz8lSRY9eVF8utfhIz2UaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 0.47123376 -0.01648112 0.59112334]\n [ 0.47123376 -0.01648112 0.59112334]\n [ 0.47123376 -0.01648112 0.59112334]\n [ 0.47123376 -0.01648112 0.59112334]]",
60
- "desired_goal": "[[-1.2103726 -0.6367255 -1.2667475 ]\n [ 0.24177757 1.3569102 -0.06760741]\n [ 0.20064151 1.5838373 -1.1864076 ]\n [ 0.2642322 -0.724414 -0.90842575]]",
61
- "observation": "[[ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]\n [ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]\n [ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]\n [ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANU26PXlLGL1Z9BY+KwDcPZ7Ypb3ZRLw9t3bgPA8PSrvOvpQ++WYEvOZ4C77qSCo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[ 0.09096757 -0.03718135 0.14741649]\n [ 0.1074222 -0.08097957 0.09192819]\n [ 0.02740036 -0.00308317 0.29051822]\n [-0.00808119 -0.13620338 0.16629377]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,7 +77,7 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhzQqcLKdF8CUhpRSlIwBbJRLMowBdJRHQKgsnXL/0d11fZQoaAZoCWgPQwjSrGwf8i4kwJSGlFKUaBVLMmgWR0CoLF48uBczdX2UKGgGaAloD0MIN8E3TZ9dGsCUhpRSlGgVSzJoFkdAqCwfnW8RMHV9lChoBmgJaA9DCKJ/gosVzS3AlIaUUpRoFUsyaBZHQKgr4gQpWmx1fZQoaAZoCWgPQwirPldbsd8LwJSGlFKUaBVLMmgWR0CoLkoDxLCfdX2UKGgGaAloD0MIkL3e/fHOEsCUhpRSlGgVSzJoFkdAqC4LGJemenV9lChoBmgJaA9DCBZu+UhKKhjAlIaUUpRoFUsyaBZHQKgtzJK8L8d1fZQoaAZoCWgPQwjxgR3/BYIgwJSGlFKUaBVLMmgWR0CoLY7MottidX2UKGgGaAloD0MIaccNv5v+FsCUhpRSlGgVSzJoFkdAqC/kCkoF3nV9lChoBmgJaA9DCGrBi76CBB7AlIaUUpRoFUsyaBZHQKgvpI8QqZt1fZQoaAZoCWgPQwge3J21224hwJSGlFKUaBVLMmgWR0CoL2Za3ZwodX2UKGgGaAloD0MIuyh64GMQIcCUhpRSlGgVSzJoFkdAqC8oi3XqaHV9lChoBmgJaA9DCN1Dwvf+BiHAlIaUUpRoFUsyaBZHQKgw/XCCSRt1fZQoaAZoCWgPQwg5fNKJBCMQwJSGlFKUaBVLMmgWR0CoML3Adn01dX2UKGgGaAloD0MIt11ortNoC8CUhpRSlGgVSzJoFkdAqDB+kvboKXV9lChoBmgJaA9DCD/9Z82PvyHAlIaUUpRoFUsyaBZHQKgwQHBUJfJ1fZQoaAZoCWgPQwjVyoRf6vckwJSGlFKUaBVLMmgWR0CoMfbeMyaedX2UKGgGaAloD0MIf0xr09jmLMCUhpRSlGgVSzJoFkdAqDG232EkB3V9lChoBmgJaA9DCJxQiIBDuBPAlIaUUpRoFUsyaBZHQKgxd63RXwN1fZQoaAZoCWgPQwgEdF/ObKcQwJSGlFKUaBVLMmgWR0CoMTlJxvNvdX2UKGgGaAloD0MIMqoM424gJMCUhpRSlGgVSzJoFkdAqDLn6yjYZnV9lChoBmgJaA9DCDI+zF62DSLAlIaUUpRoFUsyaBZHQKgyp/2Cdz51fZQoaAZoCWgPQwi/Q1GgT0QUwJSGlFKUaBVLMmgWR0CoMmjqv/zbdX2UKGgGaAloD0MIK/cCs0KRCsCUhpRSlGgVSzJoFkdAqDIqnxaxHHV9lChoBmgJaA9DCP6d7dEbbgnAlIaUUpRoFUsyaBZHQKgz4XQ+lj51fZQoaAZoCWgPQwgCDwwgfLgWwJSGlFKUaBVLMmgWR0CoM6Gx+rlvdX2UKGgGaAloD0MIjErqBDQhGMCUhpRSlGgVSzJoFkdAqDNiubI91XV9lChoBmgJaA9DCEta8Q2F3xbAlIaUUpRoFUsyaBZHQKgzJGx2SuB1fZQoaAZoCWgPQwiCj8GKUx0WwJSGlFKUaBVLMmgWR0CoNNd8zAN5dX2UKGgGaAloD0MIDW/W4H2VG8CUhpRSlGgVSzJoFkdAqDSX2saKk3V9lChoBmgJaA9DCGjpCrYRzwzAlIaUUpRoFUsyaBZHQKg0WLc9GI91fZQoaAZoCWgPQwh/F7ZmK+8XwJSGlFKUaBVLMmgWR0CoNBpcHGCJdX2UKGgGaAloD0MIKJtyhXcxJcCUhpRSlGgVSzJoFkdAqDXX9LpRoHV9lChoBmgJaA9DCOBIoMGmtiDAlIaUUpRoFUsyaBZHQKg1l/hl18t1fZQoaAZoCWgPQwhDjxg9tyAQwJSGlFKUaBVLMmgWR0CoNVjvVmSRdX2UKGgGaAloD0MIJefEHtrXFcCUhpRSlGgVSzJoFkdAqDUalnAZbnV9lChoBmgJaA9DCJOKxtrfaRPAlIaUUpRoFUsyaBZHQKg2yeQuEmJ1fZQoaAZoCWgPQwhGfCdmvbgYwJSGlFKUaBVLMmgWR0CoNonzH0btdX2UKGgGaAloD0MIho4dVOIiIsCUhpRSlGgVSzJoFkdAqDZK1mapgnV9lChoBmgJaA9DCDo7GRwlByDAlIaUUpRoFUsyaBZHQKg2DJ9RaX91fZQoaAZoCWgPQwiEvYkhORkkwJSGlFKUaBVLMmgWR0CoN9KNZNfxdX2UKGgGaAloD0MIvVZCd0kMG8CUhpRSlGgVSzJoFkdAqDeS3XqZ+nV9lChoBmgJaA9DCIasbvWc1BPAlIaUUpRoFUsyaBZHQKg3U9nscAB1fZQoaAZoCWgPQwjylUBK7CodwJSGlFKUaBVLMmgWR0CoNxYaHbh4dX2UKGgGaAloD0MIiUUMO4wpCsCUhpRSlGgVSzJoFkdAqDjQezUqhHV9lChoBmgJaA9DCOolxjL9Mh3AlIaUUpRoFUsyaBZHQKg4kHqNZNh1fZQoaAZoCWgPQwhuaqD5nLsJwJSGlFKUaBVLMmgWR0CoOFF8ohIOdX2UKGgGaAloD0MIuJGyRdJOF8CUhpRSlGgVSzJoFkdAqDgTKgZjx3V9lChoBmgJaA9DCII3pFGB8wzAlIaUUpRoFUsyaBZHQKg5zlnRLK51fZQoaAZoCWgPQwh6xVOPNNgHwJSGlFKUaBVLMmgWR0CoOY5XU6PsdX2UKGgGaAloD0MIsJC5Mqj2JMCUhpRSlGgVSzJoFkdAqDlPizcAR3V9lChoBmgJaA9DCEGADB072CPAlIaUUpRoFUsyaBZHQKg5ERradtl1fZQoaAZoCWgPQwihZ7Pqc5UfwJSGlFKUaBVLMmgWR0CoOsdwFTvRdX2UKGgGaAloD0MIVdtN8E0zEcCUhpRSlGgVSzJoFkdAqDqHfoA4oHV9lChoBmgJaA9DCDSCjevflRHAlIaUUpRoFUsyaBZHQKg6SFXaJyh1fZQoaAZoCWgPQwjVJk7udxgYwJSGlFKUaBVLMmgWR0CoOgoL5RCQdX2UKGgGaAloD0MIc4V3uYgPHsCUhpRSlGgVSzJoFkdAqDvfUONHY3V9lChoBmgJaA9DCFDG+DB7kSHAlIaUUpRoFUsyaBZHQKg7n51Ng0F1fZQoaAZoCWgPQwhBmxw+6SQIwJSGlFKUaBVLMmgWR0CoO2B3iaRZdX2UKGgGaAloD0MIN8ZOeAnOE8CUhpRSlGgVSzJoFkdAqDsic7Qsw3V9lChoBmgJaA9DCCxF8pVAuhLAlIaUUpRoFUsyaBZHQKg85JnQID51fZQoaAZoCWgPQwgzbJT1m+kewJSGlFKUaBVLMmgWR0CoPKSlvZRLdX2UKGgGaAloD0MIRSxi2GGsDMCUhpRSlGgVSzJoFkdAqDxloL5RCXV9lChoBmgJaA9DCChjfJi9DCHAlIaUUpRoFUsyaBZHQKg8KCbtqpN1fZQoaAZoCWgPQwhZ3lUPmPcewJSGlFKUaBVLMmgWR0CoPeoikftAdX2UKGgGaAloD0MIBaT9D7CmIcCUhpRSlGgVSzJoFkdAqD2qhi9ZinV9lChoBmgJaA9DCAjJAiZwqwvAlIaUUpRoFUsyaBZHQKg9a3gk1Mx1fZQoaAZoCWgPQwjUgEHSp0UowJSGlFKUaBVLMmgWR0CoPS1bqyGBdX2UKGgGaAloD0MIWFNZFHZhEsCUhpRSlGgVSzJoFkdAqD7mgHu7YnV9lChoBmgJaA9DCLLyy2CMuB3AlIaUUpRoFUsyaBZHQKg+ppSJj2B1fZQoaAZoCWgPQwgJh97i4T0kwJSGlFKUaBVLMmgWR0CoPmeXZ5AydX2UKGgGaAloD0MI2pB/ZhCPEcCUhpRSlGgVSzJoFkdAqD4pflZHNHV9lChoBmgJaA9DCIYEjC5vDgrAlIaUUpRoFUsyaBZHQKg/6gaFVT91fZQoaAZoCWgPQwgROX09XzMWwJSGlFKUaBVLMmgWR0CoP6pcophGdX2UKGgGaAloD0MI/+px32p1IsCUhpRSlGgVSzJoFkdAqD9rQ/oq1HV9lChoBmgJaA9DCJtwr8xbtRvAlIaUUpRoFUsyaBZHQKg/LW8RL9N1fZQoaAZoCWgPQwhIbk26LYklwJSGlFKUaBVLMmgWR0CoQOV5a/yodX2UKGgGaAloD0MIUl+WdmoOFsCUhpRSlGgVSzJoFkdAqEClj/dZaHV9lChoBmgJaA9DCAjpKXKIGArAlIaUUpRoFUsyaBZHQKhAZq+rU9Z1fZQoaAZoCWgPQwi4rpgR3nYgwJSGlFKUaBVLMmgWR0CoQCiuMdcTdX2UKGgGaAloD0MIBOJ1/YI9FMCUhpRSlGgVSzJoFkdAqEHpUkv9L3V9lChoBmgJaA9DCAnAP6VKdBHAlIaUUpRoFUsyaBZHQKhBqVk+X7d1fZQoaAZoCWgPQwi94T5ya/IkwJSGlFKUaBVLMmgWR0CoQWowM6RydX2UKGgGaAloD0MIiLt6FRld/r+UhpRSlGgVSzJoFkdAqEEr4zrNW3V9lChoBmgJaA9DCDcZVYZxtxPAlIaUUpRoFUsyaBZHQKhC8MfA9FF1fZQoaAZoCWgPQwjeVKTC2IIYwJSGlFKUaBVLMmgWR0CoQrDGcWj5dX2UKGgGaAloD0MI+kSeJF2TB8CUhpRSlGgVSzJoFkdAqEJxpeu3dHV9lChoBmgJaA9DCGrBi76CtA3AlIaUUpRoFUsyaBZHQKhCM2SdOIt1fZQoaAZoCWgPQwjSViWRfZAJwJSGlFKUaBVLMmgWR0CoRArV4HHFdX2UKGgGaAloD0MIUORJ0jVDI8CUhpRSlGgVSzJoFkdAqEPLVUdaMnV9lChoBmgJaA9DCOI5W0BovRLAlIaUUpRoFUsyaBZHQKhDjES/TLJ1fZQoaAZoCWgPQwiUv3tHjXkewJSGlFKUaBVLMmgWR0CoQ04c3l0YdX2UKGgGaAloD0MIjrCoiNPhJcCUhpRSlGgVSzJoFkdAqEWSUaAFxHV9lChoBmgJaA9DCIXtJ2N8SBLAlIaUUpRoFUsyaBZHQKhFUveP7vZ1fZQoaAZoCWgPQwhhUnx8QhYQwJSGlFKUaBVLMmgWR0CoRRRl6JIldX2UKGgGaAloD0MIUfaWcr5YBsCUhpRSlGgVSzJoFkdAqETWzt1IRXV9lChoBmgJaA9DCO53KAr0wSTAlIaUUpRoFUsyaBZHQKhHJDArQPZ1fZQoaAZoCWgPQwjjpgaaz7kjwJSGlFKUaBVLMmgWR0CoRuUA93bFdX2UKGgGaAloD0MIMWE0K9unCcCUhpRSlGgVSzJoFkdAqEamVC5VfnV9lChoBmgJaA9DCMr6zcR04QnAlIaUUpRoFUsyaBZHQKhGaPFvQ4V1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7c0d571750>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f7c0d56a4c0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
21
  },
22
  "observation_space": {
23
  ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
25
  "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
  "_shape": null,
27
  "dtype": null,
 
29
  },
30
  "action_space": {
31
  ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
  "dtype": "float32",
34
  "_shape": [
35
  3
 
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1679565507400840148,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL29wdC9jb25kYS9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALkUxv+mcSr92scc/Tk1JP8mSyT+bUhy+OujKP3Avbz+FXb2+OmXBPuwUQ79t3dK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.45407534 -0.03489579 0.5929424 ]\n [ 0.45407534 -0.03489579 0.5929424 ]\n [ 0.45407534 -0.03489579 0.5929424 ]\n [ 0.45407534 -0.03489579 0.5929424 ]]",
60
+ "desired_goal": "[[-0.69246185 -0.79145676 1.5601032 ]\n [ 0.7863358 1.574792 -0.15265886]\n [ 1.585212 0.9343176 -0.36985412]\n [ 0.37772542 -0.762038 -0.4118456 ]]",
61
+ "observation": "[[ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]\n [ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]\n [ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]\n [ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI9ERPiPG1L0KEgk+EoxmPUVqE73OnMk8mF62PGT4+71Ns2U+SjK+PcjVFr3aulo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.14239936 -0.10389354 0.13385788]\n [ 0.05628593 -0.03599002 0.0246109 ]\n [ 0.0222619 -0.12303236 0.22431679]\n [ 0.09286936 -0.03682497 0.2136034 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVcA9z58GGcCUhpRSlIwBbJRLMowBdJRHQKGhR3BYV7B1fZQoaAZoCWgPQwgBUMWNW4wNwJSGlFKUaBVLMmgWR0ChoRZ/9YOldX2UKGgGaAloD0MIN8e5TbhXHMCUhpRSlGgVSzJoFkdAoaDpy4nWrnV9lChoBmgJaA9DCFjk1w+xwRzAlIaUUpRoFUsyaBZHQKGgvAvcrRV1fZQoaAZoCWgPQwiASSpTzHEewJSGlFKUaBVLMmgWR0ChohJON5t4dX2UKGgGaAloD0MIW+m12VhZH8CUhpRSlGgVSzJoFkdAoaHhXhfjTHV9lChoBmgJaA9DCIHoSZnUACHAlIaUUpRoFUsyaBZHQKGhtIEr5Ip1fZQoaAZoCWgPQwikq3R3na0SwJSGlFKUaBVLMmgWR0ChoYbHyVfNdX2UKGgGaAloD0MITyLCvwgaGMCUhpRSlGgVSzJoFkdAoaLjASFoMHV9lChoBmgJaA9DCIgtPZrqGRXAlIaUUpRoFUsyaBZHQKGisgB91EF1fZQoaAZoCWgPQwgDz72HSw4MwJSGlFKUaBVLMmgWR0ChooUZeiSJdX2UKGgGaAloD0MIvt2SHLA7FsCUhpRSlGgVSzJoFkdAoaJXexfOU3V9lChoBmgJaA9DCF9DcFzG7RbAlIaUUpRoFUsyaBZHQKGjsl1KXfJ1fZQoaAZoCWgPQwg3xk54CV4fwJSGlFKUaBVLMmgWR0Cho4FqBVdYdX2UKGgGaAloD0MIu0c2V83DF8CUhpRSlGgVSzJoFkdAoaNUeQuEmXV9lChoBmgJaA9DCLTHC+nw8A/AlIaUUpRoFUsyaBZHQKGjJrIHTql1fZQoaAZoCWgPQwiVLCeh9MUNwJSGlFKUaBVLMmgWR0ChpHeRxLkCdX2UKGgGaAloD0MIbhYvFoYIFsCUhpRSlGgVSzJoFkdAoaRGpbUwz3V9lChoBmgJaA9DCDNUxVT6qRrAlIaUUpRoFUsyaBZHQKGkGbExZdR1fZQoaAZoCWgPQwgB9tGpKz8GwJSGlFKUaBVLMmgWR0Cho+v5YYBOdX2UKGgGaAloD0MIoz1eSIfnFcCUhpRSlGgVSzJoFkdAoaVqS5iEx3V9lChoBmgJaA9DCJPi4xOyQx3AlIaUUpRoFUsyaBZHQKGlOi9qUNd1fZQoaAZoCWgPQwj0aoDSUGMWwJSGlFKUaBVLMmgWR0ChpQ08V58jdX2UKGgGaAloD0MIfcwHBDrDHsCUhpRSlGgVSzJoFkdAoaTfpW3jMnV9lChoBmgJaA9DCBb3H5kOjRjAlIaUUpRoFUsyaBZHQKGmOvs7dSF1fZQoaAZoCWgPQwi6SnfX2dAVwJSGlFKUaBVLMmgWR0Chpgomois5dX2UKGgGaAloD0MISUikbfyZI8CUhpRSlGgVSzJoFkdAoaXdVrAP/nV9lChoBmgJaA9DCBpR2ht82SXAlIaUUpRoFUsyaBZHQKGlr51vETB1fZQoaAZoCWgPQwgZ/tMNFMgSwJSGlFKUaBVLMmgWR0ChpycOCoS+dX2UKGgGaAloD0MIbcfUXdkFGsCUhpRSlGgVSzJoFkdAoab2EytV73V9lChoBmgJaA9DCIMVp1oLyyHAlIaUUpRoFUsyaBZHQKGmyScLBsR1fZQoaAZoCWgPQwjdtYR80HsgwJSGlFKUaBVLMmgWR0ChppxAKOT8dX2UKGgGaAloD0MI02hyMQbmHcCUhpRSlGgVSzJoFkdAoafx2IO6NHV9lChoBmgJaA9DCMECmDJwmCTAlIaUUpRoFUsyaBZHQKGnwOfdykt1fZQoaAZoCWgPQwifrBiuDoAbwJSGlFKUaBVLMmgWR0Chp5P1DjR2dX2UKGgGaAloD0MISrclcsE5DMCUhpRSlGgVSzJoFkdAoadmOIZZS3V9lChoBmgJaA9DCFrXaDnQ8xjAlIaUUpRoFUsyaBZHQKGovvSc9W91fZQoaAZoCWgPQwh5IR0ewjgJwJSGlFKUaBVLMmgWR0ChqI3+l0o0dX2UKGgGaAloD0MI6KT3ja9dG8CUhpRSlGgVSzJoFkdAoahhEc81XXV9lChoBmgJaA9DCMaoa+19OiLAlIaUUpRoFUsyaBZHQKGoM1JDmbN1fZQoaAZoCWgPQwi05sdfWtQRwJSGlFKUaBVLMmgWR0ChqYnjyWiUdX2UKGgGaAloD0MI7pbkgF19FcCUhpRSlGgVSzJoFkdAoalY8ZDRdHV9lChoBmgJaA9DCH9PrFPlAyDAlIaUUpRoFUsyaBZHQKGpLAJswcp1fZQoaAZoCWgPQwik42pkV8odwJSGlFKUaBVLMmgWR0ChqP5FXq7idX2UKGgGaAloD0MIfnIUIAqGC8CUhpRSlGgVSzJoFkdAoapotz0Yj3V9lChoBmgJaA9DCI0qw7gb5CPAlIaUUpRoFUsyaBZHQKGqOBeXzDp1fZQoaAZoCWgPQwgv3/qw3iAjwJSGlFKUaBVLMmgWR0Chqgs1baAXdX2UKGgGaAloD0MI9gfKbfvmJ8CUhpRSlGgVSzJoFkdAoandgMMI/3V9lChoBmgJaA9DCOvE5XgF2iDAlIaUUpRoFUsyaBZHQKGrVcqOLix1fZQoaAZoCWgPQwjoacAg6SMUwJSGlFKUaBVLMmgWR0ChqyTVtoBadX2UKGgGaAloD0MI0hxZ+WWwGsCUhpRSlGgVSzJoFkdAoar4FTvRZ3V9lChoBmgJaA9DCAyyZfm6DBnAlIaUUpRoFUsyaBZHQKGqyt03fhx1fZQoaAZoCWgPQwj5hsJn6yAWwJSGlFKUaBVLMmgWR0ChrCFev6j4dX2UKGgGaAloD0MIO4kI/yJIGMCUhpRSlGgVSzJoFkdAoavwbbUPQXV9lChoBmgJaA9DCEiLM4Y5cRTAlIaUUpRoFUsyaBZHQKGrw4MnZ011fZQoaAZoCWgPQwhXzAhvD4ogwJSGlFKUaBVLMmgWR0Chq5XFDOTrdX2UKGgGaAloD0MIHJlH/mAYJ8CUhpRSlGgVSzJoFkdAoa0RjQRf4XV9lChoBmgJaA9DCOKUuflGdAzAlIaUUpRoFUsyaBZHQKGs4Zpi7TV1fZQoaAZoCWgPQwjl1TkGZJcqwJSGlFKUaBVLMmgWR0ChrLSy2QXAdX2UKGgGaAloD0MI097gC5MxIcCUhpRSlGgVSzJoFkdAoayG938n/nV9lChoBmgJaA9DCGkCRSxiQCLAlIaUUpRoFUsyaBZHQKGt3ExZdOZ1fZQoaAZoCWgPQwgIkKFjB7UcwJSGlFKUaBVLMmgWR0ChratYSxqxdX2UKGgGaAloD0MIlPjcCfa/EcCUhpRSlGgVSzJoFkdAoa1+Z7Xxv3V9lChoBmgJaA9DCOG1SxsOSw/AlIaUUpRoFUsyaBZHQKGtUKmbb111fZQoaAZoCWgPQwgCDqFKzZ4SwJSGlFKUaBVLMmgWR0ChrswCCBf8dX2UKGgGaAloD0MISmBzDp75EMCUhpRSlGgVSzJoFkdAoa6bCHh0hnV9lChoBmgJaA9DCPJetTLhlw3AlIaUUpRoFUsyaBZHQKGubhrnDBN1fZQoaAZoCWgPQwi+F1+0x4sWwJSGlFKUaBVLMmgWR0ChrkBRIjGDdX2UKGgGaAloD0MIOxixTwA1F8CUhpRSlGgVSzJoFkdAoa+bpcHGCXV9lChoBmgJaA9DCAWKWMSwsyHAlIaUUpRoFUsyaBZHQKGvarK/2011fZQoaAZoCWgPQwicw7Xaw4YgwJSGlFKUaBVLMmgWR0Chrz3NTtLMdX2UKGgGaAloD0MItqLNcW6jJsCUhpRSlGgVSzJoFkdAoa8QHkcS5HV9lChoBmgJaA9DCOolxjL90irAlIaUUpRoFUsyaBZHQKGwlL3bmEJ1fZQoaAZoCWgPQwilhjYAG+ghwJSGlFKUaBVLMmgWR0ChsGPStvGZdX2UKGgGaAloD0MIY35uaMrOKsCUhpRSlGgVSzJoFkdAobA2+0w8GXV9lChoBmgJaA9DCBH/sKVHQxPAlIaUUpRoFUsyaBZHQKGwCbedkJ91fZQoaAZoCWgPQwj5o6gz94ggwJSGlFKUaBVLMmgWR0ChsYU52hZhdX2UKGgGaAloD0MIwCDp0yqKF8CUhpRSlGgVSzJoFkdAobFURaouPHV9lChoBmgJaA9DCEIlrmNcIRXAlIaUUpRoFUsyaBZHQKGxJ9Vmz0J1fZQoaAZoCWgPQwgT1zGuuBggwJSGlFKUaBVLMmgWR0ChsPr5ylvZdX2UKGgGaAloD0MIkKFjB5VoFcCUhpRSlGgVSzJoFkdAobKbcmBvrHV9lChoBmgJaA9DCCtR9pZyJiHAlIaUUpRoFUsyaBZHQKGya0Y0l7d1fZQoaAZoCWgPQwjwp8ZLN1kTwJSGlFKUaBVLMmgWR0Chsj8brC3xdX2UKGgGaAloD0MI275H/fU6FMCUhpRSlGgVSzJoFkdAobIRaX8fm3V9lChoBmgJaA9DCF7WxAJfwRrAlIaUUpRoFUsyaBZHQKGzZy3CsOp1fZQoaAZoCWgPQwiVYkfjUC8awJSGlFKUaBVLMmgWR0ChszY1gpjMdX2UKGgGaAloD0MIC7Q7pBh4J8CUhpRSlGgVSzJoFkdAobMJRGc4HXV9lChoBmgJaA9DCFZ+GYwRuSLAlIaUUpRoFUsyaBZHQKGy24sEq2B1fZQoaAZoCWgPQwjS4La28EwWwJSGlFKUaBVLMmgWR0ChtD9ZJTVEdX2UKGgGaAloD0MIu9Bcp5EGF8CUhpRSlGgVSzJoFkdAobQPBtUGV3V9lChoBmgJaA9DCKzFpwAYjxzAlIaUUpRoFUsyaBZHQKGz4iwjdHl1fZQoaAZoCWgPQwjwiArVzYUcwJSGlFKUaBVLMmgWR0Chs7RlQMx5dX2UKGgGaAloD0MIysLX17pEJMCUhpRSlGgVSzJoFkdAobUxTS9dvHV9lChoBmgJaA9DCMy209aI4B3AlIaUUpRoFUsyaBZHQKG1AFY+0PZ1fZQoaAZoCWgPQwgAxF29iqwbwJSGlFKUaBVLMmgWR0ChtNOm78NydX2UKGgGaAloD0MIZFkw8UfxC8CUhpRSlGgVSzJoFkdAobSmz8gp0HV9lChoBmgJaA9DCM6qz9VWDBTAlIaUUpRoFUsyaBZHQKG1++Y+jdp1fZQoaAZoCWgPQwiUiPAvgh4iwJSGlFKUaBVLMmgWR0Chtcr/sE7odX2UKGgGaAloD0MIqmQAqOLOI8CUhpRSlGgVSzJoFkdAobWeNedCmnV9lChoBmgJaA9DCA6IEFfOzhbAlIaUUpRoFUsyaBZHQKG1cHzH0bt1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dacf890ff6b36b2992e587f3dfcb5a10bf4a851cecbf71d06de6bd3efaf242a7
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9f06431e338ffd97cef8387a55fa25cab0c04843fd565aae353f88ac8940fea
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0545f89dde2e3dddaeceb59c07a56001de79ab5a2fc9cd999af5ef5cd003f5e1
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c373deb2c285686582bc8a4cea92834325c7e2df8d91a1f1f2a995395b429d0a
3
  size 46014
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
- - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
- - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
1
+ - OS: Linux-5.4.0-144-generic-x86_64-with-glibc2.27 # 161-Ubuntu SMP Fri Feb 3 14:49:04 UTC 2023
2
+ - Python: 3.10.8
3
  - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
  - GPU Enabled: True
6
+ - Numpy: 1.22.3
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff2943f7c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff2943f1a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677768370891866386, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjUXxPmsDh7zcUxc/jUXxPmsDh7zcUxc/jUXxPmsDh7zcUxc/jUXxPmsDh7zcUxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfe2av3EAI7/IJKK/ipR3PjyvrT/BdYq9+HRNPi67yj803Je/cUmHPjJzOb+Xjmi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNRfE+awOHvNxTFz8lSRY9eVF8utfhIz2NRfE+awOHvNxTFz8lSRY9eVF8utfhIz2NRfE+awOHvNxTFz8lSRY9eVF8utfhIz2NRfE+awOHvNxTFz8lSRY9eVF8utfhIz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.47123376 -0.01648112 0.59112334]\n [ 0.47123376 -0.01648112 0.59112334]\n [ 0.47123376 -0.01648112 0.59112334]\n [ 0.47123376 -0.01648112 0.59112334]]", "desired_goal": "[[-1.2103726 -0.6367255 -1.2667475 ]\n [ 0.24177757 1.3569102 -0.06760741]\n [ 0.20064151 1.5838373 -1.1864076 ]\n [ 0.2642322 -0.724414 -0.90842575]]", "observation": "[[ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]\n [ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]\n [ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]\n [ 0.47123376 -0.01648112 0.59112334 0.03669085 -0.00096252 0.0400103 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANU26PXlLGL1Z9BY+KwDcPZ7Ypb3ZRLw9t3bgPA8PSrvOvpQ++WYEvOZ4C77qSCo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09096757 -0.03718135 0.14741649]\n [ 0.1074222 -0.08097957 0.09192819]\n [ 0.02740036 -0.00308317 0.29051822]\n [-0.00808119 -0.13620338 0.16629377]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhzQqcLKdF8CUhpRSlIwBbJRLMowBdJRHQKgsnXL/0d11fZQoaAZoCWgPQwjSrGwf8i4kwJSGlFKUaBVLMmgWR0CoLF48uBczdX2UKGgGaAloD0MIN8E3TZ9dGsCUhpRSlGgVSzJoFkdAqCwfnW8RMHV9lChoBmgJaA9DCKJ/gosVzS3AlIaUUpRoFUsyaBZHQKgr4gQpWmx1fZQoaAZoCWgPQwirPldbsd8LwJSGlFKUaBVLMmgWR0CoLkoDxLCfdX2UKGgGaAloD0MIkL3e/fHOEsCUhpRSlGgVSzJoFkdAqC4LGJemenV9lChoBmgJaA9DCBZu+UhKKhjAlIaUUpRoFUsyaBZHQKgtzJK8L8d1fZQoaAZoCWgPQwjxgR3/BYIgwJSGlFKUaBVLMmgWR0CoLY7MottidX2UKGgGaAloD0MIaccNv5v+FsCUhpRSlGgVSzJoFkdAqC/kCkoF3nV9lChoBmgJaA9DCGrBi76CBB7AlIaUUpRoFUsyaBZHQKgvpI8QqZt1fZQoaAZoCWgPQwge3J21224hwJSGlFKUaBVLMmgWR0CoL2Za3ZwodX2UKGgGaAloD0MIuyh64GMQIcCUhpRSlGgVSzJoFkdAqC8oi3XqaHV9lChoBmgJaA9DCN1Dwvf+BiHAlIaUUpRoFUsyaBZHQKgw/XCCSRt1fZQoaAZoCWgPQwg5fNKJBCMQwJSGlFKUaBVLMmgWR0CoML3Adn01dX2UKGgGaAloD0MIt11ortNoC8CUhpRSlGgVSzJoFkdAqDB+kvboKXV9lChoBmgJaA9DCD/9Z82PvyHAlIaUUpRoFUsyaBZHQKgwQHBUJfJ1fZQoaAZoCWgPQwjVyoRf6vckwJSGlFKUaBVLMmgWR0CoMfbeMyaedX2UKGgGaAloD0MIf0xr09jmLMCUhpRSlGgVSzJoFkdAqDG232EkB3V9lChoBmgJaA9DCJxQiIBDuBPAlIaUUpRoFUsyaBZHQKgxd63RXwN1fZQoaAZoCWgPQwgEdF/ObKcQwJSGlFKUaBVLMmgWR0CoMTlJxvNvdX2UKGgGaAloD0MIMqoM424gJMCUhpRSlGgVSzJoFkdAqDLn6yjYZnV9lChoBmgJaA9DCDI+zF62DSLAlIaUUpRoFUsyaBZHQKgyp/2Cdz51fZQoaAZoCWgPQwi/Q1GgT0QUwJSGlFKUaBVLMmgWR0CoMmjqv/zbdX2UKGgGaAloD0MIK/cCs0KRCsCUhpRSlGgVSzJoFkdAqDIqnxaxHHV9lChoBmgJaA9DCP6d7dEbbgnAlIaUUpRoFUsyaBZHQKgz4XQ+lj51fZQoaAZoCWgPQwgCDwwgfLgWwJSGlFKUaBVLMmgWR0CoM6Gx+rlvdX2UKGgGaAloD0MIjErqBDQhGMCUhpRSlGgVSzJoFkdAqDNiubI91XV9lChoBmgJaA9DCEta8Q2F3xbAlIaUUpRoFUsyaBZHQKgzJGx2SuB1fZQoaAZoCWgPQwiCj8GKUx0WwJSGlFKUaBVLMmgWR0CoNNd8zAN5dX2UKGgGaAloD0MIDW/W4H2VG8CUhpRSlGgVSzJoFkdAqDSX2saKk3V9lChoBmgJaA9DCGjpCrYRzwzAlIaUUpRoFUsyaBZHQKg0WLc9GI91fZQoaAZoCWgPQwh/F7ZmK+8XwJSGlFKUaBVLMmgWR0CoNBpcHGCJdX2UKGgGaAloD0MIKJtyhXcxJcCUhpRSlGgVSzJoFkdAqDXX9LpRoHV9lChoBmgJaA9DCOBIoMGmtiDAlIaUUpRoFUsyaBZHQKg1l/hl18t1fZQoaAZoCWgPQwhDjxg9tyAQwJSGlFKUaBVLMmgWR0CoNVjvVmSRdX2UKGgGaAloD0MIJefEHtrXFcCUhpRSlGgVSzJoFkdAqDUalnAZbnV9lChoBmgJaA9DCJOKxtrfaRPAlIaUUpRoFUsyaBZHQKg2yeQuEmJ1fZQoaAZoCWgPQwhGfCdmvbgYwJSGlFKUaBVLMmgWR0CoNonzH0btdX2UKGgGaAloD0MIho4dVOIiIsCUhpRSlGgVSzJoFkdAqDZK1mapgnV9lChoBmgJaA9DCDo7GRwlByDAlIaUUpRoFUsyaBZHQKg2DJ9RaX91fZQoaAZoCWgPQwiEvYkhORkkwJSGlFKUaBVLMmgWR0CoN9KNZNfxdX2UKGgGaAloD0MIvVZCd0kMG8CUhpRSlGgVSzJoFkdAqDeS3XqZ+nV9lChoBmgJaA9DCIasbvWc1BPAlIaUUpRoFUsyaBZHQKg3U9nscAB1fZQoaAZoCWgPQwjylUBK7CodwJSGlFKUaBVLMmgWR0CoNxYaHbh4dX2UKGgGaAloD0MIiUUMO4wpCsCUhpRSlGgVSzJoFkdAqDjQezUqhHV9lChoBmgJaA9DCOolxjL9Mh3AlIaUUpRoFUsyaBZHQKg4kHqNZNh1fZQoaAZoCWgPQwhuaqD5nLsJwJSGlFKUaBVLMmgWR0CoOFF8ohIOdX2UKGgGaAloD0MIuJGyRdJOF8CUhpRSlGgVSzJoFkdAqDgTKgZjx3V9lChoBmgJaA9DCII3pFGB8wzAlIaUUpRoFUsyaBZHQKg5zlnRLK51fZQoaAZoCWgPQwh6xVOPNNgHwJSGlFKUaBVLMmgWR0CoOY5XU6PsdX2UKGgGaAloD0MIsJC5Mqj2JMCUhpRSlGgVSzJoFkdAqDlPizcAR3V9lChoBmgJaA9DCEGADB072CPAlIaUUpRoFUsyaBZHQKg5ERradtl1fZQoaAZoCWgPQwihZ7Pqc5UfwJSGlFKUaBVLMmgWR0CoOsdwFTvRdX2UKGgGaAloD0MIVdtN8E0zEcCUhpRSlGgVSzJoFkdAqDqHfoA4oHV9lChoBmgJaA9DCDSCjevflRHAlIaUUpRoFUsyaBZHQKg6SFXaJyh1fZQoaAZoCWgPQwjVJk7udxgYwJSGlFKUaBVLMmgWR0CoOgoL5RCQdX2UKGgGaAloD0MIc4V3uYgPHsCUhpRSlGgVSzJoFkdAqDvfUONHY3V9lChoBmgJaA9DCFDG+DB7kSHAlIaUUpRoFUsyaBZHQKg7n51Ng0F1fZQoaAZoCWgPQwhBmxw+6SQIwJSGlFKUaBVLMmgWR0CoO2B3iaRZdX2UKGgGaAloD0MIN8ZOeAnOE8CUhpRSlGgVSzJoFkdAqDsic7Qsw3V9lChoBmgJaA9DCCxF8pVAuhLAlIaUUpRoFUsyaBZHQKg85JnQID51fZQoaAZoCWgPQwgzbJT1m+kewJSGlFKUaBVLMmgWR0CoPKSlvZRLdX2UKGgGaAloD0MIRSxi2GGsDMCUhpRSlGgVSzJoFkdAqDxloL5RCXV9lChoBmgJaA9DCChjfJi9DCHAlIaUUpRoFUsyaBZHQKg8KCbtqpN1fZQoaAZoCWgPQwhZ3lUPmPcewJSGlFKUaBVLMmgWR0CoPeoikftAdX2UKGgGaAloD0MIBaT9D7CmIcCUhpRSlGgVSzJoFkdAqD2qhi9ZinV9lChoBmgJaA9DCAjJAiZwqwvAlIaUUpRoFUsyaBZHQKg9a3gk1Mx1fZQoaAZoCWgPQwjUgEHSp0UowJSGlFKUaBVLMmgWR0CoPS1bqyGBdX2UKGgGaAloD0MIWFNZFHZhEsCUhpRSlGgVSzJoFkdAqD7mgHu7YnV9lChoBmgJaA9DCLLyy2CMuB3AlIaUUpRoFUsyaBZHQKg+ppSJj2B1fZQoaAZoCWgPQwgJh97i4T0kwJSGlFKUaBVLMmgWR0CoPmeXZ5AydX2UKGgGaAloD0MI2pB/ZhCPEcCUhpRSlGgVSzJoFkdAqD4pflZHNHV9lChoBmgJaA9DCIYEjC5vDgrAlIaUUpRoFUsyaBZHQKg/6gaFVT91fZQoaAZoCWgPQwgROX09XzMWwJSGlFKUaBVLMmgWR0CoP6pcophGdX2UKGgGaAloD0MI/+px32p1IsCUhpRSlGgVSzJoFkdAqD9rQ/oq1HV9lChoBmgJaA9DCJtwr8xbtRvAlIaUUpRoFUsyaBZHQKg/LW8RL9N1fZQoaAZoCWgPQwhIbk26LYklwJSGlFKUaBVLMmgWR0CoQOV5a/yodX2UKGgGaAloD0MIUl+WdmoOFsCUhpRSlGgVSzJoFkdAqEClj/dZaHV9lChoBmgJaA9DCAjpKXKIGArAlIaUUpRoFUsyaBZHQKhAZq+rU9Z1fZQoaAZoCWgPQwi4rpgR3nYgwJSGlFKUaBVLMmgWR0CoQCiuMdcTdX2UKGgGaAloD0MIBOJ1/YI9FMCUhpRSlGgVSzJoFkdAqEHpUkv9L3V9lChoBmgJaA9DCAnAP6VKdBHAlIaUUpRoFUsyaBZHQKhBqVk+X7d1fZQoaAZoCWgPQwi94T5ya/IkwJSGlFKUaBVLMmgWR0CoQWowM6RydX2UKGgGaAloD0MIiLt6FRld/r+UhpRSlGgVSzJoFkdAqEEr4zrNW3V9lChoBmgJaA9DCDcZVYZxtxPAlIaUUpRoFUsyaBZHQKhC8MfA9FF1fZQoaAZoCWgPQwjeVKTC2IIYwJSGlFKUaBVLMmgWR0CoQrDGcWj5dX2UKGgGaAloD0MI+kSeJF2TB8CUhpRSlGgVSzJoFkdAqEJxpeu3dHV9lChoBmgJaA9DCGrBi76CtA3AlIaUUpRoFUsyaBZHQKhCM2SdOIt1fZQoaAZoCWgPQwjSViWRfZAJwJSGlFKUaBVLMmgWR0CoRArV4HHFdX2UKGgGaAloD0MIUORJ0jVDI8CUhpRSlGgVSzJoFkdAqEPLVUdaMnV9lChoBmgJaA9DCOI5W0BovRLAlIaUUpRoFUsyaBZHQKhDjES/TLJ1fZQoaAZoCWgPQwiUv3tHjXkewJSGlFKUaBVLMmgWR0CoQ04c3l0YdX2UKGgGaAloD0MIjrCoiNPhJcCUhpRSlGgVSzJoFkdAqEWSUaAFxHV9lChoBmgJaA9DCIXtJ2N8SBLAlIaUUpRoFUsyaBZHQKhFUveP7vZ1fZQoaAZoCWgPQwhhUnx8QhYQwJSGlFKUaBVLMmgWR0CoRRRl6JIldX2UKGgGaAloD0MIUfaWcr5YBsCUhpRSlGgVSzJoFkdAqETWzt1IRXV9lChoBmgJaA9DCO53KAr0wSTAlIaUUpRoFUsyaBZHQKhHJDArQPZ1fZQoaAZoCWgPQwjjpgaaz7kjwJSGlFKUaBVLMmgWR0CoRuUA93bFdX2UKGgGaAloD0MIMWE0K9unCcCUhpRSlGgVSzJoFkdAqEamVC5VfnV9lChoBmgJaA9DCMr6zcR04QnAlIaUUpRoFUsyaBZHQKhGaPFvQ4V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7c0d571750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7c0d56a4c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679565507400840148, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL29wdC9jb25kYS9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALkUxv+mcSr92scc/Tk1JP8mSyT+bUhy+OujKP3Avbz+FXb2+OmXBPuwUQ79t3dK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45407534 -0.03489579 0.5929424 ]\n [ 0.45407534 -0.03489579 0.5929424 ]\n [ 0.45407534 -0.03489579 0.5929424 ]\n [ 0.45407534 -0.03489579 0.5929424 ]]", "desired_goal": "[[-0.69246185 -0.79145676 1.5601032 ]\n [ 0.7863358 1.574792 -0.15265886]\n [ 1.585212 0.9343176 -0.36985412]\n [ 0.37772542 -0.762038 -0.4118456 ]]", "observation": "[[ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]\n [ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]\n [ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]\n [ 0.45407534 -0.03489579 0.5929424 0.01265431 -0.00570181 0.0162801 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI9ERPiPG1L0KEgk+EoxmPUVqE73OnMk8mF62PGT4+71Ns2U+SjK+PcjVFr3aulo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14239936 -0.10389354 0.13385788]\n [ 0.05628593 -0.03599002 0.0246109 ]\n [ 0.0222619 -0.12303236 0.22431679]\n [ 0.09286936 -0.03682497 0.2136034 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVcA9z58GGcCUhpRSlIwBbJRLMowBdJRHQKGhR3BYV7B1fZQoaAZoCWgPQwgBUMWNW4wNwJSGlFKUaBVLMmgWR0ChoRZ/9YOldX2UKGgGaAloD0MIN8e5TbhXHMCUhpRSlGgVSzJoFkdAoaDpy4nWrnV9lChoBmgJaA9DCFjk1w+xwRzAlIaUUpRoFUsyaBZHQKGgvAvcrRV1fZQoaAZoCWgPQwiASSpTzHEewJSGlFKUaBVLMmgWR0ChohJON5t4dX2UKGgGaAloD0MIW+m12VhZH8CUhpRSlGgVSzJoFkdAoaHhXhfjTHV9lChoBmgJaA9DCIHoSZnUACHAlIaUUpRoFUsyaBZHQKGhtIEr5Ip1fZQoaAZoCWgPQwikq3R3na0SwJSGlFKUaBVLMmgWR0ChoYbHyVfNdX2UKGgGaAloD0MITyLCvwgaGMCUhpRSlGgVSzJoFkdAoaLjASFoMHV9lChoBmgJaA9DCIgtPZrqGRXAlIaUUpRoFUsyaBZHQKGisgB91EF1fZQoaAZoCWgPQwgDz72HSw4MwJSGlFKUaBVLMmgWR0ChooUZeiSJdX2UKGgGaAloD0MIvt2SHLA7FsCUhpRSlGgVSzJoFkdAoaJXexfOU3V9lChoBmgJaA9DCF9DcFzG7RbAlIaUUpRoFUsyaBZHQKGjsl1KXfJ1fZQoaAZoCWgPQwg3xk54CV4fwJSGlFKUaBVLMmgWR0Cho4FqBVdYdX2UKGgGaAloD0MIu0c2V83DF8CUhpRSlGgVSzJoFkdAoaNUeQuEmXV9lChoBmgJaA9DCLTHC+nw8A/AlIaUUpRoFUsyaBZHQKGjJrIHTql1fZQoaAZoCWgPQwiVLCeh9MUNwJSGlFKUaBVLMmgWR0ChpHeRxLkCdX2UKGgGaAloD0MIbhYvFoYIFsCUhpRSlGgVSzJoFkdAoaRGpbUwz3V9lChoBmgJaA9DCDNUxVT6qRrAlIaUUpRoFUsyaBZHQKGkGbExZdR1fZQoaAZoCWgPQwgB9tGpKz8GwJSGlFKUaBVLMmgWR0Cho+v5YYBOdX2UKGgGaAloD0MIoz1eSIfnFcCUhpRSlGgVSzJoFkdAoaVqS5iEx3V9lChoBmgJaA9DCJPi4xOyQx3AlIaUUpRoFUsyaBZHQKGlOi9qUNd1fZQoaAZoCWgPQwj0aoDSUGMWwJSGlFKUaBVLMmgWR0ChpQ08V58jdX2UKGgGaAloD0MIfcwHBDrDHsCUhpRSlGgVSzJoFkdAoaTfpW3jMnV9lChoBmgJaA9DCBb3H5kOjRjAlIaUUpRoFUsyaBZHQKGmOvs7dSF1fZQoaAZoCWgPQwi6SnfX2dAVwJSGlFKUaBVLMmgWR0Chpgomois5dX2UKGgGaAloD0MISUikbfyZI8CUhpRSlGgVSzJoFkdAoaXdVrAP/nV9lChoBmgJaA9DCBpR2ht82SXAlIaUUpRoFUsyaBZHQKGlr51vETB1fZQoaAZoCWgPQwgZ/tMNFMgSwJSGlFKUaBVLMmgWR0ChpycOCoS+dX2UKGgGaAloD0MIbcfUXdkFGsCUhpRSlGgVSzJoFkdAoab2EytV73V9lChoBmgJaA9DCIMVp1oLyyHAlIaUUpRoFUsyaBZHQKGmyScLBsR1fZQoaAZoCWgPQwjdtYR80HsgwJSGlFKUaBVLMmgWR0ChppxAKOT8dX2UKGgGaAloD0MI02hyMQbmHcCUhpRSlGgVSzJoFkdAoafx2IO6NHV9lChoBmgJaA9DCMECmDJwmCTAlIaUUpRoFUsyaBZHQKGnwOfdykt1fZQoaAZoCWgPQwifrBiuDoAbwJSGlFKUaBVLMmgWR0Chp5P1DjR2dX2UKGgGaAloD0MISrclcsE5DMCUhpRSlGgVSzJoFkdAoadmOIZZS3V9lChoBmgJaA9DCFrXaDnQ8xjAlIaUUpRoFUsyaBZHQKGovvSc9W91fZQoaAZoCWgPQwh5IR0ewjgJwJSGlFKUaBVLMmgWR0ChqI3+l0o0dX2UKGgGaAloD0MI6KT3ja9dG8CUhpRSlGgVSzJoFkdAoahhEc81XXV9lChoBmgJaA9DCMaoa+19OiLAlIaUUpRoFUsyaBZHQKGoM1JDmbN1fZQoaAZoCWgPQwi05sdfWtQRwJSGlFKUaBVLMmgWR0ChqYnjyWiUdX2UKGgGaAloD0MI7pbkgF19FcCUhpRSlGgVSzJoFkdAoalY8ZDRdHV9lChoBmgJaA9DCH9PrFPlAyDAlIaUUpRoFUsyaBZHQKGpLAJswcp1fZQoaAZoCWgPQwik42pkV8odwJSGlFKUaBVLMmgWR0ChqP5FXq7idX2UKGgGaAloD0MIfnIUIAqGC8CUhpRSlGgVSzJoFkdAoapotz0Yj3V9lChoBmgJaA9DCI0qw7gb5CPAlIaUUpRoFUsyaBZHQKGqOBeXzDp1fZQoaAZoCWgPQwgv3/qw3iAjwJSGlFKUaBVLMmgWR0Chqgs1baAXdX2UKGgGaAloD0MI9gfKbfvmJ8CUhpRSlGgVSzJoFkdAoandgMMI/3V9lChoBmgJaA9DCOvE5XgF2iDAlIaUUpRoFUsyaBZHQKGrVcqOLix1fZQoaAZoCWgPQwjoacAg6SMUwJSGlFKUaBVLMmgWR0ChqyTVtoBadX2UKGgGaAloD0MI0hxZ+WWwGsCUhpRSlGgVSzJoFkdAoar4FTvRZ3V9lChoBmgJaA9DCAyyZfm6DBnAlIaUUpRoFUsyaBZHQKGqyt03fhx1fZQoaAZoCWgPQwj5hsJn6yAWwJSGlFKUaBVLMmgWR0ChrCFev6j4dX2UKGgGaAloD0MIO4kI/yJIGMCUhpRSlGgVSzJoFkdAoavwbbUPQXV9lChoBmgJaA9DCEiLM4Y5cRTAlIaUUpRoFUsyaBZHQKGrw4MnZ011fZQoaAZoCWgPQwhXzAhvD4ogwJSGlFKUaBVLMmgWR0Chq5XFDOTrdX2UKGgGaAloD0MIHJlH/mAYJ8CUhpRSlGgVSzJoFkdAoa0RjQRf4XV9lChoBmgJaA9DCOKUuflGdAzAlIaUUpRoFUsyaBZHQKGs4Zpi7TV1fZQoaAZoCWgPQwjl1TkGZJcqwJSGlFKUaBVLMmgWR0ChrLSy2QXAdX2UKGgGaAloD0MI097gC5MxIcCUhpRSlGgVSzJoFkdAoayG938n/nV9lChoBmgJaA9DCGkCRSxiQCLAlIaUUpRoFUsyaBZHQKGt3ExZdOZ1fZQoaAZoCWgPQwgIkKFjB7UcwJSGlFKUaBVLMmgWR0ChratYSxqxdX2UKGgGaAloD0MIlPjcCfa/EcCUhpRSlGgVSzJoFkdAoa1+Z7Xxv3V9lChoBmgJaA9DCOG1SxsOSw/AlIaUUpRoFUsyaBZHQKGtUKmbb111fZQoaAZoCWgPQwgCDqFKzZ4SwJSGlFKUaBVLMmgWR0ChrswCCBf8dX2UKGgGaAloD0MISmBzDp75EMCUhpRSlGgVSzJoFkdAoa6bCHh0hnV9lChoBmgJaA9DCPJetTLhlw3AlIaUUpRoFUsyaBZHQKGubhrnDBN1fZQoaAZoCWgPQwi+F1+0x4sWwJSGlFKUaBVLMmgWR0ChrkBRIjGDdX2UKGgGaAloD0MIOxixTwA1F8CUhpRSlGgVSzJoFkdAoa+bpcHGCXV9lChoBmgJaA9DCAWKWMSwsyHAlIaUUpRoFUsyaBZHQKGvarK/2011fZQoaAZoCWgPQwicw7Xaw4YgwJSGlFKUaBVLMmgWR0Chrz3NTtLMdX2UKGgGaAloD0MItqLNcW6jJsCUhpRSlGgVSzJoFkdAoa8QHkcS5HV9lChoBmgJaA9DCOolxjL90irAlIaUUpRoFUsyaBZHQKGwlL3bmEJ1fZQoaAZoCWgPQwilhjYAG+ghwJSGlFKUaBVLMmgWR0ChsGPStvGZdX2UKGgGaAloD0MIY35uaMrOKsCUhpRSlGgVSzJoFkdAobA2+0w8GXV9lChoBmgJaA9DCBH/sKVHQxPAlIaUUpRoFUsyaBZHQKGwCbedkJ91fZQoaAZoCWgPQwj5o6gz94ggwJSGlFKUaBVLMmgWR0ChsYU52hZhdX2UKGgGaAloD0MIwCDp0yqKF8CUhpRSlGgVSzJoFkdAobFURaouPHV9lChoBmgJaA9DCEIlrmNcIRXAlIaUUpRoFUsyaBZHQKGxJ9Vmz0J1fZQoaAZoCWgPQwgT1zGuuBggwJSGlFKUaBVLMmgWR0ChsPr5ylvZdX2UKGgGaAloD0MIkKFjB5VoFcCUhpRSlGgVSzJoFkdAobKbcmBvrHV9lChoBmgJaA9DCCtR9pZyJiHAlIaUUpRoFUsyaBZHQKGya0Y0l7d1fZQoaAZoCWgPQwjwp8ZLN1kTwJSGlFKUaBVLMmgWR0Chsj8brC3xdX2UKGgGaAloD0MI275H/fU6FMCUhpRSlGgVSzJoFkdAobIRaX8fm3V9lChoBmgJaA9DCF7WxAJfwRrAlIaUUpRoFUsyaBZHQKGzZy3CsOp1fZQoaAZoCWgPQwiVYkfjUC8awJSGlFKUaBVLMmgWR0ChszY1gpjMdX2UKGgGaAloD0MIC7Q7pBh4J8CUhpRSlGgVSzJoFkdAobMJRGc4HXV9lChoBmgJaA9DCFZ+GYwRuSLAlIaUUpRoFUsyaBZHQKGy24sEq2B1fZQoaAZoCWgPQwjS4La28EwWwJSGlFKUaBVLMmgWR0ChtD9ZJTVEdX2UKGgGaAloD0MIu9Bcp5EGF8CUhpRSlGgVSzJoFkdAobQPBtUGV3V9lChoBmgJaA9DCKzFpwAYjxzAlIaUUpRoFUsyaBZHQKGz4iwjdHl1fZQoaAZoCWgPQwjwiArVzYUcwJSGlFKUaBVLMmgWR0Chs7RlQMx5dX2UKGgGaAloD0MIysLX17pEJMCUhpRSlGgVSzJoFkdAobUxTS9dvHV9lChoBmgJaA9DCMy209aI4B3AlIaUUpRoFUsyaBZHQKG1AFY+0PZ1fZQoaAZoCWgPQwgAxF29iqwbwJSGlFKUaBVLMmgWR0ChtNOm78NydX2UKGgGaAloD0MIZFkw8UfxC8CUhpRSlGgVSzJoFkdAobSmz8gp0HV9lChoBmgJaA9DCM6qz9VWDBTAlIaUUpRoFUsyaBZHQKG1++Y+jdp1fZQoaAZoCWgPQwiUiPAvgh4iwJSGlFKUaBVLMmgWR0Chtcr/sE7odX2UKGgGaAloD0MIqmQAqOLOI8CUhpRSlGgVSzJoFkdAobWeNedCmnV9lChoBmgJaA9DCA6IEFfOzhbAlIaUUpRoFUsyaBZHQKG1cHzH0bt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-144-generic-x86_64-with-glibc2.27 # 161-Ubuntu SMP Fri Feb 3 14:49:04 UTC 2023", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -6.065728879719972, "std_reward": 2.7620060359459955, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T15:41:01.602480"}
 
1
+ {"mean_reward": -6.997450851462782, "std_reward": 1.6480281690800962, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T10:41:08.353343"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:57bf07d6d9f0e643a925da78c36a2f6b1ebade7a967f8c498938220531d9db66
3
- size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f162522d6f3db8da848a98a473a8819df7483e36e8e157a5c46d505095155411
3
+ size 3117