Upload PPO MountainCar-v0 first run
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar_demo.zip +3 -0
- lunar_demo/_stable_baselines3_version +1 -0
- lunar_demo/data +94 -0
- lunar_demo/policy.optimizer.pth +3 -0
- lunar_demo/policy.pth +3 -0
- lunar_demo/pytorch_variables.pth +3 -0
- lunar_demo/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -200.00 +/- 0.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b2043a4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b2043a560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b2043a5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b2043a680>", "_build": "<function ActorCriticPolicy._build at 0x7f0b2043a710>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b2043a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b2043a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b2043a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b2043a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b2043a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b2043aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b20475de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652605768.0146544, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAF3gBr/oZRU8X0/7vkX0Brz+6AW/K1E7uyXwD7/joDg8RAcXv8IbFzucOgS/ab2MuznbCb+l7uc7MVMjv1Y/PzwT6gm/xEIWPEFeFr86uD67nzkWv833IjsbdOa+NSCjOQv+D7/kSZc7OIwdvxde4jtZ7hm/6i8vvO6ECr8Grgk6lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -31.768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSURz/4hX4j8k2QdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4g40dilSCdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4fM0P6KtQdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4e4kNWluWdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+YPwuuievdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+XkxREWqMdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+W+49X9zfdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+WSlnAZbZdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+VpKzzErHdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+VDfFaSs9dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+UkfLcKw7dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+UGZ/kNnXdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+TmbLEDQrdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+Sk0rK/21dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+SBf8dgfEdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+RJ7LMcIadX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+Qf2bobGWdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+P/7zkIX1dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+OT3Zf2K3dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+N/nW8RL9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACF/axoqTbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFp9JBgNPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFXA/LTx5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFBjWkJrtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEtK7I1cddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEajvd/KAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEL6UJOWTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACD8pCrtE5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACDtE5QxetdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACDM7lq8DkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACC7iADq4ZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACCgIyCWeIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACCLbYbsF/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACB7zCk43ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACBGKAJ9iMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACA8W9DhLodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFG7SRbKRudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFGl41P3zudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFGS8rZrYXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFF8w5/9YPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFn/T9bX6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFVHWjGkvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFFpfx+a0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFE2DQJHAidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFEl9jPOY6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFEE5hjOLSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFD0WdmQKbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFDZHuqm0mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFDFKkEcKgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFC1iONo8IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFB/qgRK6GdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFB1oxpL26dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIDA8B+4LDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICreZXuE3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICYiPhhphdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICC6H0se5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBuO0b961dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBblijL0SdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBMHryDqXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIA8jiXIEKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIAsf7rLQpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIALb5/LDAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/5rP+n63dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/d43WFvidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/I0ZWJaadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH+45Lh73PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH+C5Etuk2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH94u9OARTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALAqRU3n6mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALAVARkEs8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALACMglnh9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/sJIDoyLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/XiBGx2TdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/E0iyIHkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+1a4c3l0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+l9Brvb5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+V9nbqQjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK91EE1VHXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK9joZAIIGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK9Iqbz9S/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK8z9CNS62dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK8k2P1ct5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK7vb48EFGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK7lq8DjiodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOHIfbKzRhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGzMRpUPydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGgWac7QtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGK0lZ5iWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOF2mpEQXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFj5KvmozdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFUhmoR7JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFFF2FFlTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOE1IiC8ODdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOEUKzAvcrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOECih37k5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODm4iHIp6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODSApazNVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODCN0eU6gdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOCMWGh24edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOCCUX531SdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_demo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad315acc63dbefb8dd9f3ee92bf7b0878ea3f77fce25dc198e1e19e46c312dea
|
3 |
+
size 131751
|
lunar_demo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar_demo/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b2043a4d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b2043a560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b2043a5f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b2043a680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0b2043a710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0b2043a7a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b2043a830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0b2043a8c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b2043a950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b2043a9e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b2043aa70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0b20475de0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
2
|
29 |
+
],
|
30 |
+
"low": "[-1.2 -0.07]",
|
31 |
+
"high": "[0.6 0.07]",
|
32 |
+
"bounded_below": "[ True True]",
|
33 |
+
"bounded_above": "[ True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 3,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 32768,
|
46 |
+
"_total_timesteps": 1000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652605768.0146544,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAF3gBr/oZRU8X0/7vkX0Brz+6AW/K1E7uyXwD7/joDg8RAcXv8IbFzucOgS/ab2MuznbCb+l7uc7MVMjv1Y/PzwT6gm/xEIWPEFeFr86uD67nzkWv833IjsbdOa+NSCjOQv+D7/kSZc7OIwdvxde4jtZ7hm/6i8vvO6ECr8Grgk6lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -31.768,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSURz/4hX4j8k2QdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4g40dilSCdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4fM0P6KtQdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4e4kNWluWdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+YPwuuievdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+XkxREWqMdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+W+49X9zfdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+WSlnAZbZdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+VpKzzErHdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+VDfFaSs9dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+UkfLcKw7dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+UGZ/kNnXdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+TmbLEDQrdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+Sk0rK/21dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+SBf8dgfEdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+RJ7LMcIadX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+Qf2bobGWdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+P/7zkIX1dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+OT3Zf2K3dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+N/nW8RL9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACF/axoqTbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFp9JBgNPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFXA/LTx5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFBjWkJrtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEtK7I1cddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEajvd/KAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEL6UJOWTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACD8pCrtE5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACDtE5QxetdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACDM7lq8DkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACC7iADq4ZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACCgIyCWeIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACCLbYbsF/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACB7zCk43ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACBGKAJ9iMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACA8W9DhLodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFG7SRbKRudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFGl41P3zudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFGS8rZrYXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFF8w5/9YPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFn/T9bX6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFVHWjGkvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFFpfx+a0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFE2DQJHAidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFEl9jPOY6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFEE5hjOLSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFD0WdmQKbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFDZHuqm0mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFDFKkEcKgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFC1iONo8IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFB/qgRK6GdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFB1oxpL26dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIDA8B+4LDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICreZXuE3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICYiPhhphdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICC6H0se5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBuO0b961dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBblijL0SdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBMHryDqXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIA8jiXIEKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIAsf7rLQpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIALb5/LDAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/5rP+n63dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/d43WFvidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/I0ZWJaadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH+45Lh73PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH+C5Etuk2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH94u9OARTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALAqRU3n6mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALAVARkEs8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALACMglnh9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/sJIDoyLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/XiBGx2TdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/E0iyIHkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+1a4c3l0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+l9Brvb5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+V9nbqQjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK91EE1VHXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK9joZAIIGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK9Iqbz9S/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK8z9CNS62dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK8k2P1ct5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK7vb48EFGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK7lq8DjiodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOHIfbKzRhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGzMRpUPydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGgWac7QtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGK0lZ5iWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOF2mpEQXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFj5KvmozdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFUhmoR7JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFFF2FFlTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOE1IiC8ODdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOEUKzAvcrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOECih37k5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODm4iHIp6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODSApazNVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODCN0eU6gdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOCMWGh24edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOCCUX531SdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 10,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_demo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ac1afa18011b51dafe152e0da883ec4d6e0a6eea34e28c77ded3765a61a1f6c
|
3 |
+
size 78173
|
lunar_demo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bafa72c490916911c83aff1fef6cd7a2123dd836677ad9062acaac2bb4d4be3a
|
3 |
+
size 39873
|
lunar_demo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_demo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc02679fe77905e66bf4a118f3852bfb0943bece2e915cb1112bc33e211a91f9
|
3 |
+
size 223450
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T09:11:07.268293"}
|