File size: 2,304 Bytes
da3af4f 8aa335b da3af4f e748416 f217e61 060ba49 f217e61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
datasets:
- NousResearch/Hermes-3-Dataset
- HuggingFaceTB/everyday-conversations-llama3.1-2k
base_model:
- Qwen/Qwen3-4B
---
This Qwen 3 4B model was fine-tuned on the Hermes 3 dataset to enhance its general chatting capabilities while retaining Qwen's Reasoning capabilities.
## transformers
As the qwen team suggested to use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ertghiu256/Qwen3-Hermes-4b"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
## vllm
Run this command
```bash
vllm serve ertghiu256/Qwen3-Hermes-4b --enable-reasoning --reasoning-parser deepseek_r1
```
## Sglang
Run this command
```bash
python -m sglang.launch_server --model-path ertghiu256/Qwen3-Hermes-4b --reasoning-parser deepseek-r1
```
## llama.cpp
Run this command
```bash
llama-server --hf-repo ertghiu256/Qwen3-Hermes-4b
```
or
```bash
llama-cli --hf ertghiu256/Qwen3-Hermes-4b
```
## ollama
Run this command
```bash
ollama run hf.co/ertghiu256/Qwen3-Hermes-4b:Q4_K_M
```
## lm studio
Search
```
ertghiu256/Qwen3-Hermes-4b
```
in the lm studio model search list then download |