Commit
·
bf57889
1
Parent(s):
5b22864
Update
Browse files- README.md +99 -27
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/lid_inference_test.log +290 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/results +0 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log +281 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/results +1628 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log +291 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/results +0 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/lid_inference_test.log +275 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/results +129 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/lid_inference_test.log +336 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/results +0 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/lid_inference_test.log +290 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/results +0 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.0 +3 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.0 +3 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.0 +3 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.1 +3 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.1 +3 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.1 +3 -0
- exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/train.log +0 -0
README.md
CHANGED
@@ -9,26 +9,110 @@ datasets:
|
|
9 |
license: cc-by-4.0
|
10 |
---
|
11 |
|
12 |
-
## ESPnet2 LID model
|
13 |
|
14 |
### `espnet/geolid_vl107only_independent_frozen`
|
15 |
|
16 |
-
This
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
```bash
|
24 |
cd espnet
|
25 |
-
|
26 |
pip install -e .
|
27 |
cd egs2/geolid/lid1
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
```
|
30 |
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
## LID config
|
34 |
|
@@ -276,9 +360,16 @@ distributed: false
|
|
276 |
|
277 |
|
278 |
|
279 |
-
###
|
280 |
|
281 |
```BibTex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
@inproceedings{watanabe2018espnet,
|
283 |
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
|
284 |
title={{ESPnet}: End-to-End Speech Processing Toolkit},
|
@@ -288,23 +379,4 @@ distributed: false
|
|
288 |
doi={10.21437/Interspeech.2018-1456},
|
289 |
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
|
290 |
}
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
```
|
298 |
-
|
299 |
-
or arXiv:
|
300 |
-
|
301 |
-
```bibtex
|
302 |
-
@misc{watanabe2018espnet,
|
303 |
-
title={ESPnet: End-to-End Speech Processing Toolkit},
|
304 |
-
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
|
305 |
-
year={2018},
|
306 |
-
eprint={1804.00015},
|
307 |
-
archivePrefix={arXiv},
|
308 |
-
primaryClass={cs.CL}
|
309 |
-
}
|
310 |
```
|
|
|
9 |
license: cc-by-4.0
|
10 |
---
|
11 |
|
12 |
+
## ESPnet2 Spoken Language Identification (LID) model
|
13 |
|
14 |
### `espnet/geolid_vl107only_independent_frozen`
|
15 |
|
16 |
+
This geolocation-aware language identification (LID) model is developed using the [ESPnet](https://github.com/espnet/espnet/) toolkit. It integrates the powerful pretrained [MMS-1B](https://huggingface.co/facebook/mms-1b) as the encoder and employs [ECAPA-TDNN](https://arxiv.org/pdf/2005.07143) as the embedding extractor to achieve robust spoken language identification.
|
17 |
|
18 |
+
The main innovations of this model are:
|
19 |
+
1. Incorporating geolocation prediction as an auxiliary task during training.
|
20 |
+
2. Conditioning the intermediate representations of the self-supervised learning (SSL) encoder on intermediate-layer information.
|
21 |
+
This geolocation-aware strategy greatly improves robustness, especially for dialects and accented variations.
|
22 |
|
23 |
+
For further details on the geolocation-aware LID methodology, please refer to our paper: *Geolocation-Aware Robust Spoken Language Identification* (arXiv link to be added).
|
24 |
+
|
25 |
+
### Usage Guide: How to use in ESPnet2
|
26 |
+
|
27 |
+
#### Prerequisites
|
28 |
+
First, ensure you have ESPnet installed. If not, follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html).
|
29 |
+
|
30 |
+
#### Quick Start
|
31 |
+
Run the following commands to set up and use the pre-trained model:
|
32 |
|
33 |
```bash
|
34 |
cd espnet
|
35 |
+
|
36 |
pip install -e .
|
37 |
cd egs2/geolid/lid1
|
38 |
+
|
39 |
+
# Download the exp_combined to egs2/geolid/lid1
|
40 |
+
hf download espnet/geolid_vl107only_independent_frozen --local-dir . --exclude "README.md" "meta.yaml" ".gitattributes"
|
41 |
+
|
42 |
+
./run_voxlingua107_only.sh --skip_data_prep false --skip_train true --lid_config conf/voxlingua107_only/mms_ecapa_upcon_32_44_it0.4_independent_frozen.yaml
|
43 |
```
|
44 |
|
45 |
+
This will download the pre-trained model and run inference using the VoxLingua107 test data.
|
46 |
|
47 |
+
### Train and Evaluation Datasets
|
48 |
+
|
49 |
+
The training used only the VoxLingua107 dataset, comprising 6,628 hours of speech across 107 languages from YouTube.
|
50 |
+
|
51 |
+
| Dataset | Domain | #Langs. Train/Test | Dialect | Training Setup (VL107-only) |
|
52 |
+
| ------------- | ----------- | ------------------ | ------- | --------------------------- |
|
53 |
+
| [VoxLingua107](https://cs.taltech.ee/staff/tanel.alumae/data/voxlingua107/) | YouTube | 107/33 | No | Seen |
|
54 |
+
| [Babel](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31a13cefb42647e924e0d2778d341decc44c40e9) | Telephone | 25/25 | No | Unseen |
|
55 |
+
| [FLEURS](https://huggingface.co/datasets/google/xtreme_s) | Read speech | 102/102 | No | Unseen |
|
56 |
+
| [ML-SUPERB 2.0](https://huggingface.co/datasets/espnet/ml_superb_hf) | Mixed | 137/(137, 8) | Yes | Unseen |
|
57 |
+
| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | Parliament | 16/16 | No | Unseen |
|
58 |
+
|
59 |
+
### Results
|
60 |
+
|
61 |
+
**Accuracy (%) on In-domain and Out-of-domain Test Sets**
|
62 |
+
|
63 |
+
<style>
|
64 |
+
.hf-model-cell {
|
65 |
+
max-width: 120px;
|
66 |
+
overflow-x: auto;
|
67 |
+
white-space: nowrap;
|
68 |
+
scrollbar-width: thin;
|
69 |
+
scrollbar-color: #888 #f1f1f1;
|
70 |
+
}
|
71 |
+
|
72 |
+
.config-cell {
|
73 |
+
max-width: 100px;
|
74 |
+
overflow-x: auto;
|
75 |
+
white-space: nowrap;
|
76 |
+
scrollbar-width: thin;
|
77 |
+
scrollbar-color: #888 #f1f1f1;
|
78 |
+
}
|
79 |
+
|
80 |
+
.hf-model-cell::-webkit-scrollbar,
|
81 |
+
.config-cell::-webkit-scrollbar {
|
82 |
+
height: 6px;
|
83 |
+
}
|
84 |
+
|
85 |
+
.hf-model-cell::-webkit-scrollbar-track,
|
86 |
+
.config-cell::-webkit-scrollbar-track {
|
87 |
+
background: #f1f1f1;
|
88 |
+
border-radius: 3px;
|
89 |
+
}
|
90 |
+
|
91 |
+
.hf-model-cell::-webkit-scrollbar-thumb,
|
92 |
+
.config-cell::-webkit-scrollbar-thumb {
|
93 |
+
background: #888;
|
94 |
+
border-radius: 3px;
|
95 |
+
}
|
96 |
+
|
97 |
+
.hf-model-cell::-webkit-scrollbar-thumb:hover,
|
98 |
+
.config-cell::-webkit-scrollbar-thumb:hover {
|
99 |
+
background: #555;
|
100 |
+
}
|
101 |
+
</style>
|
102 |
+
|
103 |
+
<div style="overflow-x: auto;">
|
104 |
+
|
105 |
+
| ESPnet Recipe | Config | VoxLingua107 | Babel | FLEURS | ML-SUPERB2.0 Dev | ML-SUPERB2.0 Dialect | VoxPopuli | Macro Avg. |
|
106 |
+
| ------------------------- | ----------- | ------------ | ----- | ------ | ---------------- | -------------------- | --------- | ---------- |
|
107 |
+
| <div class="hf-model-cell">[egs2/geolid/lid1](https://github.com/espnet/espnet/tree/master/egs2/geolid/lid1)</div> | <div class="config-cell">`conf/voxlingua107_only/mms_ecapa_upcon_32_44_it0.4_independent_frozen.yaml`</div> | 94.2 | 87.1 | 95.0 | 89.0 | 77.2 | 90.4 | 88.8 |
|
108 |
+
|
109 |
+
</div>
|
110 |
+
|
111 |
+
For more detailed inference results, please refer to the `exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference` directory in this repository.
|
112 |
+
|
113 |
+
> **Note (2025-08-18):**
|
114 |
+
> The corresponding GitHub recipe [egs2/geolid/lid1](https://github.com/espnet/espnet/tree/master/egs2/geolid/lid1) has not yet been merged into the ESPnet master branch.
|
115 |
+
> See TODO: add PR link for the latest updates.
|
116 |
|
117 |
## LID config
|
118 |
|
|
|
360 |
|
361 |
|
362 |
|
363 |
+
### Citation
|
364 |
|
365 |
```BibTex
|
366 |
+
@inproceedings{wang2025geolid,
|
367 |
+
author={Qingzheng Wang, Hye-jin Shim, Jiancheng Sun, and Shinji Watanabe},
|
368 |
+
title={Geolocation-Aware Robust Spoken Language Identification},
|
369 |
+
year={2025},
|
370 |
+
booktitle={Procedings of ASRU},
|
371 |
+
}
|
372 |
+
|
373 |
@inproceedings{watanabe2018espnet,
|
374 |
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
|
375 |
title={{ESPnet}: End-to-End Speech Processing Toolkit},
|
|
|
379 |
doi={10.21437/Interspeech.2018-1456},
|
380 |
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
|
381 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
```
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/lid_inference_test.log
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt true --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
2 |
+
# Started at Tue May 27 16:46:05 CDT 2025
|
3 |
+
#
|
4 |
+
/u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt true --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
5 |
+
[gpue08] 2025-05-27 16:46:20,609 (abs_task:2406) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
|
6 |
+
/work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
|
7 |
+
torchaudio.set_audio_backend("sox_io")
|
8 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2429: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
|
9 |
+
torch.load(model_file, map_location=device),
|
10 |
+
[gpue08] 2025-05-27 16:46:34,331 (lid_inference_dist:86) INFO: Model structure:
|
11 |
+
ESPnetLIDUpstreamLang2VecConditionModel(
|
12 |
+
(frontend): S3prlFrontendLang2VecCondition(
|
13 |
+
(upstream): S3PRLUpstreamLang2VecCondition(
|
14 |
+
(upstream): UpstreamExpertLang2VecCondition(
|
15 |
+
(model): Wav2Vec2ModelLang2VecCondition(
|
16 |
+
(feature_extractor): Wav2Vec2FeatureEncoder(
|
17 |
+
(conv_layers): ModuleList(
|
18 |
+
(0): Wav2Vec2LayerNormConvLayer(
|
19 |
+
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
|
20 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
21 |
+
(activation): GELUActivation()
|
22 |
+
)
|
23 |
+
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
|
24 |
+
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
|
25 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
26 |
+
(activation): GELUActivation()
|
27 |
+
)
|
28 |
+
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
|
29 |
+
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
|
30 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
31 |
+
(activation): GELUActivation()
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(feature_projection): Wav2Vec2FeatureProjection(
|
36 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
37 |
+
(projection): Linear(in_features=512, out_features=1280, bias=True)
|
38 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
39 |
+
)
|
40 |
+
(encoder): Wav2Vec2EncoderLang2VecCondition(
|
41 |
+
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
|
42 |
+
(conv): ParametrizedConv1d(
|
43 |
+
1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
|
44 |
+
(parametrizations): ModuleDict(
|
45 |
+
(weight): ParametrizationList(
|
46 |
+
(0): _WeightNorm()
|
47 |
+
)
|
48 |
+
)
|
49 |
+
)
|
50 |
+
(padding): Wav2Vec2SamePadLayer()
|
51 |
+
(activation): GELUActivation()
|
52 |
+
)
|
53 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
54 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
55 |
+
(layers): ModuleList(
|
56 |
+
(0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
|
57 |
+
(attention): Wav2Vec2SdpaAttention(
|
58 |
+
(k_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
59 |
+
(v_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
60 |
+
(q_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
61 |
+
(out_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
62 |
+
)
|
63 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
64 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
65 |
+
(feed_forward): Wav2Vec2FeedForward(
|
66 |
+
(intermediate_dropout): Dropout(p=0.0, inplace=False)
|
67 |
+
(intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
|
68 |
+
(intermediate_act_fn): GELUActivation()
|
69 |
+
(output_dense): Linear(in_features=5120, out_features=1280, bias=True)
|
70 |
+
(output_dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
(conditioning_projs): ModuleDict(
|
76 |
+
(32): Linear(in_features=299, out_features=1280, bias=True)
|
77 |
+
(36): Linear(in_features=299, out_features=1280, bias=True)
|
78 |
+
(40): Linear(in_features=299, out_features=1280, bias=True)
|
79 |
+
(44): Linear(in_features=299, out_features=1280, bias=True)
|
80 |
+
)
|
81 |
+
(ecapa_encoder): ModuleDict(
|
82 |
+
(32): IdentityEncoder()
|
83 |
+
(36): IdentityEncoder()
|
84 |
+
(40): IdentityEncoder()
|
85 |
+
(44): IdentityEncoder()
|
86 |
+
)
|
87 |
+
(pooling): ModuleDict(
|
88 |
+
(32): ChnAttnStatPooling(
|
89 |
+
(attention): Sequential(
|
90 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
91 |
+
(1): ReLU()
|
92 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
94 |
+
)
|
95 |
+
(softmax): Softmax(dim=2)
|
96 |
+
)
|
97 |
+
(36): ChnAttnStatPooling(
|
98 |
+
(attention): Sequential(
|
99 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
100 |
+
(1): ReLU()
|
101 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
102 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
103 |
+
)
|
104 |
+
(softmax): Softmax(dim=2)
|
105 |
+
)
|
106 |
+
(40): ChnAttnStatPooling(
|
107 |
+
(attention): Sequential(
|
108 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
109 |
+
(1): ReLU()
|
110 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
111 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
112 |
+
)
|
113 |
+
(softmax): Softmax(dim=2)
|
114 |
+
)
|
115 |
+
(44): ChnAttnStatPooling(
|
116 |
+
(attention): Sequential(
|
117 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
118 |
+
(1): ReLU()
|
119 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
120 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
121 |
+
)
|
122 |
+
(softmax): Softmax(dim=2)
|
123 |
+
)
|
124 |
+
)
|
125 |
+
(projector): ModuleDict(
|
126 |
+
(32): RawNet3Projector(
|
127 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
129 |
+
)
|
130 |
+
(36): RawNet3Projector(
|
131 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
132 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
133 |
+
)
|
134 |
+
(40): RawNet3Projector(
|
135 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
136 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
137 |
+
)
|
138 |
+
(44): RawNet3Projector(
|
139 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
140 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(lang2vec_head): ModuleDict(
|
144 |
+
(32): Sequential(
|
145 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
146 |
+
)
|
147 |
+
(36): Sequential(
|
148 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
149 |
+
)
|
150 |
+
(40): Sequential(
|
151 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
152 |
+
)
|
153 |
+
(44): Sequential(
|
154 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
(featurizer): Featurizer()
|
162 |
+
)
|
163 |
+
(normalize): UtteranceMVN(norm_means=True, norm_vars=False)
|
164 |
+
(encoder): EcapaTdnnEncoder(
|
165 |
+
(conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
|
166 |
+
(relu): ReLU()
|
167 |
+
(bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
168 |
+
(layer1): EcapaBlock(
|
169 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
170 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(convs): ModuleList(
|
172 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
|
173 |
+
)
|
174 |
+
(bns): ModuleList(
|
175 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
176 |
+
)
|
177 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
178 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
179 |
+
(relu): ReLU()
|
180 |
+
(se): SEModule(
|
181 |
+
(se): Sequential(
|
182 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
183 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
184 |
+
(2): ReLU()
|
185 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
186 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
187 |
+
(5): Sigmoid()
|
188 |
+
)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
(layer2): EcapaBlock(
|
192 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
193 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(convs): ModuleList(
|
195 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
196 |
+
)
|
197 |
+
(bns): ModuleList(
|
198 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
199 |
+
)
|
200 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
201 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
202 |
+
(relu): ReLU()
|
203 |
+
(se): SEModule(
|
204 |
+
(se): Sequential(
|
205 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
206 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
207 |
+
(2): ReLU()
|
208 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
209 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
210 |
+
(5): Sigmoid()
|
211 |
+
)
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(layer3): EcapaBlock(
|
215 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
216 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
217 |
+
(convs): ModuleList(
|
218 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
|
219 |
+
)
|
220 |
+
(bns): ModuleList(
|
221 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
222 |
+
)
|
223 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
224 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
225 |
+
(relu): ReLU()
|
226 |
+
(se): SEModule(
|
227 |
+
(se): Sequential(
|
228 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
229 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
230 |
+
(2): ReLU()
|
231 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
233 |
+
(5): Sigmoid()
|
234 |
+
)
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
|
238 |
+
(mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
|
239 |
+
)
|
240 |
+
(pooling): ChnAttnStatPooling(
|
241 |
+
(attention): Sequential(
|
242 |
+
(0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
|
243 |
+
(1): ReLU()
|
244 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
245 |
+
(3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
|
246 |
+
)
|
247 |
+
(softmax): Softmax(dim=2)
|
248 |
+
)
|
249 |
+
(projector): RawNet3Projector(
|
250 |
+
(bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
251 |
+
(fc): Linear(in_features=3072, out_features=192, bias=True)
|
252 |
+
)
|
253 |
+
(loss): AAMSoftmaxSCTopKLang2Vec(
|
254 |
+
(ce): CrossEntropyLoss()
|
255 |
+
(lang2vec_head): Sequential(
|
256 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
257 |
+
)
|
258 |
+
(lang2vec_loss): MSELoss()
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
Model summary:
|
263 |
+
Class Name: ESPnetLIDUpstreamLang2VecConditionModel
|
264 |
+
Total Number of model parameters: 978.26 M
|
265 |
+
Number of trainable parameters: 978.26 M (100.0%)
|
266 |
+
Size: 3.91 GB
|
267 |
+
Type: torch.float32
|
268 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
|
269 |
+
warnings.warn(
|
270 |
+
[gpue08] 2025-05-27 16:46:34,705 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/lids0
|
271 |
+
[gpue08] 2025-05-27 16:47:26,844 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
|
272 |
+
[gpue08] 2025-05-27 16:48:11,546 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
|
273 |
+
[gpue08] 2025-05-27 16:49:00,081 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
|
274 |
+
[gpue08] 2025-05-27 16:49:43,568 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
|
275 |
+
[gpue08] 2025-05-27 16:50:28,280 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
|
276 |
+
[gpue08] 2025-05-27 16:51:12,200 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
|
277 |
+
[gpue08] 2025-05-27 16:51:52,954 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
|
278 |
+
[gpue08] 2025-05-27 16:52:36,802 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
|
279 |
+
[gpue08] 2025-05-27 16:53:21,771 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
|
280 |
+
[gpue08] 2025-05-27 16:54:15,927 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
|
281 |
+
[gpue08] 2025-05-27 16:55:04,249 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
|
282 |
+
[gpue08] 2025-05-27 16:55:53,390 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
|
283 |
+
[gpue08] 2025-05-27 16:56:40,872 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
|
284 |
+
[gpue08] 2025-05-27 16:57:29,245 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
|
285 |
+
[gpue08] 2025-05-27 16:58:21,026 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
|
286 |
+
[gpue08] 2025-05-27 16:59:01,689 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
|
287 |
+
[gpue08] 2025-05-27 16:59:03,702 (lid_inference_dist:200) INFO: args.save_embd_per_utt: True
|
288 |
+
[gpue08] 2025-05-27 16:59:03,703 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
|
289 |
+
# Accounting: time=779 threads=1
|
290 |
+
# Ended (code 0) at Tue May 27 16:59:04 CDT 2025, elapsed time 779 seconds
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/results
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
2 |
+
# Started at Fri May 16 16:43:45 CDT 2025
|
3 |
+
#
|
4 |
+
/u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
5 |
+
[gpue02] 2025-05-16 16:44:01,140 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
|
6 |
+
/work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
|
7 |
+
torchaudio.set_audio_backend("sox_io")
|
8 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
|
9 |
+
torch.load(model_file, map_location=device),
|
10 |
+
[gpue02] 2025-05-16 16:44:11,133 (lid_inference_dist:86) INFO: Model structure:
|
11 |
+
ESPnetLIDUpstreamLang2VecConditionModel(
|
12 |
+
(frontend): S3prlFrontendLang2VecCondition(
|
13 |
+
(upstream): S3PRLUpstreamLang2VecCondition(
|
14 |
+
(upstream): UpstreamExpertLang2VecCondition(
|
15 |
+
(model): Wav2Vec2ModelLang2VecCondition(
|
16 |
+
(feature_extractor): Wav2Vec2FeatureEncoder(
|
17 |
+
(conv_layers): ModuleList(
|
18 |
+
(0): Wav2Vec2LayerNormConvLayer(
|
19 |
+
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
|
20 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
21 |
+
(activation): GELUActivation()
|
22 |
+
)
|
23 |
+
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
|
24 |
+
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
|
25 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
26 |
+
(activation): GELUActivation()
|
27 |
+
)
|
28 |
+
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
|
29 |
+
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
|
30 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
31 |
+
(activation): GELUActivation()
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(feature_projection): Wav2Vec2FeatureProjection(
|
36 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
37 |
+
(projection): Linear(in_features=512, out_features=1280, bias=True)
|
38 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
39 |
+
)
|
40 |
+
(encoder): Wav2Vec2EncoderLang2VecCondition(
|
41 |
+
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
|
42 |
+
(conv): ParametrizedConv1d(
|
43 |
+
1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
|
44 |
+
(parametrizations): ModuleDict(
|
45 |
+
(weight): ParametrizationList(
|
46 |
+
(0): _WeightNorm()
|
47 |
+
)
|
48 |
+
)
|
49 |
+
)
|
50 |
+
(padding): Wav2Vec2SamePadLayer()
|
51 |
+
(activation): GELUActivation()
|
52 |
+
)
|
53 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
54 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
55 |
+
(layers): ModuleList(
|
56 |
+
(0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
|
57 |
+
(attention): Wav2Vec2SdpaAttention(
|
58 |
+
(k_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
59 |
+
(v_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
60 |
+
(q_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
61 |
+
(out_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
62 |
+
)
|
63 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
64 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
65 |
+
(feed_forward): Wav2Vec2FeedForward(
|
66 |
+
(intermediate_dropout): Dropout(p=0.0, inplace=False)
|
67 |
+
(intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
|
68 |
+
(intermediate_act_fn): GELUActivation()
|
69 |
+
(output_dense): Linear(in_features=5120, out_features=1280, bias=True)
|
70 |
+
(output_dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
(conditioning_projs): ModuleDict(
|
76 |
+
(32): Linear(in_features=299, out_features=1280, bias=True)
|
77 |
+
(36): Linear(in_features=299, out_features=1280, bias=True)
|
78 |
+
(40): Linear(in_features=299, out_features=1280, bias=True)
|
79 |
+
(44): Linear(in_features=299, out_features=1280, bias=True)
|
80 |
+
)
|
81 |
+
(ecapa_encoder): ModuleDict(
|
82 |
+
(32): IdentityEncoder()
|
83 |
+
(36): IdentityEncoder()
|
84 |
+
(40): IdentityEncoder()
|
85 |
+
(44): IdentityEncoder()
|
86 |
+
)
|
87 |
+
(pooling): ModuleDict(
|
88 |
+
(32): ChnAttnStatPooling(
|
89 |
+
(attention): Sequential(
|
90 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
91 |
+
(1): ReLU()
|
92 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
94 |
+
)
|
95 |
+
(softmax): Softmax(dim=2)
|
96 |
+
)
|
97 |
+
(36): ChnAttnStatPooling(
|
98 |
+
(attention): Sequential(
|
99 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
100 |
+
(1): ReLU()
|
101 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
102 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
103 |
+
)
|
104 |
+
(softmax): Softmax(dim=2)
|
105 |
+
)
|
106 |
+
(40): ChnAttnStatPooling(
|
107 |
+
(attention): Sequential(
|
108 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
109 |
+
(1): ReLU()
|
110 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
111 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
112 |
+
)
|
113 |
+
(softmax): Softmax(dim=2)
|
114 |
+
)
|
115 |
+
(44): ChnAttnStatPooling(
|
116 |
+
(attention): Sequential(
|
117 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
118 |
+
(1): ReLU()
|
119 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
120 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
121 |
+
)
|
122 |
+
(softmax): Softmax(dim=2)
|
123 |
+
)
|
124 |
+
)
|
125 |
+
(projector): ModuleDict(
|
126 |
+
(32): RawNet3Projector(
|
127 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
129 |
+
)
|
130 |
+
(36): RawNet3Projector(
|
131 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
132 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
133 |
+
)
|
134 |
+
(40): RawNet3Projector(
|
135 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
136 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
137 |
+
)
|
138 |
+
(44): RawNet3Projector(
|
139 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
140 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(lang2vec_head): ModuleDict(
|
144 |
+
(32): Sequential(
|
145 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
146 |
+
)
|
147 |
+
(36): Sequential(
|
148 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
149 |
+
)
|
150 |
+
(40): Sequential(
|
151 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
152 |
+
)
|
153 |
+
(44): Sequential(
|
154 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
(featurizer): Featurizer()
|
162 |
+
)
|
163 |
+
(normalize): UtteranceMVN(norm_means=True, norm_vars=False)
|
164 |
+
(encoder): EcapaTdnnEncoder(
|
165 |
+
(conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
|
166 |
+
(relu): ReLU()
|
167 |
+
(bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
168 |
+
(layer1): EcapaBlock(
|
169 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
170 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(convs): ModuleList(
|
172 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
|
173 |
+
)
|
174 |
+
(bns): ModuleList(
|
175 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
176 |
+
)
|
177 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
178 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
179 |
+
(relu): ReLU()
|
180 |
+
(se): SEModule(
|
181 |
+
(se): Sequential(
|
182 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
183 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
184 |
+
(2): ReLU()
|
185 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
186 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
187 |
+
(5): Sigmoid()
|
188 |
+
)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
(layer2): EcapaBlock(
|
192 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
193 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(convs): ModuleList(
|
195 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
196 |
+
)
|
197 |
+
(bns): ModuleList(
|
198 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
199 |
+
)
|
200 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
201 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
202 |
+
(relu): ReLU()
|
203 |
+
(se): SEModule(
|
204 |
+
(se): Sequential(
|
205 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
206 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
207 |
+
(2): ReLU()
|
208 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
209 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
210 |
+
(5): Sigmoid()
|
211 |
+
)
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(layer3): EcapaBlock(
|
215 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
216 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
217 |
+
(convs): ModuleList(
|
218 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
|
219 |
+
)
|
220 |
+
(bns): ModuleList(
|
221 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
222 |
+
)
|
223 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
224 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
225 |
+
(relu): ReLU()
|
226 |
+
(se): SEModule(
|
227 |
+
(se): Sequential(
|
228 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
229 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
230 |
+
(2): ReLU()
|
231 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
233 |
+
(5): Sigmoid()
|
234 |
+
)
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
|
238 |
+
(mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
|
239 |
+
)
|
240 |
+
(pooling): ChnAttnStatPooling(
|
241 |
+
(attention): Sequential(
|
242 |
+
(0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
|
243 |
+
(1): ReLU()
|
244 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
245 |
+
(3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
|
246 |
+
)
|
247 |
+
(softmax): Softmax(dim=2)
|
248 |
+
)
|
249 |
+
(projector): RawNet3Projector(
|
250 |
+
(bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
251 |
+
(fc): Linear(in_features=3072, out_features=192, bias=True)
|
252 |
+
)
|
253 |
+
(loss): AAMSoftmaxSCTopKLang2Vec(
|
254 |
+
(ce): CrossEntropyLoss()
|
255 |
+
(lang2vec_head): Sequential(
|
256 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
257 |
+
)
|
258 |
+
(lang2vec_loss): MSELoss()
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
Model summary:
|
263 |
+
Class Name: ESPnetLIDUpstreamLang2VecConditionModel
|
264 |
+
Total Number of model parameters: 978.26 M
|
265 |
+
Number of trainable parameters: 978.26 M (100.0%)
|
266 |
+
Size: 3.91 GB
|
267 |
+
Type: torch.float32
|
268 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
|
269 |
+
warnings.warn(
|
270 |
+
[gpue02] 2025-05-16 16:44:11,480 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/lids0
|
271 |
+
[gpue02] 2025-05-16 16:44:41,063 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
|
272 |
+
[gpue02] 2025-05-16 16:45:04,619 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
|
273 |
+
[gpue02] 2025-05-16 16:45:26,674 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
|
274 |
+
[gpue02] 2025-05-16 16:45:48,892 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
|
275 |
+
[gpue02] 2025-05-16 16:46:12,926 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
|
276 |
+
[gpue02] 2025-05-16 16:46:57,918 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
|
277 |
+
[gpue02] 2025-05-16 16:47:28,796 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
|
278 |
+
[gpue02] 2025-05-16 16:47:31,224 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
|
279 |
+
[gpue02] 2025-05-16 16:47:31,225 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
|
280 |
+
# Accounting: time=227 threads=1
|
281 |
+
# Ended (code 0) at Fri May 16 16:47:32 CDT 2025, elapsed time 227 seconds
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/results
ADDED
@@ -0,0 +1,1628 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Accuracy: 77.21%
|
2 |
+
Macro Accuracy: 85.60%
|
3 |
+
Accuracy per Language:
|
4 |
+
ara: 70.37%
|
5 |
+
guj: 98.95%
|
6 |
+
spa: 97.81%
|
7 |
+
ell: 71.37%
|
8 |
+
tam: 99.08%
|
9 |
+
deu: 73.48%
|
10 |
+
tel: 99.01%
|
11 |
+
eng: 74.73%
|
12 |
+
Key: ara_sada_acw_000000, Target: ara, Predicted: tur
|
13 |
+
Key: ara_sada_acw_000001, Target: ara, Predicted: hau
|
14 |
+
Key: ara_sada_acw_000004, Target: ara, Predicted: tuk
|
15 |
+
Key: ara_sada_acw_000005, Target: ara, Predicted: grn
|
16 |
+
Key: ara_sada_acw_000006, Target: ara, Predicted: ceb
|
17 |
+
Key: ara_sada_acw_000008, Target: ara, Predicted: hau
|
18 |
+
Key: ara_sada_acw_000009, Target: ara, Predicted: bos
|
19 |
+
Key: ara_sada_acw_000011, Target: ara, Predicted: ben
|
20 |
+
Key: ara_sada_acw_000014, Target: ara, Predicted: amh
|
21 |
+
Key: ara_sada_acw_000023, Target: ara, Predicted: jav
|
22 |
+
Key: ara_sada_acw_000025, Target: ara, Predicted: som
|
23 |
+
Key: ara_sada_acw_000029, Target: ara, Predicted: mar
|
24 |
+
Key: ara_sada_acw_000033, Target: ara, Predicted: som
|
25 |
+
Key: ara_sada_acw_000038, Target: ara, Predicted: eng
|
26 |
+
Key: ara_sada_acw_000044, Target: ara, Predicted: hau
|
27 |
+
Key: ara_sada_acw_000045, Target: ara, Predicted: fas
|
28 |
+
Key: ara_sada_acw_000048, Target: ara, Predicted: eng
|
29 |
+
Key: ara_sada_acw_000056, Target: ara, Predicted: hat
|
30 |
+
Key: ara_sada_acw_000057, Target: ara, Predicted: hau
|
31 |
+
Key: ara_sada_acw_000063, Target: ara, Predicted: amh
|
32 |
+
Key: ara_sada_acw_000065, Target: ara, Predicted: tgl
|
33 |
+
Key: ara_sada_acw_000067, Target: ara, Predicted: ben
|
34 |
+
Key: ara_sada_acw_000069, Target: ara, Predicted: hat
|
35 |
+
Key: ara_sada_acw_000071, Target: ara, Predicted: snd
|
36 |
+
Key: ara_sada_acw_000075, Target: ara, Predicted: cmn
|
37 |
+
Key: ara_sada_acw_000077, Target: ara, Predicted: amh
|
38 |
+
Key: ara_sada_acw_000078, Target: ara, Predicted: amh
|
39 |
+
Key: ara_sada_acw_000079, Target: ara, Predicted: aze
|
40 |
+
Key: ara_sada_acw_000080, Target: ara, Predicted: hau
|
41 |
+
Key: ara_sada_acw_000083, Target: ara, Predicted: jav
|
42 |
+
Key: ara_sada_acw_000084, Target: ara, Predicted: amh
|
43 |
+
Key: ara_sada_acw_000087, Target: ara, Predicted: ceb
|
44 |
+
Key: ara_sada_acw_000094, Target: ara, Predicted: tat
|
45 |
+
Key: ara_sada_acw_000096, Target: ara, Predicted: hau
|
46 |
+
Key: ara_sada_acw_000099, Target: ara, Predicted: amh
|
47 |
+
Key: ara_sada_acw_000101, Target: ara, Predicted: cmn
|
48 |
+
Key: ara_sada_acw_000103, Target: ara, Predicted: hau
|
49 |
+
Key: ara_sada_acw_000106, Target: ara, Predicted: aze
|
50 |
+
Key: ara_sada_acw_000110, Target: ara, Predicted: lin
|
51 |
+
Key: ara_sada_acw_000116, Target: ara, Predicted: fas
|
52 |
+
Key: ara_sada_acw_000117, Target: ara, Predicted: ben
|
53 |
+
Key: ara_sada_acw_000118, Target: ara, Predicted: hun
|
54 |
+
Key: ara_sada_acw_000123, Target: ara, Predicted: som
|
55 |
+
Key: ara_sada_acw_000124, Target: ara, Predicted: hau
|
56 |
+
Key: ara_sada_acw_000125, Target: ara, Predicted: heb
|
57 |
+
Key: ara_sada_acw_000127, Target: ara, Predicted: nno
|
58 |
+
Key: ara_sada_acw_000130, Target: ara, Predicted: swa
|
59 |
+
Key: ara_sada_acw_000131, Target: ara, Predicted: mya
|
60 |
+
Key: ara_sada_acw_000132, Target: ara, Predicted: jav
|
61 |
+
Key: ara_sada_acw_000139, Target: ara, Predicted: jav
|
62 |
+
Key: ara_sada_acw_000140, Target: ara, Predicted: ces
|
63 |
+
Key: ara_sada_acw_000147, Target: ara, Predicted: mlt
|
64 |
+
Key: ara_sada_acw_000149, Target: ara, Predicted: aze
|
65 |
+
Key: ara_sada_acw_000153, Target: ara, Predicted: mlg
|
66 |
+
Key: ara_sada_acw_000161, Target: ara, Predicted: som
|
67 |
+
Key: ara_sada_acw_000162, Target: ara, Predicted: ell
|
68 |
+
Key: ara_sada_acw_000163, Target: ara, Predicted: msa
|
69 |
+
Key: ara_sada_acw_000164, Target: ara, Predicted: mlt
|
70 |
+
Key: ara_sada_acw_000171, Target: ara, Predicted: urd
|
71 |
+
Key: ara_sada_acw_000173, Target: ara, Predicted: lav
|
72 |
+
Key: ara_sada_afb_000002, Target: ara, Predicted: tat
|
73 |
+
Key: ara_sada_afb_000003, Target: ara, Predicted: kan
|
74 |
+
Key: ara_sada_afb_000007, Target: ara, Predicted: pus
|
75 |
+
Key: ara_sada_afb_000009, Target: ara, Predicted: snd
|
76 |
+
Key: ara_sada_afb_000010, Target: ara, Predicted: mlt
|
77 |
+
Key: ara_sada_afb_000011, Target: ara, Predicted: guj
|
78 |
+
Key: ara_sada_afb_000016, Target: ara, Predicted: amh
|
79 |
+
Key: ara_sada_afb_000018, Target: ara, Predicted: amh
|
80 |
+
Key: ara_sada_afb_000020, Target: ara, Predicted: som
|
81 |
+
Key: ara_sada_afb_000021, Target: ara, Predicted: ell
|
82 |
+
Key: ara_sada_afb_000030, Target: ara, Predicted: amh
|
83 |
+
Key: ara_sada_afb_000032, Target: ara, Predicted: kaz
|
84 |
+
Key: ara_sada_afb_000042, Target: ara, Predicted: yid
|
85 |
+
Key: ara_sada_afb_000043, Target: ara, Predicted: amh
|
86 |
+
Key: ara_sada_afb_000046, Target: ara, Predicted: urd
|
87 |
+
Key: ara_sada_afb_000047, Target: ara, Predicted: hau
|
88 |
+
Key: ara_sada_afb_000050, Target: ara, Predicted: som
|
89 |
+
Key: ara_sada_afb_000051, Target: ara, Predicted: snd
|
90 |
+
Key: ara_sada_afb_000053, Target: ara, Predicted: som
|
91 |
+
Key: ara_sada_afb_000057, Target: ara, Predicted: bod
|
92 |
+
Key: ara_sada_afb_000058, Target: ara, Predicted: hau
|
93 |
+
Key: ara_sada_afb_000071, Target: ara, Predicted: heb
|
94 |
+
Key: ara_sada_afb_000072, Target: ara, Predicted: jav
|
95 |
+
Key: ara_sada_afb_000073, Target: ara, Predicted: mya
|
96 |
+
Key: ara_sada_afb_000080, Target: ara, Predicted: asm
|
97 |
+
Key: ara_sada_afb_000084, Target: ara, Predicted: msa
|
98 |
+
Key: ara_sada_afb_000085, Target: ara, Predicted: amh
|
99 |
+
Key: ara_sada_afb_000088, Target: ara, Predicted: swa
|
100 |
+
Key: ara_sada_afb_000094, Target: ara, Predicted: nno
|
101 |
+
Key: ara_sada_afb_000099, Target: ara, Predicted: afr
|
102 |
+
Key: ara_sada_afb_000104, Target: ara, Predicted: hau
|
103 |
+
Key: ara_sada_afb_000106, Target: ara, Predicted: heb
|
104 |
+
Key: ara_sada_afb_000108, Target: ara, Predicted: ben
|
105 |
+
Key: ara_sada_afb_000117, Target: ara, Predicted: bod
|
106 |
+
Key: ara_sada_afb_000118, Target: ara, Predicted: mya
|
107 |
+
Key: ara_sada_afb_000119, Target: ara, Predicted: hrv
|
108 |
+
Key: ara_sada_afb_000121, Target: ara, Predicted: ell
|
109 |
+
Key: ara_sada_afb_000124, Target: ara, Predicted: khm
|
110 |
+
Key: ara_sada_afb_000129, Target: ara, Predicted: hau
|
111 |
+
Key: ara_sada_afb_000132, Target: ara, Predicted: yid
|
112 |
+
Key: ara_sada_afb_000136, Target: ara, Predicted: heb
|
113 |
+
Key: ara_sada_afb_000138, Target: ara, Predicted: tat
|
114 |
+
Key: ara_sada_afb_000140, Target: ara, Predicted: amh
|
115 |
+
Key: ara_sada_afb_000141, Target: ara, Predicted: heb
|
116 |
+
Key: ara_sada_afb_000143, Target: ara, Predicted: bod
|
117 |
+
Key: ara_sada_afb_000147, Target: ara, Predicted: fas
|
118 |
+
Key: ara_sada_afb_000148, Target: ara, Predicted: tur
|
119 |
+
Key: ara_sada_afb_000149, Target: ara, Predicted: som
|
120 |
+
Key: ara_sada_afb_000151, Target: ara, Predicted: hun
|
121 |
+
Key: ara_sada_afb_000153, Target: ara, Predicted: mlt
|
122 |
+
Key: ara_sada_afb_000155, Target: ara, Predicted: grn
|
123 |
+
Key: ara_sada_afb_000156, Target: ara, Predicted: amh
|
124 |
+
Key: ara_sada_afb_000159, Target: ara, Predicted: fas
|
125 |
+
Key: ara_sada_afb_000161, Target: ara, Predicted: som
|
126 |
+
Key: ara_sada_afb_000162, Target: ara, Predicted: tat
|
127 |
+
Key: ara_sada_afb_000164, Target: ara, Predicted: amh
|
128 |
+
Key: ara_sada_afb_000166, Target: ara, Predicted: fas
|
129 |
+
Key: ara_sada_afb_000167, Target: ara, Predicted: heb
|
130 |
+
Key: ara_sada_afb_000168, Target: ara, Predicted: nno
|
131 |
+
Key: ara_sada_afb_000173, Target: ara, Predicted: amh
|
132 |
+
Key: ara_sada_afb_000181, Target: ara, Predicted: urd
|
133 |
+
Key: ara_sada_afb_000183, Target: ara, Predicted: sqi
|
134 |
+
Key: ara_sada_afb_000184, Target: ara, Predicted: hau
|
135 |
+
Key: ara_sada_afb_000188, Target: ara, Predicted: hin
|
136 |
+
Key: ara_sada_afb_000190, Target: ara, Predicted: heb
|
137 |
+
Key: ara_sada_afb_000192, Target: ara, Predicted: amh
|
138 |
+
Key: ara_sada_afb_000193, Target: ara, Predicted: bos
|
139 |
+
Key: ara_sada_afb_000194, Target: ara, Predicted: tat
|
140 |
+
Key: ara_sada_afb_000196, Target: ara, Predicted: aze
|
141 |
+
Key: ara_sada_afb_000197, Target: ara, Predicted: hau
|
142 |
+
Key: ara_sada_afb_000203, Target: ara, Predicted: som
|
143 |
+
Key: ara_sada_afb_000208, Target: ara, Predicted: snd
|
144 |
+
Key: ara_sada_afb_000212, Target: ara, Predicted: heb
|
145 |
+
Key: ara_sada_afb_000220, Target: ara, Predicted: heb
|
146 |
+
Key: ara_sada_afb_000221, Target: ara, Predicted: som
|
147 |
+
Key: ara_sada_arb_000005, Target: ara, Predicted: heb
|
148 |
+
Key: ara_sada_arb_000024, Target: ara, Predicted: amh
|
149 |
+
Key: ara_sada_arb_000031, Target: ara, Predicted: yor
|
150 |
+
Key: ara_sada_arb_000033, Target: ara, Predicted: yor
|
151 |
+
Key: ara_sada_arb_000041, Target: ara, Predicted: mlg
|
152 |
+
Key: ara_sada_ars_000007, Target: ara, Predicted: amh
|
153 |
+
Key: ara_sada_ars_000008, Target: ara, Predicted: amh
|
154 |
+
Key: ara_sada_ars_000016, Target: ara, Predicted: ell
|
155 |
+
Key: ara_sada_ars_000018, Target: ara, Predicted: hau
|
156 |
+
Key: ara_sada_ars_000019, Target: ara, Predicted: bos
|
157 |
+
Key: ara_sada_ars_000030, Target: ara, Predicted: amh
|
158 |
+
Key: ara_sada_ars_000031, Target: ara, Predicted: snd
|
159 |
+
Key: ara_sada_ars_000032, Target: ara, Predicted: bak
|
160 |
+
Key: ara_sada_ars_000033, Target: ara, Predicted: hau
|
161 |
+
Key: ara_sada_ars_000038, Target: ara, Predicted: lav
|
162 |
+
Key: ara_sada_ars_000039, Target: ara, Predicted: msa
|
163 |
+
Key: ara_sada_ars_000042, Target: ara, Predicted: slk
|
164 |
+
Key: ara_sada_ars_000043, Target: ara, Predicted: dan
|
165 |
+
Key: ara_sada_ars_000044, Target: ara, Predicted: lav
|
166 |
+
Key: ara_sada_ars_000053, Target: ara, Predicted: slv
|
167 |
+
Key: ara_sada_ars_000055, Target: ara, Predicted: eng
|
168 |
+
Key: ara_sada_ars_000058, Target: ara, Predicted: mya
|
169 |
+
Key: ara_sada_ars_000061, Target: ara, Predicted: isl
|
170 |
+
Key: ara_sada_ars_000069, Target: ara, Predicted: sqi
|
171 |
+
Key: ara_sada_ars_000072, Target: ara, Predicted: snd
|
172 |
+
Key: ara_sada_ars_000075, Target: ara, Predicted: lao
|
173 |
+
Key: ara_sada_ars_000082, Target: ara, Predicted: san
|
174 |
+
Key: ara_sada_ars_000090, Target: ara, Predicted: guj
|
175 |
+
Key: ara_sada_ars_000091, Target: ara, Predicted: heb
|
176 |
+
Key: ara_sada_ars_000092, Target: ara, Predicted: yor
|
177 |
+
Key: ara_sada_ars_000098, Target: ara, Predicted: sna
|
178 |
+
Key: ara_sada_ars_000105, Target: ara, Predicted: cmn
|
179 |
+
Key: ara_sada_ars_000110, Target: ara, Predicted: amh
|
180 |
+
Key: ara_sada_ars_000115, Target: ara, Predicted: tat
|
181 |
+
Key: ara_sada_ars_000121, Target: ara, Predicted: fra
|
182 |
+
Key: ara_sada_ars_000123, Target: ara, Predicted: isl
|
183 |
+
Key: ara_sada_ars_000129, Target: ara, Predicted: urd
|
184 |
+
Key: ara_sada_ars_000136, Target: ara, Predicted: nno
|
185 |
+
Key: ara_sada_ars_000140, Target: ara, Predicted: som
|
186 |
+
Key: ara_sada_ars_000146, Target: ara, Predicted: ita
|
187 |
+
Key: ara_sada_ars_000152, Target: ara, Predicted: amh
|
188 |
+
Key: deu_swissdial_ag_000003, Target: deu, Predicted: nld
|
189 |
+
Key: deu_swissdial_ag_000008, Target: deu, Predicted: tat
|
190 |
+
Key: deu_swissdial_ag_000013, Target: deu, Predicted: afr
|
191 |
+
Key: deu_swissdial_ag_000014, Target: deu, Predicted: afr
|
192 |
+
Key: deu_swissdial_ag_000015, Target: deu, Predicted: afr
|
193 |
+
Key: deu_swissdial_ag_000016, Target: deu, Predicted: afr
|
194 |
+
Key: deu_swissdial_ag_000023, Target: deu, Predicted: afr
|
195 |
+
Key: deu_swissdial_ag_000025, Target: deu, Predicted: afr
|
196 |
+
Key: deu_swissdial_ag_000026, Target: deu, Predicted: afr
|
197 |
+
Key: deu_swissdial_ag_000031, Target: deu, Predicted: nld
|
198 |
+
Key: deu_swissdial_ag_000032, Target: deu, Predicted: nld
|
199 |
+
Key: deu_swissdial_ag_000035, Target: deu, Predicted: afr
|
200 |
+
Key: deu_swissdial_ag_000037, Target: deu, Predicted: afr
|
201 |
+
Key: deu_swissdial_ag_000038, Target: deu, Predicted: afr
|
202 |
+
Key: deu_swissdial_ag_000040, Target: deu, Predicted: afr
|
203 |
+
Key: deu_swissdial_ag_000042, Target: deu, Predicted: nld
|
204 |
+
Key: deu_swissdial_ag_000047, Target: deu, Predicted: nld
|
205 |
+
Key: deu_swissdial_ag_000055, Target: deu, Predicted: afr
|
206 |
+
Key: deu_swissdial_ag_000059, Target: deu, Predicted: afr
|
207 |
+
Key: deu_swissdial_ag_000062, Target: deu, Predicted: nld
|
208 |
+
Key: deu_swissdial_ag_000064, Target: deu, Predicted: afr
|
209 |
+
Key: deu_swissdial_ag_000073, Target: deu, Predicted: afr
|
210 |
+
Key: deu_swissdial_ag_000076, Target: deu, Predicted: nld
|
211 |
+
Key: deu_swissdial_ag_000084, Target: deu, Predicted: nld
|
212 |
+
Key: deu_swissdial_ag_000085, Target: deu, Predicted: nld
|
213 |
+
Key: deu_swissdial_ag_000086, Target: deu, Predicted: afr
|
214 |
+
Key: deu_swissdial_ag_000088, Target: deu, Predicted: nld
|
215 |
+
Key: deu_swissdial_ag_000089, Target: deu, Predicted: yid
|
216 |
+
Key: deu_swissdial_ag_000091, Target: deu, Predicted: afr
|
217 |
+
Key: deu_swissdial_ag_000092, Target: deu, Predicted: nld
|
218 |
+
Key: deu_swissdial_ag_000093, Target: deu, Predicted: afr
|
219 |
+
Key: deu_swissdial_ag_000095, Target: deu, Predicted: afr
|
220 |
+
Key: deu_swissdial_ag_000096, Target: deu, Predicted: slk
|
221 |
+
Key: deu_swissdial_ag_000100, Target: deu, Predicted: nld
|
222 |
+
Key: deu_swissdial_ag_000107, Target: deu, Predicted: nld
|
223 |
+
Key: deu_swissdial_ag_000108, Target: deu, Predicted: ltz
|
224 |
+
Key: deu_swissdial_ag_000110, Target: deu, Predicted: afr
|
225 |
+
Key: deu_swissdial_ag_000114, Target: deu, Predicted: nld
|
226 |
+
Key: deu_swissdial_ag_000117, Target: deu, Predicted: afr
|
227 |
+
Key: deu_swissdial_ag_000118, Target: deu, Predicted: afr
|
228 |
+
Key: deu_swissdial_ag_000120, Target: deu, Predicted: afr
|
229 |
+
Key: deu_swissdial_ag_000121, Target: deu, Predicted: afr
|
230 |
+
Key: deu_swissdial_ag_000122, Target: deu, Predicted: afr
|
231 |
+
Key: deu_swissdial_ag_000124, Target: deu, Predicted: hun
|
232 |
+
Key: deu_swissdial_ag_000126, Target: deu, Predicted: nld
|
233 |
+
Key: deu_swissdial_ag_000127, Target: deu, Predicted: hun
|
234 |
+
Key: deu_swissdial_ag_000128, Target: deu, Predicted: afr
|
235 |
+
Key: deu_swissdial_ag_000134, Target: deu, Predicted: sqi
|
236 |
+
Key: deu_swissdial_ag_000135, Target: deu, Predicted: afr
|
237 |
+
Key: deu_swissdial_ag_000138, Target: deu, Predicted: afr
|
238 |
+
Key: deu_swissdial_ag_000139, Target: deu, Predicted: afr
|
239 |
+
Key: deu_swissdial_ag_000141, Target: deu, Predicted: afr
|
240 |
+
Key: deu_swissdial_ag_000148, Target: deu, Predicted: nld
|
241 |
+
Key: deu_swissdial_ag_000150, Target: deu, Predicted: afr
|
242 |
+
Key: deu_swissdial_ag_000151, Target: deu, Predicted: afr
|
243 |
+
Key: deu_swissdial_ag_000159, Target: deu, Predicted: nld
|
244 |
+
Key: deu_swissdial_ag_000163, Target: deu, Predicted: afr
|
245 |
+
Key: deu_swissdial_be_000004, Target: deu, Predicted: afr
|
246 |
+
Key: deu_swissdial_be_000008, Target: deu, Predicted: nld
|
247 |
+
Key: deu_swissdial_be_000013, Target: deu, Predicted: afr
|
248 |
+
Key: deu_swissdial_be_000016, Target: deu, Predicted: nld
|
249 |
+
Key: deu_swissdial_be_000018, Target: deu, Predicted: afr
|
250 |
+
Key: deu_swissdial_be_000023, Target: deu, Predicted: afr
|
251 |
+
Key: deu_swissdial_be_000024, Target: deu, Predicted: nld
|
252 |
+
Key: deu_swissdial_be_000025, Target: deu, Predicted: afr
|
253 |
+
Key: deu_swissdial_be_000030, Target: deu, Predicted: nld
|
254 |
+
Key: deu_swissdial_be_000031, Target: deu, Predicted: afr
|
255 |
+
Key: deu_swissdial_be_000033, Target: deu, Predicted: nld
|
256 |
+
Key: deu_swissdial_be_000034, Target: deu, Predicted: afr
|
257 |
+
Key: deu_swissdial_be_000035, Target: deu, Predicted: afr
|
258 |
+
Key: deu_swissdial_be_000036, Target: deu, Predicted: slv
|
259 |
+
Key: deu_swissdial_be_000039, Target: deu, Predicted: afr
|
260 |
+
Key: deu_swissdial_be_000040, Target: deu, Predicted: afr
|
261 |
+
Key: deu_swissdial_be_000042, Target: deu, Predicted: afr
|
262 |
+
Key: deu_swissdial_be_000043, Target: deu, Predicted: afr
|
263 |
+
Key: deu_swissdial_be_000048, Target: deu, Predicted: nld
|
264 |
+
Key: deu_swissdial_be_000054, Target: deu, Predicted: afr
|
265 |
+
Key: deu_swissdial_be_000059, Target: deu, Predicted: nld
|
266 |
+
Key: deu_swissdial_be_000060, Target: deu, Predicted: nld
|
267 |
+
Key: deu_swissdial_be_000066, Target: deu, Predicted: nld
|
268 |
+
Key: deu_swissdial_be_000076, Target: deu, Predicted: afr
|
269 |
+
Key: deu_swissdial_be_000084, Target: deu, Predicted: nld
|
270 |
+
Key: deu_swissdial_be_000087, Target: deu, Predicted: nld
|
271 |
+
Key: deu_swissdial_be_000090, Target: deu, Predicted: afr
|
272 |
+
Key: deu_swissdial_be_000091, Target: deu, Predicted: nld
|
273 |
+
Key: deu_swissdial_be_000092, Target: deu, Predicted: afr
|
274 |
+
Key: deu_swissdial_be_000096, Target: deu, Predicted: afr
|
275 |
+
Key: deu_swissdial_be_000103, Target: deu, Predicted: est
|
276 |
+
Key: deu_swissdial_be_000107, Target: deu, Predicted: afr
|
277 |
+
Key: deu_swissdial_be_000108, Target: deu, Predicted: ltz
|
278 |
+
Key: deu_swissdial_be_000112, Target: deu, Predicted: afr
|
279 |
+
Key: deu_swissdial_be_000113, Target: deu, Predicted: nld
|
280 |
+
Key: deu_swissdial_be_000114, Target: deu, Predicted: nld
|
281 |
+
Key: deu_swissdial_be_000115, Target: deu, Predicted: nld
|
282 |
+
Key: deu_swissdial_be_000117, Target: deu, Predicted: nld
|
283 |
+
Key: deu_swissdial_be_000124, Target: deu, Predicted: nld
|
284 |
+
Key: deu_swissdial_be_000125, Target: deu, Predicted: nld
|
285 |
+
Key: deu_swissdial_be_000129, Target: deu, Predicted: afr
|
286 |
+
Key: deu_swissdial_bs_000003, Target: deu, Predicted: ltz
|
287 |
+
Key: deu_swissdial_bs_000008, Target: deu, Predicted: dan
|
288 |
+
Key: deu_swissdial_bs_000019, Target: deu, Predicted: dan
|
289 |
+
Key: deu_swissdial_bs_000031, Target: deu, Predicted: lat
|
290 |
+
Key: deu_swissdial_bs_000036, Target: deu, Predicted: ltz
|
291 |
+
Key: deu_swissdial_bs_000039, Target: deu, Predicted: dan
|
292 |
+
Key: deu_swissdial_bs_000079, Target: deu, Predicted: ltz
|
293 |
+
Key: deu_swissdial_bs_000082, Target: deu, Predicted: ltz
|
294 |
+
Key: deu_swissdial_bs_000088, Target: deu, Predicted: ltz
|
295 |
+
Key: deu_swissdial_bs_000093, Target: deu, Predicted: nld
|
296 |
+
Key: deu_swissdial_bs_000097, Target: deu, Predicted: nno
|
297 |
+
Key: deu_swissdial_bs_000114, Target: deu, Predicted: afr
|
298 |
+
Key: deu_swissdial_bs_000133, Target: deu, Predicted: nld
|
299 |
+
Key: deu_swissdial_bs_000139, Target: deu, Predicted: afr
|
300 |
+
Key: deu_swissdial_gr_000010, Target: deu, Predicted: afr
|
301 |
+
Key: deu_swissdial_gr_000040, Target: deu, Predicted: afr
|
302 |
+
Key: deu_swissdial_gr_000059, Target: deu, Predicted: slv
|
303 |
+
Key: deu_swissdial_gr_000063, Target: deu, Predicted: slv
|
304 |
+
Key: deu_swissdial_gr_000064, Target: deu, Predicted: slv
|
305 |
+
Key: deu_swissdial_gr_000081, Target: deu, Predicted: afr
|
306 |
+
Key: deu_swissdial_gr_000088, Target: deu, Predicted: nld
|
307 |
+
Key: deu_swissdial_gr_000105, Target: deu, Predicted: afr
|
308 |
+
Key: deu_swissdial_gr_000114, Target: deu, Predicted: slv
|
309 |
+
Key: deu_swissdial_gr_000115, Target: deu, Predicted: dan
|
310 |
+
Key: deu_swissdial_gr_000123, Target: deu, Predicted: slk
|
311 |
+
Key: deu_swissdial_gr_000133, Target: deu, Predicted: slv
|
312 |
+
Key: deu_swissdial_lu_000002, Target: deu, Predicted: nld
|
313 |
+
Key: deu_swissdial_lu_000003, Target: deu, Predicted: nld
|
314 |
+
Key: deu_swissdial_lu_000004, Target: deu, Predicted: afr
|
315 |
+
Key: deu_swissdial_lu_000006, Target: deu, Predicted: nld
|
316 |
+
Key: deu_swissdial_lu_000007, Target: deu, Predicted: afr
|
317 |
+
Key: deu_swissdial_lu_000009, Target: deu, Predicted: nld
|
318 |
+
Key: deu_swissdial_lu_000011, Target: deu, Predicted: hun
|
319 |
+
Key: deu_swissdial_lu_000012, Target: deu, Predicted: afr
|
320 |
+
Key: deu_swissdial_lu_000014, Target: deu, Predicted: nld
|
321 |
+
Key: deu_swissdial_lu_000016, Target: deu, Predicted: nld
|
322 |
+
Key: deu_swissdial_lu_000017, Target: deu, Predicted: nld
|
323 |
+
Key: deu_swissdial_lu_000019, Target: deu, Predicted: afr
|
324 |
+
Key: deu_swissdial_lu_000021, Target: deu, Predicted: nld
|
325 |
+
Key: deu_swissdial_lu_000022, Target: deu, Predicted: nld
|
326 |
+
Key: deu_swissdial_lu_000023, Target: deu, Predicted: afr
|
327 |
+
Key: deu_swissdial_lu_000024, Target: deu, Predicted: afr
|
328 |
+
Key: deu_swissdial_lu_000026, Target: deu, Predicted: nld
|
329 |
+
Key: deu_swissdial_lu_000027, Target: deu, Predicted: ltz
|
330 |
+
Key: deu_swissdial_lu_000029, Target: deu, Predicted: slk
|
331 |
+
Key: deu_swissdial_lu_000031, Target: deu, Predicted: yid
|
332 |
+
Key: deu_swissdial_lu_000033, Target: deu, Predicted: nld
|
333 |
+
Key: deu_swissdial_lu_000034, Target: deu, Predicted: afr
|
334 |
+
Key: deu_swissdial_lu_000036, Target: deu, Predicted: afr
|
335 |
+
Key: deu_swissdial_lu_000037, Target: deu, Predicted: nld
|
336 |
+
Key: deu_swissdial_lu_000038, Target: deu, Predicted: ltz
|
337 |
+
Key: deu_swissdial_lu_000040, Target: deu, Predicted: ltz
|
338 |
+
Key: deu_swissdial_lu_000042, Target: deu, Predicted: nld
|
339 |
+
Key: deu_swissdial_lu_000043, Target: deu, Predicted: ltz
|
340 |
+
Key: deu_swissdial_lu_000044, Target: deu, Predicted: afr
|
341 |
+
Key: deu_swissdial_lu_000046, Target: deu, Predicted: afr
|
342 |
+
Key: deu_swissdial_lu_000047, Target: deu, Predicted: ltz
|
343 |
+
Key: deu_swissdial_lu_000051, Target: deu, Predicted: cym
|
344 |
+
Key: deu_swissdial_lu_000052, Target: deu, Predicted: nld
|
345 |
+
Key: deu_swissdial_lu_000053, Target: deu, Predicted: afr
|
346 |
+
Key: deu_swissdial_lu_000054, Target: deu, Predicted: afr
|
347 |
+
Key: deu_swissdial_lu_000055, Target: deu, Predicted: nld
|
348 |
+
Key: deu_swissdial_lu_000056, Target: deu, Predicted: afr
|
349 |
+
Key: deu_swissdial_lu_000057, Target: deu, Predicted: afr
|
350 |
+
Key: deu_swissdial_lu_000058, Target: deu, Predicted: nld
|
351 |
+
Key: deu_swissdial_lu_000065, Target: deu, Predicted: hun
|
352 |
+
Key: deu_swissdial_lu_000066, Target: deu, Predicted: afr
|
353 |
+
Key: deu_swissdial_lu_000067, Target: deu, Predicted: afr
|
354 |
+
Key: deu_swissdial_lu_000069, Target: deu, Predicted: nld
|
355 |
+
Key: deu_swissdial_lu_000071, Target: deu, Predicted: afr
|
356 |
+
Key: deu_swissdial_lu_000072, Target: deu, Predicted: afr
|
357 |
+
Key: deu_swissdial_lu_000073, Target: deu, Predicted: isl
|
358 |
+
Key: deu_swissdial_lu_000075, Target: deu, Predicted: nld
|
359 |
+
Key: deu_swissdial_lu_000077, Target: deu, Predicted: afr
|
360 |
+
Key: deu_swissdial_lu_000079, Target: deu, Predicted: afr
|
361 |
+
Key: deu_swissdial_lu_000080, Target: deu, Predicted: afr
|
362 |
+
Key: deu_swissdial_lu_000081, Target: deu, Predicted: afr
|
363 |
+
Key: deu_swissdial_lu_000085, Target: deu, Predicted: nld
|
364 |
+
Key: deu_swissdial_lu_000086, Target: deu, Predicted: afr
|
365 |
+
Key: deu_swissdial_lu_000087, Target: deu, Predicted: nld
|
366 |
+
Key: deu_swissdial_lu_000090, Target: deu, Predicted: nld
|
367 |
+
Key: deu_swissdial_lu_000095, Target: deu, Predicted: isl
|
368 |
+
Key: deu_swissdial_lu_000096, Target: deu, Predicted: afr
|
369 |
+
Key: deu_swissdial_lu_000097, Target: deu, Predicted: nld
|
370 |
+
Key: deu_swissdial_lu_000099, Target: deu, Predicted: ltz
|
371 |
+
Key: deu_swissdial_lu_000102, Target: deu, Predicted: afr
|
372 |
+
Key: deu_swissdial_lu_000103, Target: deu, Predicted: nld
|
373 |
+
Key: deu_swissdial_lu_000104, Target: deu, Predicted: nld
|
374 |
+
Key: deu_swissdial_lu_000106, Target: deu, Predicted: afr
|
375 |
+
Key: deu_swissdial_lu_000107, Target: deu, Predicted: est
|
376 |
+
Key: deu_swissdial_lu_000108, Target: deu, Predicted: afr
|
377 |
+
Key: deu_swissdial_lu_000112, Target: deu, Predicted: yid
|
378 |
+
Key: deu_swissdial_lu_000113, Target: deu, Predicted: nld
|
379 |
+
Key: deu_swissdial_lu_000116, Target: deu, Predicted: ltz
|
380 |
+
Key: deu_swissdial_lu_000117, Target: deu, Predicted: afr
|
381 |
+
Key: deu_swissdial_lu_000120, Target: deu, Predicted: nld
|
382 |
+
Key: deu_swissdial_lu_000121, Target: deu, Predicted: afr
|
383 |
+
Key: deu_swissdial_lu_000123, Target: deu, Predicted: nld
|
384 |
+
Key: deu_swissdial_lu_000125, Target: deu, Predicted: nld
|
385 |
+
Key: deu_swissdial_lu_000126, Target: deu, Predicted: afr
|
386 |
+
Key: deu_swissdial_lu_000129, Target: deu, Predicted: afr
|
387 |
+
Key: deu_swissdial_lu_000130, Target: deu, Predicted: afr
|
388 |
+
Key: deu_swissdial_lu_000132, Target: deu, Predicted: nld
|
389 |
+
Key: deu_swissdial_lu_000133, Target: deu, Predicted: nld
|
390 |
+
Key: deu_swissdial_lu_000134, Target: deu, Predicted: afr
|
391 |
+
Key: deu_swissdial_lu_000135, Target: deu, Predicted: afr
|
392 |
+
Key: deu_swissdial_lu_000136, Target: deu, Predicted: nld
|
393 |
+
Key: deu_swissdial_lu_000137, Target: deu, Predicted: nld
|
394 |
+
Key: deu_swissdial_lu_000138, Target: deu, Predicted: afr
|
395 |
+
Key: deu_swissdial_lu_000140, Target: deu, Predicted: afr
|
396 |
+
Key: deu_swissdial_lu_000144, Target: deu, Predicted: nld
|
397 |
+
Key: deu_swissdial_lu_000146, Target: deu, Predicted: afr
|
398 |
+
Key: deu_swissdial_lu_000150, Target: deu, Predicted: afr
|
399 |
+
Key: deu_swissdial_lu_000151, Target: deu, Predicted: nld
|
400 |
+
Key: deu_swissdial_lu_000153, Target: deu, Predicted: afr
|
401 |
+
Key: deu_swissdial_lu_000155, Target: deu, Predicted: nld
|
402 |
+
Key: deu_swissdial_lu_000157, Target: deu, Predicted: afr
|
403 |
+
Key: deu_swissdial_lu_000158, Target: deu, Predicted: nld
|
404 |
+
Key: deu_swissdial_lu_000159, Target: deu, Predicted: nld
|
405 |
+
Key: deu_swissdial_lu_000162, Target: deu, Predicted: nld
|
406 |
+
Key: deu_swissdial_lu_000163, Target: deu, Predicted: nld
|
407 |
+
Key: deu_swissdial_lu_000164, Target: deu, Predicted: ltz
|
408 |
+
Key: deu_swissdial_lu_000166, Target: deu, Predicted: nld
|
409 |
+
Key: deu_swissdial_lu_000167, Target: deu, Predicted: afr
|
410 |
+
Key: deu_swissdial_lu_000168, Target: deu, Predicted: afr
|
411 |
+
Key: deu_swissdial_lu_000170, Target: deu, Predicted: nld
|
412 |
+
Key: deu_swissdial_lu_000172, Target: deu, Predicted: nor
|
413 |
+
Key: deu_swissdial_lu_000173, Target: deu, Predicted: afr
|
414 |
+
Key: deu_swissdial_sg_000010, Target: deu, Predicted: nld
|
415 |
+
Key: deu_swissdial_sg_000046, Target: deu, Predicted: dan
|
416 |
+
Key: deu_swissdial_sg_000078, Target: deu, Predicted: nld
|
417 |
+
Key: deu_swissdial_sg_000104, Target: deu, Predicted: est
|
418 |
+
Key: deu_swissdial_sg_000109, Target: deu, Predicted: afr
|
419 |
+
Key: deu_swissdial_vs_000003, Target: deu, Predicted: afr
|
420 |
+
Key: deu_swissdial_vs_000004, Target: deu, Predicted: afr
|
421 |
+
Key: deu_swissdial_vs_000005, Target: deu, Predicted: nld
|
422 |
+
Key: deu_swissdial_vs_000009, Target: deu, Predicted: afr
|
423 |
+
Key: deu_swissdial_vs_000010, Target: deu, Predicted: nld
|
424 |
+
Key: deu_swissdial_vs_000016, Target: deu, Predicted: nld
|
425 |
+
Key: deu_swissdial_vs_000020, Target: deu, Predicted: nld
|
426 |
+
Key: deu_swissdial_vs_000021, Target: deu, Predicted: afr
|
427 |
+
Key: deu_swissdial_vs_000029, Target: deu, Predicted: nld
|
428 |
+
Key: deu_swissdial_vs_000030, Target: deu, Predicted: nld
|
429 |
+
Key: deu_swissdial_vs_000032, Target: deu, Predicted: afr
|
430 |
+
Key: deu_swissdial_vs_000034, Target: deu, Predicted: nld
|
431 |
+
Key: deu_swissdial_vs_000038, Target: deu, Predicted: yid
|
432 |
+
Key: deu_swissdial_vs_000042, Target: deu, Predicted: nld
|
433 |
+
Key: deu_swissdial_vs_000044, Target: deu, Predicted: nld
|
434 |
+
Key: deu_swissdial_vs_000045, Target: deu, Predicted: nld
|
435 |
+
Key: deu_swissdial_vs_000047, Target: deu, Predicted: dan
|
436 |
+
Key: deu_swissdial_vs_000048, Target: deu, Predicted: afr
|
437 |
+
Key: deu_swissdial_vs_000053, Target: deu, Predicted: dan
|
438 |
+
Key: deu_swissdial_vs_000055, Target: deu, Predicted: nld
|
439 |
+
Key: deu_swissdial_vs_000059, Target: deu, Predicted: afr
|
440 |
+
Key: deu_swissdial_vs_000060, Target: deu, Predicted: afr
|
441 |
+
Key: deu_swissdial_vs_000064, Target: deu, Predicted: nno
|
442 |
+
Key: deu_swissdial_vs_000073, Target: deu, Predicted: nld
|
443 |
+
Key: deu_swissdial_vs_000075, Target: deu, Predicted: nld
|
444 |
+
Key: deu_swissdial_vs_000076, Target: deu, Predicted: afr
|
445 |
+
Key: deu_swissdial_vs_000078, Target: deu, Predicted: cym
|
446 |
+
Key: deu_swissdial_vs_000082, Target: deu, Predicted: dan
|
447 |
+
Key: deu_swissdial_vs_000083, Target: deu, Predicted: afr
|
448 |
+
Key: deu_swissdial_vs_000088, Target: deu, Predicted: afr
|
449 |
+
Key: deu_swissdial_vs_000090, Target: deu, Predicted: afr
|
450 |
+
Key: deu_swissdial_vs_000091, Target: deu, Predicted: afr
|
451 |
+
Key: deu_swissdial_vs_000096, Target: deu, Predicted: afr
|
452 |
+
Key: deu_swissdial_vs_000102, Target: deu, Predicted: afr
|
453 |
+
Key: deu_swissdial_vs_000105, Target: deu, Predicted: nld
|
454 |
+
Key: deu_swissdial_vs_000108, Target: deu, Predicted: slv
|
455 |
+
Key: deu_swissdial_vs_000114, Target: deu, Predicted: afr
|
456 |
+
Key: deu_swissdial_vs_000116, Target: deu, Predicted: nld
|
457 |
+
Key: deu_swissdial_vs_000120, Target: deu, Predicted: afr
|
458 |
+
Key: deu_swissdial_vs_000124, Target: deu, Predicted: nld
|
459 |
+
Key: deu_swissdial_vs_000127, Target: deu, Predicted: nld
|
460 |
+
Key: deu_swissdial_vs_000129, Target: deu, Predicted: nld
|
461 |
+
Key: deu_swissdial_vs_000132, Target: deu, Predicted: nld
|
462 |
+
Key: deu_swissdial_vs_000136, Target: deu, Predicted: afr
|
463 |
+
Key: deu_swissdial_vs_000137, Target: deu, Predicted: afr
|
464 |
+
Key: deu_swissdial_zh_000000, Target: deu, Predicted: nld
|
465 |
+
Key: deu_swissdial_zh_000006, Target: deu, Predicted: ltz
|
466 |
+
Key: deu_swissdial_zh_000007, Target: deu, Predicted: afr
|
467 |
+
Key: deu_swissdial_zh_000015, Target: deu, Predicted: nld
|
468 |
+
Key: deu_swissdial_zh_000017, Target: deu, Predicted: afr
|
469 |
+
Key: deu_swissdial_zh_000029, Target: deu, Predicted: afr
|
470 |
+
Key: deu_swissdial_zh_000032, Target: deu, Predicted: afr
|
471 |
+
Key: deu_swissdial_zh_000050, Target: deu, Predicted: ltz
|
472 |
+
Key: deu_swissdial_zh_000060, Target: deu, Predicted: nld
|
473 |
+
Key: deu_swissdial_zh_000066, Target: deu, Predicted: afr
|
474 |
+
Key: deu_swissdial_zh_000072, Target: deu, Predicted: nld
|
475 |
+
Key: deu_swissdial_zh_000078, Target: deu, Predicted: afr
|
476 |
+
Key: deu_swissdial_zh_000080, Target: deu, Predicted: afr
|
477 |
+
Key: deu_swissdial_zh_000081, Target: deu, Predicted: afr
|
478 |
+
Key: deu_swissdial_zh_000083, Target: deu, Predicted: afr
|
479 |
+
Key: deu_swissdial_zh_000086, Target: deu, Predicted: afr
|
480 |
+
Key: deu_swissdial_zh_000088, Target: deu, Predicted: slk
|
481 |
+
Key: deu_swissdial_zh_000091, Target: deu, Predicted: afr
|
482 |
+
Key: deu_swissdial_zh_000094, Target: deu, Predicted: afr
|
483 |
+
Key: deu_swissdial_zh_000097, Target: deu, Predicted: afr
|
484 |
+
Key: deu_swissdial_zh_000101, Target: deu, Predicted: afr
|
485 |
+
Key: deu_swissdial_zh_000103, Target: deu, Predicted: afr
|
486 |
+
Key: deu_swissdial_zh_000105, Target: deu, Predicted: afr
|
487 |
+
Key: deu_swissdial_zh_000115, Target: deu, Predicted: ltz
|
488 |
+
Key: deu_swissdial_zh_000116, Target: deu, Predicted: afr
|
489 |
+
Key: deu_swissdial_zh_000120, Target: deu, Predicted: afr
|
490 |
+
Key: deu_swissdial_zh_000127, Target: deu, Predicted: nld
|
491 |
+
Key: deu_swissdial_zh_000133, Target: deu, Predicted: nld
|
492 |
+
Key: deu_swissdial_zh_000134, Target: deu, Predicted: afr
|
493 |
+
Key: deu_swissdial_zh_000141, Target: deu, Predicted: afr
|
494 |
+
Key: ell_cretan_cre_000002, Target: ell, Predicted: swa
|
495 |
+
Key: ell_cretan_cre_000003, Target: ell, Predicted: tgl
|
496 |
+
Key: ell_cretan_cre_000006, Target: ell, Predicted: ukr
|
497 |
+
Key: ell_cretan_cre_000007, Target: ell, Predicted: srp
|
498 |
+
Key: ell_cretan_cre_000011, Target: ell, Predicted: ukr
|
499 |
+
Key: ell_cretan_cre_000013, Target: ell, Predicted: snd
|
500 |
+
Key: ell_cretan_cre_000014, Target: ell, Predicted: bos
|
501 |
+
Key: ell_cretan_cre_000017, Target: ell, Predicted: swa
|
502 |
+
Key: ell_cretan_cre_000019, Target: ell, Predicted: slv
|
503 |
+
Key: ell_cretan_cre_000020, Target: ell, Predicted: ind
|
504 |
+
Key: ell_cretan_cre_000031, Target: ell, Predicted: slv
|
505 |
+
Key: ell_cretan_cre_000033, Target: ell, Predicted: lin
|
506 |
+
Key: ell_cretan_cre_000034, Target: ell, Predicted: bel
|
507 |
+
Key: ell_cretan_cre_000036, Target: ell, Predicted: rus
|
508 |
+
Key: ell_cretan_cre_000037, Target: ell, Predicted: bul
|
509 |
+
Key: ell_cretan_cre_000039, Target: ell, Predicted: tel
|
510 |
+
Key: ell_cretan_cre_000040, Target: ell, Predicted: spa
|
511 |
+
Key: ell_cretan_cre_000041, Target: ell, Predicted: mkd
|
512 |
+
Key: ell_cretan_cre_000048, Target: ell, Predicted: ukr
|
513 |
+
Key: ell_cretan_cre_000050, Target: ell, Predicted: slv
|
514 |
+
Key: ell_cretan_cre_000052, Target: ell, Predicted: swa
|
515 |
+
Key: ell_cretan_cre_000053, Target: ell, Predicted: lao
|
516 |
+
Key: ell_cretan_cre_000054, Target: ell, Predicted: slv
|
517 |
+
Key: ell_cretan_cre_000055, Target: ell, Predicted: ukr
|
518 |
+
Key: ell_cretan_cre_000059, Target: ell, Predicted: mlg
|
519 |
+
Key: ell_cretan_cre_000063, Target: ell, Predicted: mlg
|
520 |
+
Key: ell_cretan_cre_000064, Target: ell, Predicted: swa
|
521 |
+
Key: ell_cretan_cre_000065, Target: ell, Predicted: mya
|
522 |
+
Key: ell_cretan_cre_000066, Target: ell, Predicted: ukr
|
523 |
+
Key: ell_cretan_cre_000067, Target: ell, Predicted: cat
|
524 |
+
Key: ell_cretan_cre_000071, Target: ell, Predicted: tel
|
525 |
+
Key: ell_cretan_cre_000078, Target: ell, Predicted: por
|
526 |
+
Key: ell_cretan_cre_000081, Target: ell, Predicted: slv
|
527 |
+
Key: ell_cretan_cre_000084, Target: ell, Predicted: nno
|
528 |
+
Key: ell_cretan_cre_000088, Target: ell, Predicted: bos
|
529 |
+
Key: ell_cretan_cre_000091, Target: ell, Predicted: mlg
|
530 |
+
Key: ell_cretan_cre_000092, Target: ell, Predicted: ukr
|
531 |
+
Key: ell_cretan_cre_000094, Target: ell, Predicted: grn
|
532 |
+
Key: ell_cretan_cre_000096, Target: ell, Predicted: mon
|
533 |
+
Key: ell_cretan_cre_000097, Target: ell, Predicted: aze
|
534 |
+
Key: ell_cretan_cre_000098, Target: ell, Predicted: pus
|
535 |
+
Key: ell_cretan_cre_000099, Target: ell, Predicted: vie
|
536 |
+
Key: ell_cretan_cre_000100, Target: ell, Predicted: mlg
|
537 |
+
Key: ell_cretan_cre_000101, Target: ell, Predicted: grn
|
538 |
+
Key: ell_cretan_cre_000103, Target: ell, Predicted: lat
|
539 |
+
Key: ell_cretan_cre_000107, Target: ell, Predicted: tha
|
540 |
+
Key: ell_cretan_cre_000110, Target: ell, Predicted: bul
|
541 |
+
Key: ell_cretan_cre_000112, Target: ell, Predicted: guj
|
542 |
+
Key: ell_cretan_cre_000120, Target: ell, Predicted: por
|
543 |
+
Key: ell_cretan_cre_000126, Target: ell, Predicted: mlg
|
544 |
+
Key: ell_cretan_cre_000128, Target: ell, Predicted: ron
|
545 |
+
Key: ell_cretan_cre_000138, Target: ell, Predicted: glg
|
546 |
+
Key: ell_cretan_cre_000139, Target: ell, Predicted: slv
|
547 |
+
Key: ell_cretan_cre_000140, Target: ell, Predicted: mya
|
548 |
+
Key: ell_cretan_cre_000147, Target: ell, Predicted: sqi
|
549 |
+
Key: ell_cretan_cre_000149, Target: ell, Predicted: slv
|
550 |
+
Key: ell_cretan_cre_000150, Target: ell, Predicted: ukr
|
551 |
+
Key: ell_cretan_cre_000151, Target: ell, Predicted: sun
|
552 |
+
Key: ell_cretan_cre_000153, Target: ell, Predicted: lit
|
553 |
+
Key: ell_cretan_cre_000156, Target: ell, Predicted: lao
|
554 |
+
Key: ell_cretan_cre_000157, Target: ell, Predicted: ukr
|
555 |
+
Key: ell_cretan_cre_000160, Target: ell, Predicted: ron
|
556 |
+
Key: ell_cretan_cre_000161, Target: ell, Predicted: sqi
|
557 |
+
Key: ell_cretan_cre_000162, Target: ell, Predicted: ukr
|
558 |
+
Key: ell_cretan_cre_000163, Target: ell, Predicted: swa
|
559 |
+
Key: ell_cretan_cre_000167, Target: ell, Predicted: mkd
|
560 |
+
Key: ell_cretan_cre_000168, Target: ell, Predicted: hin
|
561 |
+
Key: ell_cretan_cre_000170, Target: ell, Predicted: mri
|
562 |
+
Key: ell_cretan_cre_000171, Target: ell, Predicted: slv
|
563 |
+
Key: ell_cretan_cre_000172, Target: ell, Predicted: hrv
|
564 |
+
Key: ell_cretan_cre_000173, Target: ell, Predicted: sqi
|
565 |
+
Key: ell_cretan_cre_000174, Target: ell, Predicted: bel
|
566 |
+
Key: ell_cretan_cre_000177, Target: ell, Predicted: lit
|
567 |
+
Key: ell_cretan_cre_000185, Target: ell, Predicted: bod
|
568 |
+
Key: ell_cretan_cre_000187, Target: ell, Predicted: por
|
569 |
+
Key: ell_cretan_cre_000188, Target: ell, Predicted: lav
|
570 |
+
Key: ell_cretan_cre_000189, Target: ell, Predicted: mkd
|
571 |
+
Key: ell_cretan_cre_000195, Target: ell, Predicted: por
|
572 |
+
Key: ell_cretan_cre_000196, Target: ell, Predicted: tel
|
573 |
+
Key: ell_cretan_cre_000197, Target: ell, Predicted: por
|
574 |
+
Key: ell_cretan_cre_000203, Target: ell, Predicted: kan
|
575 |
+
Key: ell_cretan_cre_000206, Target: ell, Predicted: aze
|
576 |
+
Key: ell_cretan_cre_000210, Target: ell, Predicted: bos
|
577 |
+
Key: ell_cretan_cre_000216, Target: ell, Predicted: lit
|
578 |
+
Key: ell_cretan_cre_000219, Target: ell, Predicted: hat
|
579 |
+
Key: ell_cretan_cre_000221, Target: ell, Predicted: sqi
|
580 |
+
Key: ell_cretan_cre_000225, Target: ell, Predicted: swa
|
581 |
+
Key: ell_cretan_cre_000226, Target: ell, Predicted: hrv
|
582 |
+
Key: ell_cretan_cre_000228, Target: ell, Predicted: bel
|
583 |
+
Key: ell_cretan_cre_000230, Target: ell, Predicted: swa
|
584 |
+
Key: ell_cretan_cre_000232, Target: ell, Predicted: hrv
|
585 |
+
Key: ell_cretan_cre_000233, Target: ell, Predicted: fin
|
586 |
+
Key: ell_cretan_cre_000235, Target: ell, Predicted: mkd
|
587 |
+
Key: ell_cretan_cre_000237, Target: ell, Predicted: ron
|
588 |
+
Key: ell_cretan_cre_000239, Target: ell, Predicted: ukr
|
589 |
+
Key: ell_cretan_cre_000240, Target: ell, Predicted: lit
|
590 |
+
Key: ell_cretan_cre_000241, Target: ell, Predicted: pus
|
591 |
+
Key: ell_cretan_cre_000242, Target: ell, Predicted: pus
|
592 |
+
Key: ell_cretan_cre_000245, Target: ell, Predicted: por
|
593 |
+
Key: ell_cretan_cre_000248, Target: ell, Predicted: amh
|
594 |
+
Key: ell_cretan_cre_000249, Target: ell, Predicted: swa
|
595 |
+
Key: ell_cretan_cre_000250, Target: ell, Predicted: ron
|
596 |
+
Key: ell_cretan_cre_000251, Target: ell, Predicted: tgl
|
597 |
+
Key: ell_cretan_cre_000252, Target: ell, Predicted: lin
|
598 |
+
Key: ell_cretan_cre_000254, Target: ell, Predicted: lit
|
599 |
+
Key: ell_cretan_cre_000261, Target: ell, Predicted: asm
|
600 |
+
Key: ell_cretan_cre_000264, Target: ell, Predicted: swa
|
601 |
+
Key: ell_cretan_cre_000265, Target: ell, Predicted: ceb
|
602 |
+
Key: ell_cretan_cre_000266, Target: ell, Predicted: bel
|
603 |
+
Key: ell_cretan_cre_000267, Target: ell, Predicted: spa
|
604 |
+
Key: ell_cretan_cre_000268, Target: ell, Predicted: bod
|
605 |
+
Key: ell_cretan_cre_000270, Target: ell, Predicted: ron
|
606 |
+
Key: ell_cretan_cre_000274, Target: ell, Predicted: slv
|
607 |
+
Key: ell_cretan_cre_000275, Target: ell, Predicted: bel
|
608 |
+
Key: ell_cretan_cre_000281, Target: ell, Predicted: ben
|
609 |
+
Key: ell_cretan_cre_000282, Target: ell, Predicted: mlg
|
610 |
+
Key: ell_cretan_cre_000283, Target: ell, Predicted: lit
|
611 |
+
Key: ell_cretan_cre_000285, Target: ell, Predicted: mar
|
612 |
+
Key: ell_cretan_cre_000286, Target: ell, Predicted: khm
|
613 |
+
Key: ell_cretan_cre_000288, Target: ell, Predicted: mlg
|
614 |
+
Key: ell_messenian_mes_000009, Target: ell, Predicted: eus
|
615 |
+
Key: ell_messenian_mes_000011, Target: ell, Predicted: afr
|
616 |
+
Key: ell_messenian_mes_000012, Target: ell, Predicted: tgl
|
617 |
+
Key: ell_messenian_mes_000043, Target: ell, Predicted: slv
|
618 |
+
Key: ell_messenian_mes_000056, Target: ell, Predicted: nno
|
619 |
+
Key: ell_messenian_mes_000058, Target: ell, Predicted: asm
|
620 |
+
Key: ell_messenian_mes_000077, Target: ell, Predicted: ces
|
621 |
+
Key: ell_messenian_mes_000079, Target: ell, Predicted: afr
|
622 |
+
Key: ell_messenian_mes_000085, Target: ell, Predicted: ita
|
623 |
+
Key: ell_messenian_mes_000099, Target: ell, Predicted: mkd
|
624 |
+
Key: ell_messenian_mes_000110, Target: ell, Predicted: ind
|
625 |
+
Key: ell_messenian_mes_000136, Target: ell, Predicted: nno
|
626 |
+
Key: ell_messenian_mes_000139, Target: ell, Predicted: slv
|
627 |
+
Key: ell_messenian_mes_000141, Target: ell, Predicted: mkd
|
628 |
+
Key: ell_messenian_mes_000155, Target: ell, Predicted: mri
|
629 |
+
Key: ell_messenian_mes_000161, Target: ell, Predicted: hrv
|
630 |
+
Key: ell_messenian_mes_000164, Target: ell, Predicted: cat
|
631 |
+
Key: ell_messenian_mes_000182, Target: ell, Predicted: tgl
|
632 |
+
Key: eng_globe_aus_000015, Target: eng, Predicted: fra
|
633 |
+
Key: eng_globe_aus_000039, Target: eng, Predicted: ceb
|
634 |
+
Key: eng_globe_aus_000054, Target: eng, Predicted: bul
|
635 |
+
Key: eng_globe_aus_000082, Target: eng, Predicted: bod
|
636 |
+
Key: eng_globe_aus_000118, Target: eng, Predicted: slv
|
637 |
+
Key: eng_globe_bre_000034, Target: eng, Predicted: hun
|
638 |
+
Key: eng_globe_bre_000050, Target: eng, Predicted: glv
|
639 |
+
Key: eng_globe_bre_000052, Target: eng, Predicted: cym
|
640 |
+
Key: eng_globe_bre_000054, Target: eng, Predicted: swe
|
641 |
+
Key: eng_globe_bre_000089, Target: eng, Predicted: cym
|
642 |
+
Key: eng_globe_bre_000099, Target: eng, Predicted: deu
|
643 |
+
Key: eng_globe_bre_000100, Target: eng, Predicted: cym
|
644 |
+
Key: eng_globe_bre_000103, Target: eng, Predicted: deu
|
645 |
+
Key: eng_globe_bre_000107, Target: eng, Predicted: lit
|
646 |
+
Key: eng_globe_bre_000116, Target: eng, Predicted: cym
|
647 |
+
Key: eng_globe_bre_000130, Target: eng, Predicted: cym
|
648 |
+
Key: eng_globe_bre_000133, Target: eng, Predicted: nor
|
649 |
+
Key: eng_globe_bre_000144, Target: eng, Predicted: dan
|
650 |
+
Key: eng_globe_bre_000152, Target: eng, Predicted: tgl
|
651 |
+
Key: eng_globe_can_000033, Target: eng, Predicted: ell
|
652 |
+
Key: eng_globe_can_000063, Target: eng, Predicted: cmn
|
653 |
+
Key: eng_globe_can_000069, Target: eng, Predicted: mya
|
654 |
+
Key: eng_globe_can_000112, Target: eng, Predicted: glv
|
655 |
+
Key: eng_globe_can_000134, Target: eng, Predicted: cym
|
656 |
+
Key: eng_globe_fil_000011, Target: eng, Predicted: tgl
|
657 |
+
Key: eng_globe_fil_000014, Target: eng, Predicted: tgl
|
658 |
+
Key: eng_globe_fil_000016, Target: eng, Predicted: khm
|
659 |
+
Key: eng_globe_fil_000018, Target: eng, Predicted: tgl
|
660 |
+
Key: eng_globe_fil_000019, Target: eng, Predicted: kor
|
661 |
+
Key: eng_globe_fil_000021, Target: eng, Predicted: war
|
662 |
+
Key: eng_globe_fil_000026, Target: eng, Predicted: ces
|
663 |
+
Key: eng_globe_fil_000027, Target: eng, Predicted: tgl
|
664 |
+
Key: eng_globe_fil_000032, Target: eng, Predicted: slk
|
665 |
+
Key: eng_globe_fil_000033, Target: eng, Predicted: tgl
|
666 |
+
Key: eng_globe_fil_000036, Target: eng, Predicted: tgl
|
667 |
+
Key: eng_globe_fil_000042, Target: eng, Predicted: tgl
|
668 |
+
Key: eng_globe_fil_000043, Target: eng, Predicted: tgl
|
669 |
+
Key: eng_globe_fil_000045, Target: eng, Predicted: tgl
|
670 |
+
Key: eng_globe_fil_000064, Target: eng, Predicted: tgl
|
671 |
+
Key: eng_globe_fil_000070, Target: eng, Predicted: glv
|
672 |
+
Key: eng_globe_fil_000077, Target: eng, Predicted: tgl
|
673 |
+
Key: eng_globe_fil_000080, Target: eng, Predicted: mya
|
674 |
+
Key: eng_globe_fil_000087, Target: eng, Predicted: ceb
|
675 |
+
Key: eng_globe_fil_000088, Target: eng, Predicted: tgl
|
676 |
+
Key: eng_globe_fil_000089, Target: eng, Predicted: cym
|
677 |
+
Key: eng_globe_fil_000096, Target: eng, Predicted: tgl
|
678 |
+
Key: eng_globe_fil_000104, Target: eng, Predicted: fra
|
679 |
+
Key: eng_globe_fil_000106, Target: eng, Predicted: tgl
|
680 |
+
Key: eng_globe_fil_000113, Target: eng, Predicted: tgl
|
681 |
+
Key: eng_globe_fil_000117, Target: eng, Predicted: tgl
|
682 |
+
Key: eng_globe_fil_000123, Target: eng, Predicted: tgl
|
683 |
+
Key: eng_globe_fil_000130, Target: eng, Predicted: tgl
|
684 |
+
Key: eng_globe_fil_000132, Target: eng, Predicted: ceb
|
685 |
+
Key: eng_globe_fil_000133, Target: eng, Predicted: tgl
|
686 |
+
Key: eng_globe_fil_000146, Target: eng, Predicted: tgl
|
687 |
+
Key: eng_globe_fil_000152, Target: eng, Predicted: tgl
|
688 |
+
Key: eng_globe_fil_000155, Target: eng, Predicted: tgl
|
689 |
+
Key: eng_globe_fil_000156, Target: eng, Predicted: tgl
|
690 |
+
Key: eng_globe_fil_000158, Target: eng, Predicted: tgl
|
691 |
+
Key: eng_globe_fil_000159, Target: eng, Predicted: tgl
|
692 |
+
Key: eng_globe_fil_000163, Target: eng, Predicted: tgl
|
693 |
+
Key: eng_globe_gle_000007, Target: eng, Predicted: cym
|
694 |
+
Key: eng_globe_gle_000020, Target: eng, Predicted: nld
|
695 |
+
Key: eng_globe_gle_000022, Target: eng, Predicted: glv
|
696 |
+
Key: eng_globe_gle_000045, Target: eng, Predicted: glv
|
697 |
+
Key: eng_globe_gle_000050, Target: eng, Predicted: glv
|
698 |
+
Key: eng_globe_gle_000069, Target: eng, Predicted: glv
|
699 |
+
Key: eng_globe_gle_000079, Target: eng, Predicted: ita
|
700 |
+
Key: eng_globe_gle_000087, Target: eng, Predicted: cym
|
701 |
+
Key: eng_globe_gle_000150, Target: eng, Predicted: glv
|
702 |
+
Key: eng_globe_gle_000154, Target: eng, Predicted: pan
|
703 |
+
Key: eng_globe_gle_000159, Target: eng, Predicted: mri
|
704 |
+
Key: eng_globe_gle_000162, Target: eng, Predicted: glv
|
705 |
+
Key: eng_globe_gle_000167, Target: eng, Predicted: hin
|
706 |
+
Key: eng_globe_nze_000004, Target: eng, Predicted: glv
|
707 |
+
Key: eng_globe_nze_000020, Target: eng, Predicted: cym
|
708 |
+
Key: eng_globe_nze_000029, Target: eng, Predicted: asm
|
709 |
+
Key: eng_globe_nze_000094, Target: eng, Predicted: nld
|
710 |
+
Key: eng_globe_nze_000108, Target: eng, Predicted: snd
|
711 |
+
Key: eng_globe_nze_000118, Target: eng, Predicted: bul
|
712 |
+
Key: eng_globe_nze_000127, Target: eng, Predicted: cym
|
713 |
+
Key: eng_globe_nze_000150, Target: eng, Predicted: cym
|
714 |
+
Key: eng_globe_sae_000007, Target: eng, Predicted: ron
|
715 |
+
Key: eng_globe_sae_000008, Target: eng, Predicted: asm
|
716 |
+
Key: eng_globe_sae_000011, Target: eng, Predicted: tam
|
717 |
+
Key: eng_globe_sae_000015, Target: eng, Predicted: pan
|
718 |
+
Key: eng_globe_sae_000035, Target: eng, Predicted: afr
|
719 |
+
Key: eng_globe_sae_000045, Target: eng, Predicted: afr
|
720 |
+
Key: eng_globe_sae_000047, Target: eng, Predicted: asm
|
721 |
+
Key: eng_globe_sae_000050, Target: eng, Predicted: kan
|
722 |
+
Key: eng_globe_sae_000058, Target: eng, Predicted: hin
|
723 |
+
Key: eng_globe_sae_000062, Target: eng, Predicted: ben
|
724 |
+
Key: eng_globe_sae_000063, Target: eng, Predicted: fra
|
725 |
+
Key: eng_globe_sae_000066, Target: eng, Predicted: cym
|
726 |
+
Key: eng_globe_sae_000079, Target: eng, Predicted: pan
|
727 |
+
Key: eng_globe_sae_000090, Target: eng, Predicted: epo
|
728 |
+
Key: eng_globe_sae_000100, Target: eng, Predicted: hin
|
729 |
+
Key: eng_globe_sae_000102, Target: eng, Predicted: hun
|
730 |
+
Key: eng_globe_sae_000104, Target: eng, Predicted: tgl
|
731 |
+
Key: eng_globe_sae_000109, Target: eng, Predicted: glv
|
732 |
+
Key: eng_globe_sae_000110, Target: eng, Predicted: afr
|
733 |
+
Key: eng_globe_sae_000115, Target: eng, Predicted: pan
|
734 |
+
Key: eng_globe_sae_000119, Target: eng, Predicted: mri
|
735 |
+
Key: eng_globe_sae_000120, Target: eng, Predicted: cym
|
736 |
+
Key: eng_globe_sae_000134, Target: eng, Predicted: tgl
|
737 |
+
Key: eng_globe_sae_000140, Target: eng, Predicted: tuk
|
738 |
+
Key: eng_globe_sae_000143, Target: eng, Predicted: slv
|
739 |
+
Key: eng_globe_sae_000144, Target: eng, Predicted: sna
|
740 |
+
Key: eng_globe_sae_000160, Target: eng, Predicted: fra
|
741 |
+
Key: eng_globe_sae_000161, Target: eng, Predicted: tel
|
742 |
+
Key: eng_globe_sae_000165, Target: eng, Predicted: hin
|
743 |
+
Key: eng_globe_sae_000168, Target: eng, Predicted: ina
|
744 |
+
Key: eng_globe_sae_000169, Target: eng, Predicted: tam
|
745 |
+
Key: eng_globe_sco_000002, Target: eng, Predicted: cym
|
746 |
+
Key: eng_globe_sco_000009, Target: eng, Predicted: cym
|
747 |
+
Key: eng_globe_sco_000011, Target: eng, Predicted: glv
|
748 |
+
Key: eng_globe_sco_000017, Target: eng, Predicted: glv
|
749 |
+
Key: eng_globe_sco_000035, Target: eng, Predicted: glv
|
750 |
+
Key: eng_globe_sco_000036, Target: eng, Predicted: cym
|
751 |
+
Key: eng_globe_sco_000038, Target: eng, Predicted: sna
|
752 |
+
Key: eng_globe_sco_000047, Target: eng, Predicted: cym
|
753 |
+
Key: eng_globe_sco_000048, Target: eng, Predicted: glv
|
754 |
+
Key: eng_globe_sco_000052, Target: eng, Predicted: cym
|
755 |
+
Key: eng_globe_sco_000062, Target: eng, Predicted: cym
|
756 |
+
Key: eng_globe_sco_000065, Target: eng, Predicted: glv
|
757 |
+
Key: eng_globe_sco_000067, Target: eng, Predicted: lat
|
758 |
+
Key: eng_globe_sco_000072, Target: eng, Predicted: glv
|
759 |
+
Key: eng_globe_sco_000078, Target: eng, Predicted: cym
|
760 |
+
Key: eng_globe_sco_000090, Target: eng, Predicted: glv
|
761 |
+
Key: eng_globe_sco_000093, Target: eng, Predicted: glv
|
762 |
+
Key: eng_globe_sco_000099, Target: eng, Predicted: cym
|
763 |
+
Key: eng_globe_sco_000106, Target: eng, Predicted: cym
|
764 |
+
Key: eng_globe_sco_000108, Target: eng, Predicted: glv
|
765 |
+
Key: eng_globe_sco_000109, Target: eng, Predicted: glv
|
766 |
+
Key: eng_globe_sco_000110, Target: eng, Predicted: glv
|
767 |
+
Key: eng_globe_sco_000112, Target: eng, Predicted: glv
|
768 |
+
Key: eng_globe_sco_000116, Target: eng, Predicted: cym
|
769 |
+
Key: eng_globe_sco_000118, Target: eng, Predicted: isl
|
770 |
+
Key: eng_globe_sco_000126, Target: eng, Predicted: cym
|
771 |
+
Key: eng_globe_sco_000129, Target: eng, Predicted: glv
|
772 |
+
Key: eng_globe_sco_000141, Target: eng, Predicted: glv
|
773 |
+
Key: eng_globe_sco_000142, Target: eng, Predicted: glv
|
774 |
+
Key: eng_globe_sco_000144, Target: eng, Predicted: nld
|
775 |
+
Key: eng_globe_sco_000150, Target: eng, Predicted: por
|
776 |
+
Key: eng_globe_use_000004, Target: eng, Predicted: glv
|
777 |
+
Key: eng_globe_use_000023, Target: eng, Predicted: msa
|
778 |
+
Key: eng_globe_use_000038, Target: eng, Predicted: dan
|
779 |
+
Key: eng_globe_use_000057, Target: eng, Predicted: mri
|
780 |
+
Key: eng_globe_use_000059, Target: eng, Predicted: afr
|
781 |
+
Key: eng_globe_use_000061, Target: eng, Predicted: hau
|
782 |
+
Key: eng_globe_use_000076, Target: eng, Predicted: khm
|
783 |
+
Key: eng_globe_use_000098, Target: eng, Predicted: tel
|
784 |
+
Key: eng_globe_use_000102, Target: eng, Predicted: deu
|
785 |
+
Key: eng_globe_use_000115, Target: eng, Predicted: jpn
|
786 |
+
Key: eng_globe_use_000164, Target: eng, Predicted: glv
|
787 |
+
Key: eng_globe_use_000175, Target: eng, Predicted: tgl
|
788 |
+
Key: eng_l2arctic_ara_000001, Target: eng, Predicted: ara
|
789 |
+
Key: eng_l2arctic_ara_000002, Target: eng, Predicted: ara
|
790 |
+
Key: eng_l2arctic_ara_000003, Target: eng, Predicted: ara
|
791 |
+
Key: eng_l2arctic_ara_000007, Target: eng, Predicted: ara
|
792 |
+
Key: eng_l2arctic_ara_000011, Target: eng, Predicted: ara
|
793 |
+
Key: eng_l2arctic_ara_000013, Target: eng, Predicted: ara
|
794 |
+
Key: eng_l2arctic_ara_000015, Target: eng, Predicted: ara
|
795 |
+
Key: eng_l2arctic_ara_000018, Target: eng, Predicted: tuk
|
796 |
+
Key: eng_l2arctic_ara_000021, Target: eng, Predicted: ara
|
797 |
+
Key: eng_l2arctic_ara_000023, Target: eng, Predicted: ara
|
798 |
+
Key: eng_l2arctic_ara_000028, Target: eng, Predicted: ara
|
799 |
+
Key: eng_l2arctic_ara_000029, Target: eng, Predicted: ron
|
800 |
+
Key: eng_l2arctic_ara_000030, Target: eng, Predicted: kan
|
801 |
+
Key: eng_l2arctic_ara_000031, Target: eng, Predicted: ell
|
802 |
+
Key: eng_l2arctic_ara_000032, Target: eng, Predicted: ara
|
803 |
+
Key: eng_l2arctic_ara_000037, Target: eng, Predicted: ara
|
804 |
+
Key: eng_l2arctic_ara_000038, Target: eng, Predicted: ara
|
805 |
+
Key: eng_l2arctic_ara_000039, Target: eng, Predicted: ara
|
806 |
+
Key: eng_l2arctic_ara_000042, Target: eng, Predicted: ara
|
807 |
+
Key: eng_l2arctic_ara_000044, Target: eng, Predicted: ina
|
808 |
+
Key: eng_l2arctic_ara_000045, Target: eng, Predicted: ara
|
809 |
+
Key: eng_l2arctic_ara_000046, Target: eng, Predicted: ara
|
810 |
+
Key: eng_l2arctic_ara_000051, Target: eng, Predicted: ara
|
811 |
+
Key: eng_l2arctic_ara_000061, Target: eng, Predicted: ara
|
812 |
+
Key: eng_l2arctic_ara_000068, Target: eng, Predicted: ara
|
813 |
+
Key: eng_l2arctic_ara_000069, Target: eng, Predicted: ara
|
814 |
+
Key: eng_l2arctic_ara_000070, Target: eng, Predicted: nor
|
815 |
+
Key: eng_l2arctic_ara_000072, Target: eng, Predicted: ara
|
816 |
+
Key: eng_l2arctic_ara_000074, Target: eng, Predicted: ara
|
817 |
+
Key: eng_l2arctic_ara_000077, Target: eng, Predicted: pol
|
818 |
+
Key: eng_l2arctic_ara_000079, Target: eng, Predicted: fra
|
819 |
+
Key: eng_l2arctic_ara_000080, Target: eng, Predicted: hun
|
820 |
+
Key: eng_l2arctic_ara_000083, Target: eng, Predicted: tgk
|
821 |
+
Key: eng_l2arctic_ara_000087, Target: eng, Predicted: amh
|
822 |
+
Key: eng_l2arctic_ara_000088, Target: eng, Predicted: ara
|
823 |
+
Key: eng_l2arctic_ara_000092, Target: eng, Predicted: cym
|
824 |
+
Key: eng_l2arctic_ara_000096, Target: eng, Predicted: hau
|
825 |
+
Key: eng_l2arctic_ara_000097, Target: eng, Predicted: ara
|
826 |
+
Key: eng_l2arctic_ara_000100, Target: eng, Predicted: tgk
|
827 |
+
Key: eng_l2arctic_ara_000105, Target: eng, Predicted: nld
|
828 |
+
Key: eng_l2arctic_ara_000109, Target: eng, Predicted: fra
|
829 |
+
Key: eng_l2arctic_ara_000115, Target: eng, Predicted: ara
|
830 |
+
Key: eng_l2arctic_ara_000119, Target: eng, Predicted: tuk
|
831 |
+
Key: eng_l2arctic_ara_000120, Target: eng, Predicted: pol
|
832 |
+
Key: eng_l2arctic_ara_000121, Target: eng, Predicted: ara
|
833 |
+
Key: eng_l2arctic_ara_000122, Target: eng, Predicted: hye
|
834 |
+
Key: eng_l2arctic_ara_000123, Target: eng, Predicted: kat
|
835 |
+
Key: eng_l2arctic_ara_000127, Target: eng, Predicted: ara
|
836 |
+
Key: eng_l2arctic_ara_000129, Target: eng, Predicted: ara
|
837 |
+
Key: eng_l2arctic_ara_000130, Target: eng, Predicted: ben
|
838 |
+
Key: eng_l2arctic_ara_000133, Target: eng, Predicted: hye
|
839 |
+
Key: eng_l2arctic_ara_000140, Target: eng, Predicted: ara
|
840 |
+
Key: eng_l2arctic_ara_000146, Target: eng, Predicted: pus
|
841 |
+
Key: eng_l2arctic_ara_000155, Target: eng, Predicted: pus
|
842 |
+
Key: eng_l2arctic_ara_000164, Target: eng, Predicted: ara
|
843 |
+
Key: eng_l2arctic_ara_000166, Target: eng, Predicted: tgk
|
844 |
+
Key: eng_l2arctic_ara_000167, Target: eng, Predicted: ara
|
845 |
+
Key: eng_l2arctic_cmn_000010, Target: eng, Predicted: cmn
|
846 |
+
Key: eng_l2arctic_cmn_000011, Target: eng, Predicted: cmn
|
847 |
+
Key: eng_l2arctic_cmn_000019, Target: eng, Predicted: cmn
|
848 |
+
Key: eng_l2arctic_cmn_000027, Target: eng, Predicted: bod
|
849 |
+
Key: eng_l2arctic_cmn_000042, Target: eng, Predicted: cmn
|
850 |
+
Key: eng_l2arctic_cmn_000047, Target: eng, Predicted: khm
|
851 |
+
Key: eng_l2arctic_cmn_000052, Target: eng, Predicted: cmn
|
852 |
+
Key: eng_l2arctic_cmn_000058, Target: eng, Predicted: cmn
|
853 |
+
Key: eng_l2arctic_cmn_000060, Target: eng, Predicted: cmn
|
854 |
+
Key: eng_l2arctic_cmn_000063, Target: eng, Predicted: cmn
|
855 |
+
Key: eng_l2arctic_cmn_000071, Target: eng, Predicted: cmn
|
856 |
+
Key: eng_l2arctic_cmn_000075, Target: eng, Predicted: bod
|
857 |
+
Key: eng_l2arctic_cmn_000076, Target: eng, Predicted: bod
|
858 |
+
Key: eng_l2arctic_cmn_000077, Target: eng, Predicted: cmn
|
859 |
+
Key: eng_l2arctic_cmn_000078, Target: eng, Predicted: cmn
|
860 |
+
Key: eng_l2arctic_cmn_000080, Target: eng, Predicted: bod
|
861 |
+
Key: eng_l2arctic_cmn_000087, Target: eng, Predicted: bod
|
862 |
+
Key: eng_l2arctic_cmn_000088, Target: eng, Predicted: bod
|
863 |
+
Key: eng_l2arctic_cmn_000091, Target: eng, Predicted: bod
|
864 |
+
Key: eng_l2arctic_cmn_000094, Target: eng, Predicted: ben
|
865 |
+
Key: eng_l2arctic_cmn_000097, Target: eng, Predicted: bod
|
866 |
+
Key: eng_l2arctic_cmn_000098, Target: eng, Predicted: mya
|
867 |
+
Key: eng_l2arctic_cmn_000100, Target: eng, Predicted: bod
|
868 |
+
Key: eng_l2arctic_cmn_000102, Target: eng, Predicted: khm
|
869 |
+
Key: eng_l2arctic_cmn_000106, Target: eng, Predicted: cmn
|
870 |
+
Key: eng_l2arctic_cmn_000107, Target: eng, Predicted: cmn
|
871 |
+
Key: eng_l2arctic_cmn_000108, Target: eng, Predicted: cmn
|
872 |
+
Key: eng_l2arctic_cmn_000113, Target: eng, Predicted: cmn
|
873 |
+
Key: eng_l2arctic_cmn_000114, Target: eng, Predicted: cmn
|
874 |
+
Key: eng_l2arctic_cmn_000115, Target: eng, Predicted: bod
|
875 |
+
Key: eng_l2arctic_cmn_000116, Target: eng, Predicted: cmn
|
876 |
+
Key: eng_l2arctic_cmn_000120, Target: eng, Predicted: kor
|
877 |
+
Key: eng_l2arctic_cmn_000125, Target: eng, Predicted: mya
|
878 |
+
Key: eng_l2arctic_cmn_000126, Target: eng, Predicted: cmn
|
879 |
+
Key: eng_l2arctic_cmn_000127, Target: eng, Predicted: bod
|
880 |
+
Key: eng_l2arctic_cmn_000128, Target: eng, Predicted: kor
|
881 |
+
Key: eng_l2arctic_cmn_000130, Target: eng, Predicted: bod
|
882 |
+
Key: eng_l2arctic_cmn_000132, Target: eng, Predicted: bod
|
883 |
+
Key: eng_l2arctic_cmn_000133, Target: eng, Predicted: fas
|
884 |
+
Key: eng_l2arctic_cmn_000134, Target: eng, Predicted: hau
|
885 |
+
Key: eng_l2arctic_cmn_000135, Target: eng, Predicted: cmn
|
886 |
+
Key: eng_l2arctic_cmn_000137, Target: eng, Predicted: cmn
|
887 |
+
Key: eng_l2arctic_cmn_000138, Target: eng, Predicted: mya
|
888 |
+
Key: eng_l2arctic_cmn_000139, Target: eng, Predicted: cmn
|
889 |
+
Key: eng_l2arctic_cmn_000141, Target: eng, Predicted: lao
|
890 |
+
Key: eng_l2arctic_cmn_000142, Target: eng, Predicted: bod
|
891 |
+
Key: eng_l2arctic_cmn_000143, Target: eng, Predicted: cmn
|
892 |
+
Key: eng_l2arctic_cmn_000146, Target: eng, Predicted: cmn
|
893 |
+
Key: eng_l2arctic_hin_000005, Target: eng, Predicted: kan
|
894 |
+
Key: eng_l2arctic_hin_000007, Target: eng, Predicted: hin
|
895 |
+
Key: eng_l2arctic_hin_000010, Target: eng, Predicted: mar
|
896 |
+
Key: eng_l2arctic_hin_000014, Target: eng, Predicted: hin
|
897 |
+
Key: eng_l2arctic_hin_000016, Target: eng, Predicted: mar
|
898 |
+
Key: eng_l2arctic_hin_000019, Target: eng, Predicted: mar
|
899 |
+
Key: eng_l2arctic_hin_000020, Target: eng, Predicted: tel
|
900 |
+
Key: eng_l2arctic_hin_000022, Target: eng, Predicted: mar
|
901 |
+
Key: eng_l2arctic_hin_000024, Target: eng, Predicted: mar
|
902 |
+
Key: eng_l2arctic_hin_000025, Target: eng, Predicted: hin
|
903 |
+
Key: eng_l2arctic_hin_000033, Target: eng, Predicted: guj
|
904 |
+
Key: eng_l2arctic_hin_000040, Target: eng, Predicted: snd
|
905 |
+
Key: eng_l2arctic_hin_000054, Target: eng, Predicted: hin
|
906 |
+
Key: eng_l2arctic_hin_000055, Target: eng, Predicted: mar
|
907 |
+
Key: eng_l2arctic_hin_000057, Target: eng, Predicted: tam
|
908 |
+
Key: eng_l2arctic_hin_000061, Target: eng, Predicted: mar
|
909 |
+
Key: eng_l2arctic_hin_000064, Target: eng, Predicted: ben
|
910 |
+
Key: eng_l2arctic_hin_000065, Target: eng, Predicted: mar
|
911 |
+
Key: eng_l2arctic_hin_000069, Target: eng, Predicted: haw
|
912 |
+
Key: eng_l2arctic_hin_000078, Target: eng, Predicted: ben
|
913 |
+
Key: eng_l2arctic_hin_000080, Target: eng, Predicted: pan
|
914 |
+
Key: eng_l2arctic_hin_000085, Target: eng, Predicted: tam
|
915 |
+
Key: eng_l2arctic_hin_000096, Target: eng, Predicted: snd
|
916 |
+
Key: eng_l2arctic_hin_000101, Target: eng, Predicted: hin
|
917 |
+
Key: eng_l2arctic_hin_000102, Target: eng, Predicted: tam
|
918 |
+
Key: eng_l2arctic_hin_000103, Target: eng, Predicted: tam
|
919 |
+
Key: eng_l2arctic_hin_000104, Target: eng, Predicted: tel
|
920 |
+
Key: eng_l2arctic_hin_000106, Target: eng, Predicted: tam
|
921 |
+
Key: eng_l2arctic_hin_000107, Target: eng, Predicted: kan
|
922 |
+
Key: eng_l2arctic_hin_000108, Target: eng, Predicted: kan
|
923 |
+
Key: eng_l2arctic_hin_000110, Target: eng, Predicted: tel
|
924 |
+
Key: eng_l2arctic_hin_000113, Target: eng, Predicted: kan
|
925 |
+
Key: eng_l2arctic_hin_000114, Target: eng, Predicted: kan
|
926 |
+
Key: eng_l2arctic_hin_000116, Target: eng, Predicted: tel
|
927 |
+
Key: eng_l2arctic_hin_000117, Target: eng, Predicted: tam
|
928 |
+
Key: eng_l2arctic_hin_000118, Target: eng, Predicted: mar
|
929 |
+
Key: eng_l2arctic_hin_000119, Target: eng, Predicted: tam
|
930 |
+
Key: eng_l2arctic_hin_000122, Target: eng, Predicted: mar
|
931 |
+
Key: eng_l2arctic_hin_000123, Target: eng, Predicted: ben
|
932 |
+
Key: eng_l2arctic_hin_000125, Target: eng, Predicted: ara
|
933 |
+
Key: eng_l2arctic_hin_000126, Target: eng, Predicted: ben
|
934 |
+
Key: eng_l2arctic_hin_000127, Target: eng, Predicted: tel
|
935 |
+
Key: eng_l2arctic_hin_000128, Target: eng, Predicted: tam
|
936 |
+
Key: eng_l2arctic_hin_000129, Target: eng, Predicted: tam
|
937 |
+
Key: eng_l2arctic_hin_000130, Target: eng, Predicted: mar
|
938 |
+
Key: eng_l2arctic_hin_000131, Target: eng, Predicted: tel
|
939 |
+
Key: eng_l2arctic_hin_000132, Target: eng, Predicted: tel
|
940 |
+
Key: eng_l2arctic_hin_000133, Target: eng, Predicted: hin
|
941 |
+
Key: eng_l2arctic_hin_000138, Target: eng, Predicted: tam
|
942 |
+
Key: eng_l2arctic_hin_000140, Target: eng, Predicted: mar
|
943 |
+
Key: eng_l2arctic_hin_000141, Target: eng, Predicted: mar
|
944 |
+
Key: eng_l2arctic_hin_000142, Target: eng, Predicted: kan
|
945 |
+
Key: eng_l2arctic_hin_000143, Target: eng, Predicted: hin
|
946 |
+
Key: eng_l2arctic_hin_000144, Target: eng, Predicted: tam
|
947 |
+
Key: eng_l2arctic_hin_000146, Target: eng, Predicted: tel
|
948 |
+
Key: eng_l2arctic_hin_000147, Target: eng, Predicted: tam
|
949 |
+
Key: eng_l2arctic_hin_000149, Target: eng, Predicted: mar
|
950 |
+
Key: eng_l2arctic_hin_000152, Target: eng, Predicted: tam
|
951 |
+
Key: eng_l2arctic_hin_000153, Target: eng, Predicted: mar
|
952 |
+
Key: eng_l2arctic_hin_000154, Target: eng, Predicted: kan
|
953 |
+
Key: eng_l2arctic_hin_000155, Target: eng, Predicted: tam
|
954 |
+
Key: eng_l2arctic_hin_000156, Target: eng, Predicted: ben
|
955 |
+
Key: eng_l2arctic_hin_000157, Target: eng, Predicted: kan
|
956 |
+
Key: eng_l2arctic_hin_000158, Target: eng, Predicted: hin
|
957 |
+
Key: eng_l2arctic_hin_000159, Target: eng, Predicted: tel
|
958 |
+
Key: eng_l2arctic_hin_000161, Target: eng, Predicted: kan
|
959 |
+
Key: eng_l2arctic_hin_000162, Target: eng, Predicted: kan
|
960 |
+
Key: eng_l2arctic_hin_000163, Target: eng, Predicted: tam
|
961 |
+
Key: eng_l2arctic_hin_000164, Target: eng, Predicted: hin
|
962 |
+
Key: eng_l2arctic_hin_000165, Target: eng, Predicted: tam
|
963 |
+
Key: eng_l2arctic_hin_000166, Target: eng, Predicted: hrv
|
964 |
+
Key: eng_l2arctic_hin_000167, Target: eng, Predicted: tam
|
965 |
+
Key: eng_l2arctic_hin_000168, Target: eng, Predicted: kan
|
966 |
+
Key: eng_l2arctic_hin_000169, Target: eng, Predicted: hin
|
967 |
+
Key: eng_l2arctic_hin_000170, Target: eng, Predicted: kan
|
968 |
+
Key: eng_l2arctic_hin_000171, Target: eng, Predicted: kan
|
969 |
+
Key: eng_l2arctic_hin_000173, Target: eng, Predicted: kan
|
970 |
+
Key: eng_l2arctic_hin_000175, Target: eng, Predicted: pan
|
971 |
+
Key: eng_l2arctic_hin_000176, Target: eng, Predicted: glv
|
972 |
+
Key: eng_l2arctic_hin_000180, Target: eng, Predicted: kan
|
973 |
+
Key: eng_l2arctic_hin_000182, Target: eng, Predicted: ben
|
974 |
+
Key: eng_l2arctic_hin_000183, Target: eng, Predicted: kan
|
975 |
+
Key: eng_l2arctic_hin_000186, Target: eng, Predicted: hin
|
976 |
+
Key: eng_l2arctic_hin_000187, Target: eng, Predicted: kan
|
977 |
+
Key: eng_l2arctic_hin_000188, Target: eng, Predicted: tel
|
978 |
+
Key: eng_l2arctic_hin_000189, Target: eng, Predicted: tuk
|
979 |
+
Key: eng_l2arctic_hin_000191, Target: eng, Predicted: ben
|
980 |
+
Key: eng_l2arctic_hin_000193, Target: eng, Predicted: tam
|
981 |
+
Key: eng_l2arctic_hin_000194, Target: eng, Predicted: kan
|
982 |
+
Key: eng_l2arctic_hin_000195, Target: eng, Predicted: tam
|
983 |
+
Key: eng_l2arctic_hin_000196, Target: eng, Predicted: mar
|
984 |
+
Key: eng_l2arctic_hin_000197, Target: eng, Predicted: kan
|
985 |
+
Key: eng_l2arctic_hin_000199, Target: eng, Predicted: ben
|
986 |
+
Key: eng_l2arctic_hin_000200, Target: eng, Predicted: kan
|
987 |
+
Key: eng_l2arctic_hin_000201, Target: eng, Predicted: kan
|
988 |
+
Key: eng_l2arctic_hin_000203, Target: eng, Predicted: tel
|
989 |
+
Key: eng_l2arctic_hin_000204, Target: eng, Predicted: tam
|
990 |
+
Key: eng_l2arctic_hin_000205, Target: eng, Predicted: kan
|
991 |
+
Key: eng_l2arctic_kor_000022, Target: eng, Predicted: ltz
|
992 |
+
Key: eng_l2arctic_kor_000069, Target: eng, Predicted: dan
|
993 |
+
Key: eng_l2arctic_kor_000112, Target: eng, Predicted: lat
|
994 |
+
Key: eng_l2arctic_kor_000118, Target: eng, Predicted: vie
|
995 |
+
Key: eng_l2arctic_kor_000137, Target: eng, Predicted: lao
|
996 |
+
Key: eng_l2arctic_kor_000157, Target: eng, Predicted: hun
|
997 |
+
Key: eng_l2arctic_kor_000165, Target: eng, Predicted: slv
|
998 |
+
Key: eng_l2arctic_spa_000014, Target: eng, Predicted: heb
|
999 |
+
Key: eng_l2arctic_spa_000027, Target: eng, Predicted: spa
|
1000 |
+
Key: eng_l2arctic_spa_000033, Target: eng, Predicted: pol
|
1001 |
+
Key: eng_l2arctic_spa_000035, Target: eng, Predicted: spa
|
1002 |
+
Key: eng_l2arctic_spa_000036, Target: eng, Predicted: spa
|
1003 |
+
Key: eng_l2arctic_spa_000045, Target: eng, Predicted: spa
|
1004 |
+
Key: eng_l2arctic_spa_000047, Target: eng, Predicted: fra
|
1005 |
+
Key: eng_l2arctic_spa_000052, Target: eng, Predicted: spa
|
1006 |
+
Key: eng_l2arctic_spa_000055, Target: eng, Predicted: spa
|
1007 |
+
Key: eng_l2arctic_spa_000062, Target: eng, Predicted: spa
|
1008 |
+
Key: eng_l2arctic_spa_000063, Target: eng, Predicted: spa
|
1009 |
+
Key: eng_l2arctic_spa_000067, Target: eng, Predicted: cym
|
1010 |
+
Key: eng_l2arctic_spa_000068, Target: eng, Predicted: tgk
|
1011 |
+
Key: eng_l2arctic_spa_000070, Target: eng, Predicted: sqi
|
1012 |
+
Key: eng_l2arctic_spa_000071, Target: eng, Predicted: spa
|
1013 |
+
Key: eng_l2arctic_spa_000076, Target: eng, Predicted: spa
|
1014 |
+
Key: eng_l2arctic_spa_000078, Target: eng, Predicted: spa
|
1015 |
+
Key: eng_l2arctic_spa_000102, Target: eng, Predicted: mar
|
1016 |
+
Key: eng_l2arctic_spa_000119, Target: eng, Predicted: hun
|
1017 |
+
Key: eng_l2arctic_spa_000149, Target: eng, Predicted: fin
|
1018 |
+
Key: eng_l2arctic_vie_000002, Target: eng, Predicted: bod
|
1019 |
+
Key: eng_l2arctic_vie_000004, Target: eng, Predicted: war
|
1020 |
+
Key: eng_l2arctic_vie_000005, Target: eng, Predicted: bod
|
1021 |
+
Key: eng_l2arctic_vie_000007, Target: eng, Predicted: lao
|
1022 |
+
Key: eng_l2arctic_vie_000015, Target: eng, Predicted: lao
|
1023 |
+
Key: eng_l2arctic_vie_000016, Target: eng, Predicted: lat
|
1024 |
+
Key: eng_l2arctic_vie_000019, Target: eng, Predicted: bod
|
1025 |
+
Key: eng_l2arctic_vie_000022, Target: eng, Predicted: guj
|
1026 |
+
Key: eng_l2arctic_vie_000026, Target: eng, Predicted: afr
|
1027 |
+
Key: eng_l2arctic_vie_000028, Target: eng, Predicted: mya
|
1028 |
+
Key: eng_l2arctic_vie_000042, Target: eng, Predicted: lao
|
1029 |
+
Key: eng_l2arctic_vie_000045, Target: eng, Predicted: tgl
|
1030 |
+
Key: eng_l2arctic_vie_000047, Target: eng, Predicted: khm
|
1031 |
+
Key: eng_l2arctic_vie_000053, Target: eng, Predicted: nno
|
1032 |
+
Key: eng_l2arctic_vie_000055, Target: eng, Predicted: lao
|
1033 |
+
Key: eng_l2arctic_vie_000062, Target: eng, Predicted: mya
|
1034 |
+
Key: eng_l2arctic_vie_000064, Target: eng, Predicted: lao
|
1035 |
+
Key: eng_l2arctic_vie_000066, Target: eng, Predicted: kor
|
1036 |
+
Key: eng_l2arctic_vie_000069, Target: eng, Predicted: mri
|
1037 |
+
Key: eng_l2arctic_vie_000074, Target: eng, Predicted: bod
|
1038 |
+
Key: eng_l2arctic_vie_000088, Target: eng, Predicted: mya
|
1039 |
+
Key: eng_l2arctic_vie_000092, Target: eng, Predicted: vie
|
1040 |
+
Key: eng_l2arctic_vie_000106, Target: eng, Predicted: msa
|
1041 |
+
Key: eng_l2arctic_vie_000107, Target: eng, Predicted: lao
|
1042 |
+
Key: eng_l2arctic_vie_000109, Target: eng, Predicted: cym
|
1043 |
+
Key: eng_l2arctic_vie_000120, Target: eng, Predicted: mya
|
1044 |
+
Key: eng_l2arctic_vie_000125, Target: eng, Predicted: cym
|
1045 |
+
Key: eng_l2arctic_vie_000131, Target: eng, Predicted: bod
|
1046 |
+
Key: eng_l2arctic_vie_000135, Target: eng, Predicted: mya
|
1047 |
+
Key: eng_l2arctic_vie_000145, Target: eng, Predicted: cym
|
1048 |
+
Key: eng_l2arctic_vie_000148, Target: eng, Predicted: vie
|
1049 |
+
Key: eng_l2arctic_vie_000151, Target: eng, Predicted: vie
|
1050 |
+
Key: eng_l2arctic_vie_000153, Target: eng, Predicted: lao
|
1051 |
+
Key: eng_l2arctic_vie_000158, Target: eng, Predicted: vie
|
1052 |
+
Key: eng_l2arctic_vie_000163, Target: eng, Predicted: vie
|
1053 |
+
Key: eng_openslr83_nor_000017, Target: eng, Predicted: glv
|
1054 |
+
Key: eng_openslr83_sco_000000, Target: eng, Predicted: cym
|
1055 |
+
Key: eng_openslr83_sco_000005, Target: eng, Predicted: cym
|
1056 |
+
Key: eng_openslr83_sco_000007, Target: eng, Predicted: cym
|
1057 |
+
Key: eng_openslr83_sco_000016, Target: eng, Predicted: cym
|
1058 |
+
Key: eng_openslr83_sco_000034, Target: eng, Predicted: cym
|
1059 |
+
Key: eng_openslr83_sou_000065, Target: eng, Predicted: cym
|
1060 |
+
Key: eng_openslr83_wel_000015, Target: eng, Predicted: cym
|
1061 |
+
Key: eng_openslr83_wel_000032, Target: eng, Predicted: cym
|
1062 |
+
Key: eng_openslr83_wel_000037, Target: eng, Predicted: cym
|
1063 |
+
Key: eng_openslr83_wel_000040, Target: eng, Predicted: glv
|
1064 |
+
Key: eng_openslr83_wel_000053, Target: eng, Predicted: glv
|
1065 |
+
Key: eng_openslr83_wel_000055, Target: eng, Predicted: glv
|
1066 |
+
Key: eng_openslr83_wel_000065, Target: eng, Predicted: cym
|
1067 |
+
Key: eng_openslr83_wel_000073, Target: eng, Predicted: glv
|
1068 |
+
Key: eng_openslr83_wel_000074, Target: eng, Predicted: glv
|
1069 |
+
Key: eng_openslr83_wel_000076, Target: eng, Predicted: cym
|
1070 |
+
Key: eng_openslr83_wel_000079, Target: eng, Predicted: cym
|
1071 |
+
Key: eng_openslr83_wel_000081, Target: eng, Predicted: cym
|
1072 |
+
Key: eng_openslr83_wel_000084, Target: eng, Predicted: cym
|
1073 |
+
Key: eng_openslr83_wel_000085, Target: eng, Predicted: glv
|
1074 |
+
Key: eng_openslr83_wel_000086, Target: eng, Predicted: cym
|
1075 |
+
Key: eng_openslr83_wel_000087, Target: eng, Predicted: cym
|
1076 |
+
Key: eng_openslr83_wel_000092, Target: eng, Predicted: cym
|
1077 |
+
Key: eng_voxpopuli_ces_000000, Target: eng, Predicted: ces
|
1078 |
+
Key: eng_voxpopuli_ces_000001, Target: eng, Predicted: ces
|
1079 |
+
Key: eng_voxpopuli_ces_000002, Target: eng, Predicted: ces
|
1080 |
+
Key: eng_voxpopuli_ces_000003, Target: eng, Predicted: ces
|
1081 |
+
Key: eng_voxpopuli_ces_000004, Target: eng, Predicted: fin
|
1082 |
+
Key: eng_voxpopuli_ces_000005, Target: eng, Predicted: ces
|
1083 |
+
Key: eng_voxpopuli_ces_000006, Target: eng, Predicted: ces
|
1084 |
+
Key: eng_voxpopuli_ces_000007, Target: eng, Predicted: ces
|
1085 |
+
Key: eng_voxpopuli_ces_000008, Target: eng, Predicted: ces
|
1086 |
+
Key: eng_voxpopuli_ces_000009, Target: eng, Predicted: ces
|
1087 |
+
Key: eng_voxpopuli_ces_000010, Target: eng, Predicted: ces
|
1088 |
+
Key: eng_voxpopuli_ces_000011, Target: eng, Predicted: ces
|
1089 |
+
Key: eng_voxpopuli_ces_000012, Target: eng, Predicted: ces
|
1090 |
+
Key: eng_voxpopuli_ces_000013, Target: eng, Predicted: ces
|
1091 |
+
Key: eng_voxpopuli_ces_000014, Target: eng, Predicted: ces
|
1092 |
+
Key: eng_voxpopuli_ces_000015, Target: eng, Predicted: ces
|
1093 |
+
Key: eng_voxpopuli_ces_000016, Target: eng, Predicted: ces
|
1094 |
+
Key: eng_voxpopuli_ces_000017, Target: eng, Predicted: ces
|
1095 |
+
Key: eng_voxpopuli_ces_000018, Target: eng, Predicted: ces
|
1096 |
+
Key: eng_voxpopuli_ces_000019, Target: eng, Predicted: ces
|
1097 |
+
Key: eng_voxpopuli_ces_000020, Target: eng, Predicted: ces
|
1098 |
+
Key: eng_voxpopuli_ces_000022, Target: eng, Predicted: ces
|
1099 |
+
Key: eng_voxpopuli_ces_000023, Target: eng, Predicted: ces
|
1100 |
+
Key: eng_voxpopuli_ces_000024, Target: eng, Predicted: ces
|
1101 |
+
Key: eng_voxpopuli_ces_000025, Target: eng, Predicted: ces
|
1102 |
+
Key: eng_voxpopuli_ces_000026, Target: eng, Predicted: ces
|
1103 |
+
Key: eng_voxpopuli_ces_000027, Target: eng, Predicted: ces
|
1104 |
+
Key: eng_voxpopuli_ces_000028, Target: eng, Predicted: ces
|
1105 |
+
Key: eng_voxpopuli_ces_000029, Target: eng, Predicted: ces
|
1106 |
+
Key: eng_voxpopuli_ces_000030, Target: eng, Predicted: ces
|
1107 |
+
Key: eng_voxpopuli_ces_000031, Target: eng, Predicted: ces
|
1108 |
+
Key: eng_voxpopuli_ces_000032, Target: eng, Predicted: ces
|
1109 |
+
Key: eng_voxpopuli_ces_000033, Target: eng, Predicted: ces
|
1110 |
+
Key: eng_voxpopuli_ces_000034, Target: eng, Predicted: ces
|
1111 |
+
Key: eng_voxpopuli_ces_000035, Target: eng, Predicted: ces
|
1112 |
+
Key: eng_voxpopuli_ces_000036, Target: eng, Predicted: ces
|
1113 |
+
Key: eng_voxpopuli_ces_000038, Target: eng, Predicted: ces
|
1114 |
+
Key: eng_voxpopuli_ces_000039, Target: eng, Predicted: ces
|
1115 |
+
Key: eng_voxpopuli_ces_000040, Target: eng, Predicted: ces
|
1116 |
+
Key: eng_voxpopuli_ces_000041, Target: eng, Predicted: ces
|
1117 |
+
Key: eng_voxpopuli_ces_000042, Target: eng, Predicted: ces
|
1118 |
+
Key: eng_voxpopuli_ces_000043, Target: eng, Predicted: ces
|
1119 |
+
Key: eng_voxpopuli_ces_000044, Target: eng, Predicted: ces
|
1120 |
+
Key: eng_voxpopuli_ces_000045, Target: eng, Predicted: ces
|
1121 |
+
Key: eng_voxpopuli_ces_000046, Target: eng, Predicted: ces
|
1122 |
+
Key: eng_voxpopuli_ces_000047, Target: eng, Predicted: ces
|
1123 |
+
Key: eng_voxpopuli_ces_000048, Target: eng, Predicted: ces
|
1124 |
+
Key: eng_voxpopuli_ces_000049, Target: eng, Predicted: ces
|
1125 |
+
Key: eng_voxpopuli_ces_000050, Target: eng, Predicted: ces
|
1126 |
+
Key: eng_voxpopuli_ces_000051, Target: eng, Predicted: ces
|
1127 |
+
Key: eng_voxpopuli_ces_000052, Target: eng, Predicted: ces
|
1128 |
+
Key: eng_voxpopuli_ces_000053, Target: eng, Predicted: ces
|
1129 |
+
Key: eng_voxpopuli_ces_000054, Target: eng, Predicted: ces
|
1130 |
+
Key: eng_voxpopuli_ces_000055, Target: eng, Predicted: ces
|
1131 |
+
Key: eng_voxpopuli_deu_000001, Target: eng, Predicted: deu
|
1132 |
+
Key: eng_voxpopuli_deu_000002, Target: eng, Predicted: deu
|
1133 |
+
Key: eng_voxpopuli_deu_000004, Target: eng, Predicted: cym
|
1134 |
+
Key: eng_voxpopuli_deu_000013, Target: eng, Predicted: deu
|
1135 |
+
Key: eng_voxpopuli_deu_000016, Target: eng, Predicted: deu
|
1136 |
+
Key: eng_voxpopuli_deu_000020, Target: eng, Predicted: deu
|
1137 |
+
Key: eng_voxpopuli_deu_000030, Target: eng, Predicted: deu
|
1138 |
+
Key: eng_voxpopuli_deu_000034, Target: eng, Predicted: deu
|
1139 |
+
Key: eng_voxpopuli_deu_000037, Target: eng, Predicted: deu
|
1140 |
+
Key: eng_voxpopuli_deu_000039, Target: eng, Predicted: deu
|
1141 |
+
Key: eng_voxpopuli_deu_000041, Target: eng, Predicted: deu
|
1142 |
+
Key: eng_voxpopuli_deu_000043, Target: eng, Predicted: deu
|
1143 |
+
Key: eng_voxpopuli_deu_000045, Target: eng, Predicted: deu
|
1144 |
+
Key: eng_voxpopuli_deu_000050, Target: eng, Predicted: deu
|
1145 |
+
Key: eng_voxpopuli_deu_000061, Target: eng, Predicted: deu
|
1146 |
+
Key: eng_voxpopuli_deu_000063, Target: eng, Predicted: deu
|
1147 |
+
Key: eng_voxpopuli_deu_000065, Target: eng, Predicted: deu
|
1148 |
+
Key: eng_voxpopuli_est_000000, Target: eng, Predicted: est
|
1149 |
+
Key: eng_voxpopuli_est_000001, Target: eng, Predicted: est
|
1150 |
+
Key: eng_voxpopuli_est_000002, Target: eng, Predicted: est
|
1151 |
+
Key: eng_voxpopuli_est_000004, Target: eng, Predicted: est
|
1152 |
+
Key: eng_voxpopuli_est_000005, Target: eng, Predicted: est
|
1153 |
+
Key: eng_voxpopuli_est_000006, Target: eng, Predicted: est
|
1154 |
+
Key: eng_voxpopuli_est_000007, Target: eng, Predicted: est
|
1155 |
+
Key: eng_voxpopuli_est_000008, Target: eng, Predicted: est
|
1156 |
+
Key: eng_voxpopuli_est_000009, Target: eng, Predicted: est
|
1157 |
+
Key: eng_voxpopuli_est_000010, Target: eng, Predicted: est
|
1158 |
+
Key: eng_voxpopuli_est_000011, Target: eng, Predicted: est
|
1159 |
+
Key: eng_voxpopuli_est_000012, Target: eng, Predicted: lav
|
1160 |
+
Key: eng_voxpopuli_est_000013, Target: eng, Predicted: est
|
1161 |
+
Key: eng_voxpopuli_est_000014, Target: eng, Predicted: est
|
1162 |
+
Key: eng_voxpopuli_est_000015, Target: eng, Predicted: est
|
1163 |
+
Key: eng_voxpopuli_est_000016, Target: eng, Predicted: est
|
1164 |
+
Key: eng_voxpopuli_est_000017, Target: eng, Predicted: deu
|
1165 |
+
Key: eng_voxpopuli_est_000019, Target: eng, Predicted: est
|
1166 |
+
Key: eng_voxpopuli_est_000020, Target: eng, Predicted: est
|
1167 |
+
Key: eng_voxpopuli_est_000021, Target: eng, Predicted: est
|
1168 |
+
Key: eng_voxpopuli_est_000022, Target: eng, Predicted: est
|
1169 |
+
Key: eng_voxpopuli_est_000023, Target: eng, Predicted: est
|
1170 |
+
Key: eng_voxpopuli_est_000024, Target: eng, Predicted: est
|
1171 |
+
Key: eng_voxpopuli_est_000025, Target: eng, Predicted: est
|
1172 |
+
Key: eng_voxpopuli_est_000026, Target: eng, Predicted: est
|
1173 |
+
Key: eng_voxpopuli_est_000027, Target: eng, Predicted: est
|
1174 |
+
Key: eng_voxpopuli_est_000028, Target: eng, Predicted: est
|
1175 |
+
Key: eng_voxpopuli_est_000031, Target: eng, Predicted: est
|
1176 |
+
Key: eng_voxpopuli_est_000032, Target: eng, Predicted: est
|
1177 |
+
Key: eng_voxpopuli_est_000034, Target: eng, Predicted: est
|
1178 |
+
Key: eng_voxpopuli_est_000035, Target: eng, Predicted: est
|
1179 |
+
Key: eng_voxpopuli_est_000036, Target: eng, Predicted: est
|
1180 |
+
Key: eng_voxpopuli_est_000037, Target: eng, Predicted: est
|
1181 |
+
Key: eng_voxpopuli_est_000038, Target: eng, Predicted: est
|
1182 |
+
Key: eng_voxpopuli_est_000039, Target: eng, Predicted: est
|
1183 |
+
Key: eng_voxpopuli_est_000040, Target: eng, Predicted: est
|
1184 |
+
Key: eng_voxpopuli_est_000041, Target: eng, Predicted: est
|
1185 |
+
Key: eng_voxpopuli_est_000042, Target: eng, Predicted: est
|
1186 |
+
Key: eng_voxpopuli_est_000043, Target: eng, Predicted: est
|
1187 |
+
Key: eng_voxpopuli_est_000044, Target: eng, Predicted: est
|
1188 |
+
Key: eng_voxpopuli_est_000045, Target: eng, Predicted: est
|
1189 |
+
Key: eng_voxpopuli_est_000046, Target: eng, Predicted: est
|
1190 |
+
Key: eng_voxpopuli_est_000047, Target: eng, Predicted: est
|
1191 |
+
Key: eng_voxpopuli_est_000048, Target: eng, Predicted: est
|
1192 |
+
Key: eng_voxpopuli_est_000049, Target: eng, Predicted: est
|
1193 |
+
Key: eng_voxpopuli_est_000050, Target: eng, Predicted: est
|
1194 |
+
Key: eng_voxpopuli_est_000051, Target: eng, Predicted: est
|
1195 |
+
Key: eng_voxpopuli_est_000052, Target: eng, Predicted: est
|
1196 |
+
Key: eng_voxpopuli_est_000053, Target: eng, Predicted: est
|
1197 |
+
Key: eng_voxpopuli_fin_000000, Target: eng, Predicted: fin
|
1198 |
+
Key: eng_voxpopuli_fin_000001, Target: eng, Predicted: fin
|
1199 |
+
Key: eng_voxpopuli_fin_000002, Target: eng, Predicted: fin
|
1200 |
+
Key: eng_voxpopuli_fin_000003, Target: eng, Predicted: fin
|
1201 |
+
Key: eng_voxpopuli_fin_000005, Target: eng, Predicted: fin
|
1202 |
+
Key: eng_voxpopuli_fin_000006, Target: eng, Predicted: fin
|
1203 |
+
Key: eng_voxpopuli_fin_000007, Target: eng, Predicted: lav
|
1204 |
+
Key: eng_voxpopuli_fin_000008, Target: eng, Predicted: fin
|
1205 |
+
Key: eng_voxpopuli_fin_000009, Target: eng, Predicted: fin
|
1206 |
+
Key: eng_voxpopuli_fin_000010, Target: eng, Predicted: fin
|
1207 |
+
Key: eng_voxpopuli_fin_000011, Target: eng, Predicted: fin
|
1208 |
+
Key: eng_voxpopuli_fin_000012, Target: eng, Predicted: fin
|
1209 |
+
Key: eng_voxpopuli_fin_000013, Target: eng, Predicted: fin
|
1210 |
+
Key: eng_voxpopuli_fin_000014, Target: eng, Predicted: fin
|
1211 |
+
Key: eng_voxpopuli_fin_000015, Target: eng, Predicted: fin
|
1212 |
+
Key: eng_voxpopuli_fin_000016, Target: eng, Predicted: fin
|
1213 |
+
Key: eng_voxpopuli_fin_000017, Target: eng, Predicted: fin
|
1214 |
+
Key: eng_voxpopuli_fin_000018, Target: eng, Predicted: fin
|
1215 |
+
Key: eng_voxpopuli_fin_000019, Target: eng, Predicted: fin
|
1216 |
+
Key: eng_voxpopuli_fin_000020, Target: eng, Predicted: fin
|
1217 |
+
Key: eng_voxpopuli_fin_000021, Target: eng, Predicted: fin
|
1218 |
+
Key: eng_voxpopuli_fin_000022, Target: eng, Predicted: fin
|
1219 |
+
Key: eng_voxpopuli_fin_000023, Target: eng, Predicted: fin
|
1220 |
+
Key: eng_voxpopuli_fin_000024, Target: eng, Predicted: fin
|
1221 |
+
Key: eng_voxpopuli_fin_000025, Target: eng, Predicted: fin
|
1222 |
+
Key: eng_voxpopuli_fin_000026, Target: eng, Predicted: fin
|
1223 |
+
Key: eng_voxpopuli_fin_000027, Target: eng, Predicted: fin
|
1224 |
+
Key: eng_voxpopuli_fin_000028, Target: eng, Predicted: fin
|
1225 |
+
Key: eng_voxpopuli_fin_000029, Target: eng, Predicted: fin
|
1226 |
+
Key: eng_voxpopuli_fin_000030, Target: eng, Predicted: fin
|
1227 |
+
Key: eng_voxpopuli_fin_000031, Target: eng, Predicted: fin
|
1228 |
+
Key: eng_voxpopuli_fin_000032, Target: eng, Predicted: fin
|
1229 |
+
Key: eng_voxpopuli_fin_000033, Target: eng, Predicted: fin
|
1230 |
+
Key: eng_voxpopuli_fin_000034, Target: eng, Predicted: fin
|
1231 |
+
Key: eng_voxpopuli_fin_000035, Target: eng, Predicted: fin
|
1232 |
+
Key: eng_voxpopuli_fin_000036, Target: eng, Predicted: fin
|
1233 |
+
Key: eng_voxpopuli_fin_000037, Target: eng, Predicted: fin
|
1234 |
+
Key: eng_voxpopuli_fin_000038, Target: eng, Predicted: fin
|
1235 |
+
Key: eng_voxpopuli_fin_000039, Target: eng, Predicted: fin
|
1236 |
+
Key: eng_voxpopuli_fin_000040, Target: eng, Predicted: fin
|
1237 |
+
Key: eng_voxpopuli_fin_000041, Target: eng, Predicted: fin
|
1238 |
+
Key: eng_voxpopuli_fin_000042, Target: eng, Predicted: fin
|
1239 |
+
Key: eng_voxpopuli_fin_000043, Target: eng, Predicted: fin
|
1240 |
+
Key: eng_voxpopuli_fin_000044, Target: eng, Predicted: fin
|
1241 |
+
Key: eng_voxpopuli_fin_000045, Target: eng, Predicted: fin
|
1242 |
+
Key: eng_voxpopuli_fin_000046, Target: eng, Predicted: fin
|
1243 |
+
Key: eng_voxpopuli_fin_000047, Target: eng, Predicted: fin
|
1244 |
+
Key: eng_voxpopuli_fin_000049, Target: eng, Predicted: fin
|
1245 |
+
Key: eng_voxpopuli_fin_000050, Target: eng, Predicted: fin
|
1246 |
+
Key: eng_voxpopuli_fin_000051, Target: eng, Predicted: mri
|
1247 |
+
Key: eng_voxpopuli_fin_000052, Target: eng, Predicted: fin
|
1248 |
+
Key: eng_voxpopuli_fin_000053, Target: eng, Predicted: fin
|
1249 |
+
Key: eng_voxpopuli_fin_000054, Target: eng, Predicted: fin
|
1250 |
+
Key: eng_voxpopuli_fin_000055, Target: eng, Predicted: fin
|
1251 |
+
Key: eng_voxpopuli_fin_000056, Target: eng, Predicted: fin
|
1252 |
+
Key: eng_voxpopuli_fin_000057, Target: eng, Predicted: fin
|
1253 |
+
Key: eng_voxpopuli_fin_000058, Target: eng, Predicted: fin
|
1254 |
+
Key: eng_voxpopuli_fin_000059, Target: eng, Predicted: fin
|
1255 |
+
Key: eng_voxpopuli_fin_000060, Target: eng, Predicted: fin
|
1256 |
+
Key: eng_voxpopuli_fra_000000, Target: eng, Predicted: nld
|
1257 |
+
Key: eng_voxpopuli_fra_000002, Target: eng, Predicted: ell
|
1258 |
+
Key: eng_voxpopuli_fra_000003, Target: eng, Predicted: lav
|
1259 |
+
Key: eng_voxpopuli_fra_000004, Target: eng, Predicted: nld
|
1260 |
+
Key: eng_voxpopuli_fra_000005, Target: eng, Predicted: nld
|
1261 |
+
Key: eng_voxpopuli_fra_000006, Target: eng, Predicted: por
|
1262 |
+
Key: eng_voxpopuli_fra_000007, Target: eng, Predicted: nld
|
1263 |
+
Key: eng_voxpopuli_fra_000008, Target: eng, Predicted: nld
|
1264 |
+
Key: eng_voxpopuli_fra_000009, Target: eng, Predicted: nld
|
1265 |
+
Key: eng_voxpopuli_fra_000010, Target: eng, Predicted: ell
|
1266 |
+
Key: eng_voxpopuli_fra_000011, Target: eng, Predicted: nld
|
1267 |
+
Key: eng_voxpopuli_fra_000012, Target: eng, Predicted: nld
|
1268 |
+
Key: eng_voxpopuli_fra_000013, Target: eng, Predicted: nld
|
1269 |
+
Key: eng_voxpopuli_fra_000014, Target: eng, Predicted: mya
|
1270 |
+
Key: eng_voxpopuli_fra_000015, Target: eng, Predicted: nld
|
1271 |
+
Key: eng_voxpopuli_fra_000016, Target: eng, Predicted: nld
|
1272 |
+
Key: eng_voxpopuli_fra_000017, Target: eng, Predicted: nld
|
1273 |
+
Key: eng_voxpopuli_fra_000018, Target: eng, Predicted: nld
|
1274 |
+
Key: eng_voxpopuli_fra_000019, Target: eng, Predicted: slk
|
1275 |
+
Key: eng_voxpopuli_fra_000021, Target: eng, Predicted: nld
|
1276 |
+
Key: eng_voxpopuli_fra_000022, Target: eng, Predicted: por
|
1277 |
+
Key: eng_voxpopuli_fra_000023, Target: eng, Predicted: nld
|
1278 |
+
Key: eng_voxpopuli_fra_000024, Target: eng, Predicted: ell
|
1279 |
+
Key: eng_voxpopuli_fra_000025, Target: eng, Predicted: nld
|
1280 |
+
Key: eng_voxpopuli_fra_000026, Target: eng, Predicted: nld
|
1281 |
+
Key: eng_voxpopuli_fra_000027, Target: eng, Predicted: nld
|
1282 |
+
Key: eng_voxpopuli_fra_000028, Target: eng, Predicted: por
|
1283 |
+
Key: eng_voxpopuli_fra_000029, Target: eng, Predicted: cym
|
1284 |
+
Key: eng_voxpopuli_fra_000030, Target: eng, Predicted: nld
|
1285 |
+
Key: eng_voxpopuli_fra_000032, Target: eng, Predicted: nld
|
1286 |
+
Key: eng_voxpopuli_fra_000033, Target: eng, Predicted: nld
|
1287 |
+
Key: eng_voxpopuli_fra_000034, Target: eng, Predicted: nld
|
1288 |
+
Key: eng_voxpopuli_fra_000035, Target: eng, Predicted: nld
|
1289 |
+
Key: eng_voxpopuli_fra_000036, Target: eng, Predicted: nld
|
1290 |
+
Key: eng_voxpopuli_fra_000037, Target: eng, Predicted: nld
|
1291 |
+
Key: eng_voxpopuli_fra_000038, Target: eng, Predicted: por
|
1292 |
+
Key: eng_voxpopuli_fra_000039, Target: eng, Predicted: cym
|
1293 |
+
Key: eng_voxpopuli_fra_000040, Target: eng, Predicted: nld
|
1294 |
+
Key: eng_voxpopuli_fra_000041, Target: eng, Predicted: lav
|
1295 |
+
Key: eng_voxpopuli_fra_000042, Target: eng, Predicted: nld
|
1296 |
+
Key: eng_voxpopuli_fra_000043, Target: eng, Predicted: slv
|
1297 |
+
Key: eng_voxpopuli_fra_000044, Target: eng, Predicted: nld
|
1298 |
+
Key: eng_voxpopuli_fra_000045, Target: eng, Predicted: fra
|
1299 |
+
Key: eng_voxpopuli_fra_000046, Target: eng, Predicted: por
|
1300 |
+
Key: eng_voxpopuli_fra_000047, Target: eng, Predicted: fra
|
1301 |
+
Key: eng_voxpopuli_fra_000048, Target: eng, Predicted: nld
|
1302 |
+
Key: eng_voxpopuli_fra_000049, Target: eng, Predicted: nld
|
1303 |
+
Key: eng_voxpopuli_fra_000050, Target: eng, Predicted: por
|
1304 |
+
Key: eng_voxpopuli_fra_000051, Target: eng, Predicted: por
|
1305 |
+
Key: eng_voxpopuli_fra_000053, Target: eng, Predicted: nld
|
1306 |
+
Key: eng_voxpopuli_fra_000055, Target: eng, Predicted: por
|
1307 |
+
Key: eng_voxpopuli_fra_000056, Target: eng, Predicted: nld
|
1308 |
+
Key: eng_voxpopuli_fra_000057, Target: eng, Predicted: nld
|
1309 |
+
Key: eng_voxpopuli_fra_000058, Target: eng, Predicted: nld
|
1310 |
+
Key: eng_voxpopuli_fra_000059, Target: eng, Predicted: ell
|
1311 |
+
Key: eng_voxpopuli_hun_000000, Target: eng, Predicted: hun
|
1312 |
+
Key: eng_voxpopuli_hun_000001, Target: eng, Predicted: hun
|
1313 |
+
Key: eng_voxpopuli_hun_000004, Target: eng, Predicted: hun
|
1314 |
+
Key: eng_voxpopuli_hun_000005, Target: eng, Predicted: hun
|
1315 |
+
Key: eng_voxpopuli_hun_000006, Target: eng, Predicted: hun
|
1316 |
+
Key: eng_voxpopuli_hun_000007, Target: eng, Predicted: hun
|
1317 |
+
Key: eng_voxpopuli_hun_000008, Target: eng, Predicted: hun
|
1318 |
+
Key: eng_voxpopuli_hun_000009, Target: eng, Predicted: hun
|
1319 |
+
Key: eng_voxpopuli_hun_000012, Target: eng, Predicted: hun
|
1320 |
+
Key: eng_voxpopuli_hun_000013, Target: eng, Predicted: hun
|
1321 |
+
Key: eng_voxpopuli_hun_000014, Target: eng, Predicted: hun
|
1322 |
+
Key: eng_voxpopuli_hun_000015, Target: eng, Predicted: hun
|
1323 |
+
Key: eng_voxpopuli_hun_000018, Target: eng, Predicted: hun
|
1324 |
+
Key: eng_voxpopuli_hun_000019, Target: eng, Predicted: hun
|
1325 |
+
Key: eng_voxpopuli_hun_000020, Target: eng, Predicted: hun
|
1326 |
+
Key: eng_voxpopuli_hun_000021, Target: eng, Predicted: hun
|
1327 |
+
Key: eng_voxpopuli_hun_000022, Target: eng, Predicted: hun
|
1328 |
+
Key: eng_voxpopuli_hun_000023, Target: eng, Predicted: hun
|
1329 |
+
Key: eng_voxpopuli_hun_000025, Target: eng, Predicted: hun
|
1330 |
+
Key: eng_voxpopuli_hun_000026, Target: eng, Predicted: hun
|
1331 |
+
Key: eng_voxpopuli_hun_000027, Target: eng, Predicted: hun
|
1332 |
+
Key: eng_voxpopuli_hun_000029, Target: eng, Predicted: hun
|
1333 |
+
Key: eng_voxpopuli_hun_000030, Target: eng, Predicted: hun
|
1334 |
+
Key: eng_voxpopuli_hun_000031, Target: eng, Predicted: hun
|
1335 |
+
Key: eng_voxpopuli_hun_000032, Target: eng, Predicted: hun
|
1336 |
+
Key: eng_voxpopuli_hun_000033, Target: eng, Predicted: hun
|
1337 |
+
Key: eng_voxpopuli_hun_000034, Target: eng, Predicted: hun
|
1338 |
+
Key: eng_voxpopuli_hun_000036, Target: eng, Predicted: hun
|
1339 |
+
Key: eng_voxpopuli_hun_000037, Target: eng, Predicted: hun
|
1340 |
+
Key: eng_voxpopuli_hun_000038, Target: eng, Predicted: hun
|
1341 |
+
Key: eng_voxpopuli_hun_000039, Target: eng, Predicted: hun
|
1342 |
+
Key: eng_voxpopuli_hun_000040, Target: eng, Predicted: hun
|
1343 |
+
Key: eng_voxpopuli_hun_000042, Target: eng, Predicted: hun
|
1344 |
+
Key: eng_voxpopuli_hun_000043, Target: eng, Predicted: hun
|
1345 |
+
Key: eng_voxpopuli_hun_000044, Target: eng, Predicted: hun
|
1346 |
+
Key: eng_voxpopuli_hun_000046, Target: eng, Predicted: hun
|
1347 |
+
Key: eng_voxpopuli_hun_000048, Target: eng, Predicted: hun
|
1348 |
+
Key: eng_voxpopuli_hun_000049, Target: eng, Predicted: hun
|
1349 |
+
Key: eng_voxpopuli_hun_000052, Target: eng, Predicted: hun
|
1350 |
+
Key: eng_voxpopuli_hun_000054, Target: eng, Predicted: hun
|
1351 |
+
Key: eng_voxpopuli_hun_000056, Target: eng, Predicted: hun
|
1352 |
+
Key: eng_voxpopuli_hun_000057, Target: eng, Predicted: hun
|
1353 |
+
Key: eng_voxpopuli_hun_000058, Target: eng, Predicted: hun
|
1354 |
+
Key: eng_voxpopuli_hun_000059, Target: eng, Predicted: hun
|
1355 |
+
Key: eng_voxpopuli_hun_000060, Target: eng, Predicted: hun
|
1356 |
+
Key: eng_voxpopuli_hun_000062, Target: eng, Predicted: hun
|
1357 |
+
Key: eng_voxpopuli_hun_000065, Target: eng, Predicted: hun
|
1358 |
+
Key: eng_voxpopuli_hun_000066, Target: eng, Predicted: hun
|
1359 |
+
Key: eng_voxpopuli_hun_000067, Target: eng, Predicted: hun
|
1360 |
+
Key: eng_voxpopuli_hun_000069, Target: eng, Predicted: hun
|
1361 |
+
Key: eng_voxpopuli_hun_000070, Target: eng, Predicted: hun
|
1362 |
+
Key: eng_voxpopuli_hun_000071, Target: eng, Predicted: hun
|
1363 |
+
Key: eng_voxpopuli_hun_000072, Target: eng, Predicted: hun
|
1364 |
+
Key: eng_voxpopuli_hun_000073, Target: eng, Predicted: hun
|
1365 |
+
Key: eng_voxpopuli_hun_000074, Target: eng, Predicted: hun
|
1366 |
+
Key: eng_voxpopuli_hun_000075, Target: eng, Predicted: hun
|
1367 |
+
Key: eng_voxpopuli_hun_000076, Target: eng, Predicted: hun
|
1368 |
+
Key: eng_voxpopuli_ita_000000, Target: eng, Predicted: ita
|
1369 |
+
Key: eng_voxpopuli_ita_000001, Target: eng, Predicted: ita
|
1370 |
+
Key: eng_voxpopuli_ita_000002, Target: eng, Predicted: ita
|
1371 |
+
Key: eng_voxpopuli_ita_000003, Target: eng, Predicted: ita
|
1372 |
+
Key: eng_voxpopuli_ita_000004, Target: eng, Predicted: ita
|
1373 |
+
Key: eng_voxpopuli_ita_000006, Target: eng, Predicted: ita
|
1374 |
+
Key: eng_voxpopuli_ita_000007, Target: eng, Predicted: ita
|
1375 |
+
Key: eng_voxpopuli_ita_000008, Target: eng, Predicted: ita
|
1376 |
+
Key: eng_voxpopuli_ita_000009, Target: eng, Predicted: slv
|
1377 |
+
Key: eng_voxpopuli_ita_000011, Target: eng, Predicted: ita
|
1378 |
+
Key: eng_voxpopuli_ita_000012, Target: eng, Predicted: cym
|
1379 |
+
Key: eng_voxpopuli_ita_000014, Target: eng, Predicted: ita
|
1380 |
+
Key: eng_voxpopuli_ita_000015, Target: eng, Predicted: ita
|
1381 |
+
Key: eng_voxpopuli_ita_000016, Target: eng, Predicted: slk
|
1382 |
+
Key: eng_voxpopuli_ita_000017, Target: eng, Predicted: ita
|
1383 |
+
Key: eng_voxpopuli_ita_000019, Target: eng, Predicted: ita
|
1384 |
+
Key: eng_voxpopuli_ita_000020, Target: eng, Predicted: ita
|
1385 |
+
Key: eng_voxpopuli_ita_000021, Target: eng, Predicted: ita
|
1386 |
+
Key: eng_voxpopuli_ita_000022, Target: eng, Predicted: ita
|
1387 |
+
Key: eng_voxpopuli_ita_000023, Target: eng, Predicted: ita
|
1388 |
+
Key: eng_voxpopuli_ita_000024, Target: eng, Predicted: ita
|
1389 |
+
Key: eng_voxpopuli_ita_000025, Target: eng, Predicted: ita
|
1390 |
+
Key: eng_voxpopuli_ita_000026, Target: eng, Predicted: hrv
|
1391 |
+
Key: eng_voxpopuli_ita_000028, Target: eng, Predicted: ita
|
1392 |
+
Key: eng_voxpopuli_ita_000029, Target: eng, Predicted: ita
|
1393 |
+
Key: eng_voxpopuli_ita_000030, Target: eng, Predicted: ita
|
1394 |
+
Key: eng_voxpopuli_ita_000031, Target: eng, Predicted: ita
|
1395 |
+
Key: eng_voxpopuli_ita_000032, Target: eng, Predicted: ita
|
1396 |
+
Key: eng_voxpopuli_ita_000033, Target: eng, Predicted: ces
|
1397 |
+
Key: eng_voxpopuli_ita_000035, Target: eng, Predicted: ita
|
1398 |
+
Key: eng_voxpopuli_ita_000036, Target: eng, Predicted: ita
|
1399 |
+
Key: eng_voxpopuli_ita_000037, Target: eng, Predicted: ita
|
1400 |
+
Key: eng_voxpopuli_ita_000038, Target: eng, Predicted: ita
|
1401 |
+
Key: eng_voxpopuli_ita_000039, Target: eng, Predicted: ita
|
1402 |
+
Key: eng_voxpopuli_ita_000040, Target: eng, Predicted: hrv
|
1403 |
+
Key: eng_voxpopuli_ita_000041, Target: eng, Predicted: nld
|
1404 |
+
Key: eng_voxpopuli_ita_000042, Target: eng, Predicted: ita
|
1405 |
+
Key: eng_voxpopuli_ita_000043, Target: eng, Predicted: ita
|
1406 |
+
Key: eng_voxpopuli_ita_000044, Target: eng, Predicted: hrv
|
1407 |
+
Key: eng_voxpopuli_ita_000045, Target: eng, Predicted: ita
|
1408 |
+
Key: eng_voxpopuli_ita_000046, Target: eng, Predicted: ita
|
1409 |
+
Key: eng_voxpopuli_ita_000047, Target: eng, Predicted: hrv
|
1410 |
+
Key: eng_voxpopuli_ita_000048, Target: eng, Predicted: ita
|
1411 |
+
Key: eng_voxpopuli_ita_000049, Target: eng, Predicted: ita
|
1412 |
+
Key: eng_voxpopuli_ita_000050, Target: eng, Predicted: ita
|
1413 |
+
Key: eng_voxpopuli_ita_000051, Target: eng, Predicted: ita
|
1414 |
+
Key: eng_voxpopuli_ita_000052, Target: eng, Predicted: ita
|
1415 |
+
Key: eng_voxpopuli_ita_000053, Target: eng, Predicted: ara
|
1416 |
+
Key: eng_voxpopuli_ita_000054, Target: eng, Predicted: ita
|
1417 |
+
Key: eng_voxpopuli_ita_000055, Target: eng, Predicted: ita
|
1418 |
+
Key: eng_voxpopuli_ita_000056, Target: eng, Predicted: ita
|
1419 |
+
Key: eng_voxpopuli_ita_000057, Target: eng, Predicted: ita
|
1420 |
+
Key: eng_voxpopuli_ita_000058, Target: eng, Predicted: ita
|
1421 |
+
Key: eng_voxpopuli_ita_000059, Target: eng, Predicted: ita
|
1422 |
+
Key: eng_voxpopuli_ita_000060, Target: eng, Predicted: ita
|
1423 |
+
Key: eng_voxpopuli_nld_000009, Target: eng, Predicted: nld
|
1424 |
+
Key: eng_voxpopuli_nld_000010, Target: eng, Predicted: nld
|
1425 |
+
Key: eng_voxpopuli_nld_000013, Target: eng, Predicted: nld
|
1426 |
+
Key: eng_voxpopuli_nld_000015, Target: eng, Predicted: nld
|
1427 |
+
Key: eng_voxpopuli_nld_000017, Target: eng, Predicted: nld
|
1428 |
+
Key: eng_voxpopuli_nld_000022, Target: eng, Predicted: nld
|
1429 |
+
Key: eng_voxpopuli_nld_000023, Target: eng, Predicted: nld
|
1430 |
+
Key: eng_voxpopuli_nld_000024, Target: eng, Predicted: mlt
|
1431 |
+
Key: eng_voxpopuli_nld_000026, Target: eng, Predicted: hau
|
1432 |
+
Key: eng_voxpopuli_nld_000029, Target: eng, Predicted: nld
|
1433 |
+
Key: eng_voxpopuli_nld_000031, Target: eng, Predicted: nld
|
1434 |
+
Key: eng_voxpopuli_nld_000034, Target: eng, Predicted: nld
|
1435 |
+
Key: eng_voxpopuli_nld_000036, Target: eng, Predicted: nld
|
1436 |
+
Key: eng_voxpopuli_nld_000038, Target: eng, Predicted: nld
|
1437 |
+
Key: eng_voxpopuli_nld_000040, Target: eng, Predicted: nld
|
1438 |
+
Key: eng_voxpopuli_nld_000041, Target: eng, Predicted: nld
|
1439 |
+
Key: eng_voxpopuli_nld_000042, Target: eng, Predicted: nld
|
1440 |
+
Key: eng_voxpopuli_nld_000047, Target: eng, Predicted: nld
|
1441 |
+
Key: eng_voxpopuli_nld_000051, Target: eng, Predicted: nld
|
1442 |
+
Key: eng_voxpopuli_nld_000057, Target: eng, Predicted: nld
|
1443 |
+
Key: eng_voxpopuli_nld_000060, Target: eng, Predicted: nld
|
1444 |
+
Key: eng_voxpopuli_nld_000062, Target: eng, Predicted: nld
|
1445 |
+
Key: eng_voxpopuli_nld_000064, Target: eng, Predicted: nld
|
1446 |
+
Key: eng_voxpopuli_pol_000001, Target: eng, Predicted: pol
|
1447 |
+
Key: eng_voxpopuli_pol_000002, Target: eng, Predicted: pol
|
1448 |
+
Key: eng_voxpopuli_pol_000006, Target: eng, Predicted: pol
|
1449 |
+
Key: eng_voxpopuli_pol_000007, Target: eng, Predicted: pol
|
1450 |
+
Key: eng_voxpopuli_pol_000008, Target: eng, Predicted: pol
|
1451 |
+
Key: eng_voxpopuli_pol_000009, Target: eng, Predicted: deu
|
1452 |
+
Key: eng_voxpopuli_pol_000011, Target: eng, Predicted: pol
|
1453 |
+
Key: eng_voxpopuli_pol_000012, Target: eng, Predicted: pol
|
1454 |
+
Key: eng_voxpopuli_pol_000013, Target: eng, Predicted: pol
|
1455 |
+
Key: eng_voxpopuli_pol_000015, Target: eng, Predicted: pol
|
1456 |
+
Key: eng_voxpopuli_pol_000017, Target: eng, Predicted: pol
|
1457 |
+
Key: eng_voxpopuli_pol_000019, Target: eng, Predicted: pol
|
1458 |
+
Key: eng_voxpopuli_pol_000020, Target: eng, Predicted: pol
|
1459 |
+
Key: eng_voxpopuli_pol_000021, Target: eng, Predicted: pol
|
1460 |
+
Key: eng_voxpopuli_pol_000022, Target: eng, Predicted: pol
|
1461 |
+
Key: eng_voxpopuli_pol_000023, Target: eng, Predicted: pol
|
1462 |
+
Key: eng_voxpopuli_pol_000024, Target: eng, Predicted: pol
|
1463 |
+
Key: eng_voxpopuli_pol_000025, Target: eng, Predicted: pol
|
1464 |
+
Key: eng_voxpopuli_pol_000026, Target: eng, Predicted: pol
|
1465 |
+
Key: eng_voxpopuli_pol_000027, Target: eng, Predicted: pol
|
1466 |
+
Key: eng_voxpopuli_pol_000028, Target: eng, Predicted: pol
|
1467 |
+
Key: eng_voxpopuli_pol_000029, Target: eng, Predicted: pol
|
1468 |
+
Key: eng_voxpopuli_pol_000030, Target: eng, Predicted: pol
|
1469 |
+
Key: eng_voxpopuli_pol_000031, Target: eng, Predicted: pol
|
1470 |
+
Key: eng_voxpopuli_pol_000032, Target: eng, Predicted: pol
|
1471 |
+
Key: eng_voxpopuli_pol_000034, Target: eng, Predicted: pol
|
1472 |
+
Key: eng_voxpopuli_pol_000037, Target: eng, Predicted: pol
|
1473 |
+
Key: eng_voxpopuli_pol_000038, Target: eng, Predicted: pol
|
1474 |
+
Key: eng_voxpopuli_pol_000040, Target: eng, Predicted: hun
|
1475 |
+
Key: eng_voxpopuli_pol_000041, Target: eng, Predicted: pol
|
1476 |
+
Key: eng_voxpopuli_pol_000042, Target: eng, Predicted: pol
|
1477 |
+
Key: eng_voxpopuli_pol_000044, Target: eng, Predicted: pol
|
1478 |
+
Key: eng_voxpopuli_pol_000045, Target: eng, Predicted: pol
|
1479 |
+
Key: eng_voxpopuli_pol_000046, Target: eng, Predicted: pol
|
1480 |
+
Key: eng_voxpopuli_pol_000047, Target: eng, Predicted: pol
|
1481 |
+
Key: eng_voxpopuli_pol_000048, Target: eng, Predicted: pol
|
1482 |
+
Key: eng_voxpopuli_pol_000050, Target: eng, Predicted: pol
|
1483 |
+
Key: eng_voxpopuli_pol_000052, Target: eng, Predicted: pol
|
1484 |
+
Key: eng_voxpopuli_pol_000053, Target: eng, Predicted: pol
|
1485 |
+
Key: eng_voxpopuli_pol_000058, Target: eng, Predicted: pol
|
1486 |
+
Key: eng_voxpopuli_pol_000059, Target: eng, Predicted: pol
|
1487 |
+
Key: eng_voxpopuli_ron_000000, Target: eng, Predicted: ron
|
1488 |
+
Key: eng_voxpopuli_ron_000002, Target: eng, Predicted: ron
|
1489 |
+
Key: eng_voxpopuli_ron_000003, Target: eng, Predicted: ron
|
1490 |
+
Key: eng_voxpopuli_ron_000005, Target: eng, Predicted: ron
|
1491 |
+
Key: eng_voxpopuli_ron_000006, Target: eng, Predicted: hun
|
1492 |
+
Key: eng_voxpopuli_ron_000007, Target: eng, Predicted: ron
|
1493 |
+
Key: eng_voxpopuli_ron_000008, Target: eng, Predicted: ron
|
1494 |
+
Key: eng_voxpopuli_ron_000012, Target: eng, Predicted: ron
|
1495 |
+
Key: eng_voxpopuli_ron_000013, Target: eng, Predicted: ron
|
1496 |
+
Key: eng_voxpopuli_ron_000014, Target: eng, Predicted: ron
|
1497 |
+
Key: eng_voxpopuli_ron_000015, Target: eng, Predicted: ron
|
1498 |
+
Key: eng_voxpopuli_ron_000016, Target: eng, Predicted: ron
|
1499 |
+
Key: eng_voxpopuli_ron_000017, Target: eng, Predicted: ron
|
1500 |
+
Key: eng_voxpopuli_ron_000018, Target: eng, Predicted: ron
|
1501 |
+
Key: eng_voxpopuli_ron_000019, Target: eng, Predicted: hun
|
1502 |
+
Key: eng_voxpopuli_ron_000020, Target: eng, Predicted: ron
|
1503 |
+
Key: eng_voxpopuli_ron_000021, Target: eng, Predicted: ron
|
1504 |
+
Key: eng_voxpopuli_ron_000024, Target: eng, Predicted: ron
|
1505 |
+
Key: eng_voxpopuli_ron_000025, Target: eng, Predicted: ron
|
1506 |
+
Key: eng_voxpopuli_ron_000026, Target: eng, Predicted: ron
|
1507 |
+
Key: eng_voxpopuli_ron_000029, Target: eng, Predicted: ron
|
1508 |
+
Key: eng_voxpopuli_ron_000030, Target: eng, Predicted: ron
|
1509 |
+
Key: eng_voxpopuli_ron_000031, Target: eng, Predicted: ron
|
1510 |
+
Key: eng_voxpopuli_ron_000032, Target: eng, Predicted: ron
|
1511 |
+
Key: eng_voxpopuli_ron_000033, Target: eng, Predicted: ron
|
1512 |
+
Key: eng_voxpopuli_ron_000034, Target: eng, Predicted: ron
|
1513 |
+
Key: eng_voxpopuli_ron_000035, Target: eng, Predicted: ron
|
1514 |
+
Key: eng_voxpopuli_ron_000036, Target: eng, Predicted: ron
|
1515 |
+
Key: eng_voxpopuli_ron_000037, Target: eng, Predicted: ron
|
1516 |
+
Key: eng_voxpopuli_ron_000038, Target: eng, Predicted: ron
|
1517 |
+
Key: eng_voxpopuli_ron_000039, Target: eng, Predicted: ron
|
1518 |
+
Key: eng_voxpopuli_ron_000040, Target: eng, Predicted: ron
|
1519 |
+
Key: eng_voxpopuli_ron_000041, Target: eng, Predicted: ron
|
1520 |
+
Key: eng_voxpopuli_ron_000044, Target: eng, Predicted: ron
|
1521 |
+
Key: eng_voxpopuli_ron_000045, Target: eng, Predicted: ron
|
1522 |
+
Key: eng_voxpopuli_ron_000046, Target: eng, Predicted: ron
|
1523 |
+
Key: eng_voxpopuli_ron_000047, Target: eng, Predicted: ell
|
1524 |
+
Key: eng_voxpopuli_ron_000048, Target: eng, Predicted: ron
|
1525 |
+
Key: eng_voxpopuli_ron_000049, Target: eng, Predicted: ron
|
1526 |
+
Key: eng_voxpopuli_ron_000050, Target: eng, Predicted: ron
|
1527 |
+
Key: eng_voxpopuli_ron_000051, Target: eng, Predicted: ron
|
1528 |
+
Key: eng_voxpopuli_ron_000052, Target: eng, Predicted: ron
|
1529 |
+
Key: eng_voxpopuli_ron_000053, Target: eng, Predicted: ron
|
1530 |
+
Key: eng_voxpopuli_ron_000054, Target: eng, Predicted: ron
|
1531 |
+
Key: eng_voxpopuli_ron_000055, Target: eng, Predicted: ron
|
1532 |
+
Key: eng_voxpopuli_ron_000056, Target: eng, Predicted: ron
|
1533 |
+
Key: eng_voxpopuli_ron_000057, Target: eng, Predicted: ron
|
1534 |
+
Key: eng_voxpopuli_ron_000060, Target: eng, Predicted: ron
|
1535 |
+
Key: eng_voxpopuli_ron_000063, Target: eng, Predicted: ron
|
1536 |
+
Key: eng_voxpopuli_ron_000065, Target: eng, Predicted: ron
|
1537 |
+
Key: eng_voxpopuli_ron_000066, Target: eng, Predicted: ron
|
1538 |
+
Key: eng_voxpopuli_slk_000000, Target: eng, Predicted: slk
|
1539 |
+
Key: eng_voxpopuli_slk_000001, Target: eng, Predicted: slk
|
1540 |
+
Key: eng_voxpopuli_slk_000005, Target: eng, Predicted: slk
|
1541 |
+
Key: eng_voxpopuli_slk_000006, Target: eng, Predicted: slk
|
1542 |
+
Key: eng_voxpopuli_slk_000007, Target: eng, Predicted: slk
|
1543 |
+
Key: eng_voxpopuli_slk_000009, Target: eng, Predicted: slk
|
1544 |
+
Key: eng_voxpopuli_slk_000010, Target: eng, Predicted: slk
|
1545 |
+
Key: eng_voxpopuli_slk_000011, Target: eng, Predicted: slk
|
1546 |
+
Key: eng_voxpopuli_slk_000012, Target: eng, Predicted: hrv
|
1547 |
+
Key: eng_voxpopuli_slk_000015, Target: eng, Predicted: slk
|
1548 |
+
Key: eng_voxpopuli_slk_000016, Target: eng, Predicted: slk
|
1549 |
+
Key: eng_voxpopuli_slk_000017, Target: eng, Predicted: ces
|
1550 |
+
Key: eng_voxpopuli_slk_000019, Target: eng, Predicted: slk
|
1551 |
+
Key: eng_voxpopuli_slk_000020, Target: eng, Predicted: slk
|
1552 |
+
Key: eng_voxpopuli_slk_000022, Target: eng, Predicted: slk
|
1553 |
+
Key: eng_voxpopuli_slk_000023, Target: eng, Predicted: ces
|
1554 |
+
Key: eng_voxpopuli_slk_000026, Target: eng, Predicted: slk
|
1555 |
+
Key: eng_voxpopuli_slk_000027, Target: eng, Predicted: slk
|
1556 |
+
Key: eng_voxpopuli_slk_000028, Target: eng, Predicted: slk
|
1557 |
+
Key: eng_voxpopuli_slk_000029, Target: eng, Predicted: slk
|
1558 |
+
Key: eng_voxpopuli_slk_000032, Target: eng, Predicted: pol
|
1559 |
+
Key: eng_voxpopuli_slk_000034, Target: eng, Predicted: ces
|
1560 |
+
Key: eng_voxpopuli_slk_000035, Target: eng, Predicted: nld
|
1561 |
+
Key: eng_voxpopuli_slk_000037, Target: eng, Predicted: slk
|
1562 |
+
Key: eng_voxpopuli_slk_000039, Target: eng, Predicted: slk
|
1563 |
+
Key: eng_voxpopuli_slk_000040, Target: eng, Predicted: slk
|
1564 |
+
Key: eng_voxpopuli_slk_000041, Target: eng, Predicted: slk
|
1565 |
+
Key: eng_voxpopuli_slk_000042, Target: eng, Predicted: slk
|
1566 |
+
Key: eng_voxpopuli_slk_000043, Target: eng, Predicted: ces
|
1567 |
+
Key: eng_voxpopuli_slk_000044, Target: eng, Predicted: ces
|
1568 |
+
Key: eng_voxpopuli_slk_000045, Target: eng, Predicted: slk
|
1569 |
+
Key: eng_voxpopuli_slk_000047, Target: eng, Predicted: slk
|
1570 |
+
Key: eng_voxpopuli_slk_000048, Target: eng, Predicted: slk
|
1571 |
+
Key: eng_voxpopuli_slk_000049, Target: eng, Predicted: slk
|
1572 |
+
Key: eng_voxpopuli_slk_000050, Target: eng, Predicted: slk
|
1573 |
+
Key: eng_voxpopuli_slk_000051, Target: eng, Predicted: slk
|
1574 |
+
Key: eng_voxpopuli_slk_000052, Target: eng, Predicted: slk
|
1575 |
+
Key: eng_voxpopuli_slk_000054, Target: eng, Predicted: slk
|
1576 |
+
Key: eng_voxpopuli_slk_000055, Target: eng, Predicted: slk
|
1577 |
+
Key: eng_voxpopuli_slk_000057, Target: eng, Predicted: slk
|
1578 |
+
Key: eng_voxpopuli_slk_000059, Target: eng, Predicted: slk
|
1579 |
+
Key: eng_voxpopuli_slk_000060, Target: eng, Predicted: ara
|
1580 |
+
Key: eng_voxpopuli_slk_000062, Target: eng, Predicted: ces
|
1581 |
+
Key: eng_voxpopuli_slk_000063, Target: eng, Predicted: pol
|
1582 |
+
Key: eng_voxpopuli_slk_000064, Target: eng, Predicted: slk
|
1583 |
+
Key: eng_voxpopuli_spa_000000, Target: eng, Predicted: spa
|
1584 |
+
Key: eng_voxpopuli_spa_000003, Target: eng, Predicted: spa
|
1585 |
+
Key: eng_voxpopuli_spa_000007, Target: eng, Predicted: cym
|
1586 |
+
Key: eng_voxpopuli_spa_000010, Target: eng, Predicted: spa
|
1587 |
+
Key: eng_voxpopuli_spa_000017, Target: eng, Predicted: glg
|
1588 |
+
Key: eng_voxpopuli_spa_000020, Target: eng, Predicted: cat
|
1589 |
+
Key: eng_voxpopuli_spa_000021, Target: eng, Predicted: spa
|
1590 |
+
Key: eng_voxpopuli_spa_000023, Target: eng, Predicted: cym
|
1591 |
+
Key: eng_voxpopuli_spa_000027, Target: eng, Predicted: cym
|
1592 |
+
Key: eng_voxpopuli_spa_000029, Target: eng, Predicted: spa
|
1593 |
+
Key: eng_voxpopuli_spa_000030, Target: eng, Predicted: cym
|
1594 |
+
Key: eng_voxpopuli_spa_000032, Target: eng, Predicted: spa
|
1595 |
+
Key: eng_voxpopuli_spa_000033, Target: eng, Predicted: cym
|
1596 |
+
Key: eng_voxpopuli_spa_000035, Target: eng, Predicted: glg
|
1597 |
+
Key: eng_voxpopuli_spa_000036, Target: eng, Predicted: cym
|
1598 |
+
Key: eng_voxpopuli_spa_000037, Target: eng, Predicted: cym
|
1599 |
+
Key: eng_voxpopuli_spa_000040, Target: eng, Predicted: cym
|
1600 |
+
Key: eng_voxpopuli_spa_000043, Target: eng, Predicted: hau
|
1601 |
+
Key: eng_voxpopuli_spa_000047, Target: eng, Predicted: cym
|
1602 |
+
Key: eng_voxpopuli_spa_000050, Target: eng, Predicted: ell
|
1603 |
+
Key: eng_voxpopuli_spa_000052, Target: eng, Predicted: cym
|
1604 |
+
Key: eng_voxpopuli_spa_000053, Target: eng, Predicted: cym
|
1605 |
+
Key: eng_voxpopuli_spa_000058, Target: eng, Predicted: ell
|
1606 |
+
Key: eng_voxpopuli_spa_000059, Target: eng, Predicted: cym
|
1607 |
+
Key: eng_voxpopuli_spa_000060, Target: eng, Predicted: ara
|
1608 |
+
Key: eng_voxpopuli_spa_000064, Target: eng, Predicted: cym
|
1609 |
+
Key: eng_voxpopuli_spa_000067, Target: eng, Predicted: spa
|
1610 |
+
Key: eng_voxpopuli_spa_000068, Target: eng, Predicted: spa
|
1611 |
+
Key: guj_ms_speech_guj_000038, Target: guj, Predicted: mar
|
1612 |
+
Key: spa_openslr_spa_arg_000006, Target: spa, Predicted: ita
|
1613 |
+
Key: spa_openslr_spa_arg_000015, Target: spa, Predicted: por
|
1614 |
+
Key: spa_openslr_spa_arg_000022, Target: spa, Predicted: dan
|
1615 |
+
Key: spa_openslr_spa_arg_000062, Target: spa, Predicted: eus
|
1616 |
+
Key: spa_openslr_spa_arg_000114, Target: spa, Predicted: eus
|
1617 |
+
Key: spa_openslr_spa_chi_000022, Target: spa, Predicted: grn
|
1618 |
+
Key: spa_openslr_spa_col_000007, Target: spa, Predicted: epo
|
1619 |
+
Key: spa_openslr_spa_col_000044, Target: spa, Predicted: por
|
1620 |
+
Key: spa_openslr_spa_col_000056, Target: spa, Predicted: ita
|
1621 |
+
Key: spa_openslr_spa_col_000095, Target: spa, Predicted: fas
|
1622 |
+
Key: spa_openslr_spa_per_000015, Target: spa, Predicted: eus
|
1623 |
+
Key: spa_openslr_spa_per_000035, Target: spa, Predicted: ita
|
1624 |
+
Key: spa_openslr_spa_pue_000014, Target: spa, Predicted: grn
|
1625 |
+
Key: spa_openslr_spa_pue_000071, Target: spa, Predicted: ita
|
1626 |
+
Key: spa_openslr_spa_ven_000112, Target: spa, Predicted: eus
|
1627 |
+
Key: tam_ms_speech_tam_000102, Target: tam, Predicted: tel
|
1628 |
+
Key: tel_ms_speech_tel_000014, Target: tel, Predicted: mal
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
2 |
+
# Started at Fri May 16 16:33:03 CDT 2025
|
3 |
+
#
|
4 |
+
/u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
5 |
+
[gpue02] 2025-05-16 16:33:20,000 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
|
6 |
+
/work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
|
7 |
+
torchaudio.set_audio_backend("sox_io")
|
8 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
|
9 |
+
torch.load(model_file, map_location=device),
|
10 |
+
[gpue02] 2025-05-16 16:33:30,412 (lid_inference_dist:86) INFO: Model structure:
|
11 |
+
ESPnetLIDUpstreamLang2VecConditionModel(
|
12 |
+
(frontend): S3prlFrontendLang2VecCondition(
|
13 |
+
(upstream): S3PRLUpstreamLang2VecCondition(
|
14 |
+
(upstream): UpstreamExpertLang2VecCondition(
|
15 |
+
(model): Wav2Vec2ModelLang2VecCondition(
|
16 |
+
(feature_extractor): Wav2Vec2FeatureEncoder(
|
17 |
+
(conv_layers): ModuleList(
|
18 |
+
(0): Wav2Vec2LayerNormConvLayer(
|
19 |
+
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
|
20 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
21 |
+
(activation): GELUActivation()
|
22 |
+
)
|
23 |
+
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
|
24 |
+
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
|
25 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
26 |
+
(activation): GELUActivation()
|
27 |
+
)
|
28 |
+
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
|
29 |
+
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
|
30 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
31 |
+
(activation): GELUActivation()
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(feature_projection): Wav2Vec2FeatureProjection(
|
36 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
37 |
+
(projection): Linear(in_features=512, out_features=1280, bias=True)
|
38 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
39 |
+
)
|
40 |
+
(encoder): Wav2Vec2EncoderLang2VecCondition(
|
41 |
+
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
|
42 |
+
(conv): ParametrizedConv1d(
|
43 |
+
1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
|
44 |
+
(parametrizations): ModuleDict(
|
45 |
+
(weight): ParametrizationList(
|
46 |
+
(0): _WeightNorm()
|
47 |
+
)
|
48 |
+
)
|
49 |
+
)
|
50 |
+
(padding): Wav2Vec2SamePadLayer()
|
51 |
+
(activation): GELUActivation()
|
52 |
+
)
|
53 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
54 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
55 |
+
(layers): ModuleList(
|
56 |
+
(0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
|
57 |
+
(attention): Wav2Vec2SdpaAttention(
|
58 |
+
(k_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
59 |
+
(v_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
60 |
+
(q_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
61 |
+
(out_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
62 |
+
)
|
63 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
64 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
65 |
+
(feed_forward): Wav2Vec2FeedForward(
|
66 |
+
(intermediate_dropout): Dropout(p=0.0, inplace=False)
|
67 |
+
(intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
|
68 |
+
(intermediate_act_fn): GELUActivation()
|
69 |
+
(output_dense): Linear(in_features=5120, out_features=1280, bias=True)
|
70 |
+
(output_dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
(conditioning_projs): ModuleDict(
|
76 |
+
(32): Linear(in_features=299, out_features=1280, bias=True)
|
77 |
+
(36): Linear(in_features=299, out_features=1280, bias=True)
|
78 |
+
(40): Linear(in_features=299, out_features=1280, bias=True)
|
79 |
+
(44): Linear(in_features=299, out_features=1280, bias=True)
|
80 |
+
)
|
81 |
+
(ecapa_encoder): ModuleDict(
|
82 |
+
(32): IdentityEncoder()
|
83 |
+
(36): IdentityEncoder()
|
84 |
+
(40): IdentityEncoder()
|
85 |
+
(44): IdentityEncoder()
|
86 |
+
)
|
87 |
+
(pooling): ModuleDict(
|
88 |
+
(32): ChnAttnStatPooling(
|
89 |
+
(attention): Sequential(
|
90 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
91 |
+
(1): ReLU()
|
92 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
94 |
+
)
|
95 |
+
(softmax): Softmax(dim=2)
|
96 |
+
)
|
97 |
+
(36): ChnAttnStatPooling(
|
98 |
+
(attention): Sequential(
|
99 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
100 |
+
(1): ReLU()
|
101 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
102 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
103 |
+
)
|
104 |
+
(softmax): Softmax(dim=2)
|
105 |
+
)
|
106 |
+
(40): ChnAttnStatPooling(
|
107 |
+
(attention): Sequential(
|
108 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
109 |
+
(1): ReLU()
|
110 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
111 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
112 |
+
)
|
113 |
+
(softmax): Softmax(dim=2)
|
114 |
+
)
|
115 |
+
(44): ChnAttnStatPooling(
|
116 |
+
(attention): Sequential(
|
117 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
118 |
+
(1): ReLU()
|
119 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
120 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
121 |
+
)
|
122 |
+
(softmax): Softmax(dim=2)
|
123 |
+
)
|
124 |
+
)
|
125 |
+
(projector): ModuleDict(
|
126 |
+
(32): RawNet3Projector(
|
127 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
129 |
+
)
|
130 |
+
(36): RawNet3Projector(
|
131 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
132 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
133 |
+
)
|
134 |
+
(40): RawNet3Projector(
|
135 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
136 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
137 |
+
)
|
138 |
+
(44): RawNet3Projector(
|
139 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
140 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(lang2vec_head): ModuleDict(
|
144 |
+
(32): Sequential(
|
145 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
146 |
+
)
|
147 |
+
(36): Sequential(
|
148 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
149 |
+
)
|
150 |
+
(40): Sequential(
|
151 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
152 |
+
)
|
153 |
+
(44): Sequential(
|
154 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
(featurizer): Featurizer()
|
162 |
+
)
|
163 |
+
(normalize): UtteranceMVN(norm_means=True, norm_vars=False)
|
164 |
+
(encoder): EcapaTdnnEncoder(
|
165 |
+
(conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
|
166 |
+
(relu): ReLU()
|
167 |
+
(bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
168 |
+
(layer1): EcapaBlock(
|
169 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
170 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(convs): ModuleList(
|
172 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
|
173 |
+
)
|
174 |
+
(bns): ModuleList(
|
175 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
176 |
+
)
|
177 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
178 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
179 |
+
(relu): ReLU()
|
180 |
+
(se): SEModule(
|
181 |
+
(se): Sequential(
|
182 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
183 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
184 |
+
(2): ReLU()
|
185 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
186 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
187 |
+
(5): Sigmoid()
|
188 |
+
)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
(layer2): EcapaBlock(
|
192 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
193 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(convs): ModuleList(
|
195 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
196 |
+
)
|
197 |
+
(bns): ModuleList(
|
198 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
199 |
+
)
|
200 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
201 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
202 |
+
(relu): ReLU()
|
203 |
+
(se): SEModule(
|
204 |
+
(se): Sequential(
|
205 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
206 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
207 |
+
(2): ReLU()
|
208 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
209 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
210 |
+
(5): Sigmoid()
|
211 |
+
)
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(layer3): EcapaBlock(
|
215 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
216 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
217 |
+
(convs): ModuleList(
|
218 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
|
219 |
+
)
|
220 |
+
(bns): ModuleList(
|
221 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
222 |
+
)
|
223 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
224 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
225 |
+
(relu): ReLU()
|
226 |
+
(se): SEModule(
|
227 |
+
(se): Sequential(
|
228 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
229 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
230 |
+
(2): ReLU()
|
231 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
233 |
+
(5): Sigmoid()
|
234 |
+
)
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
|
238 |
+
(mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
|
239 |
+
)
|
240 |
+
(pooling): ChnAttnStatPooling(
|
241 |
+
(attention): Sequential(
|
242 |
+
(0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
|
243 |
+
(1): ReLU()
|
244 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
245 |
+
(3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
|
246 |
+
)
|
247 |
+
(softmax): Softmax(dim=2)
|
248 |
+
)
|
249 |
+
(projector): RawNet3Projector(
|
250 |
+
(bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
251 |
+
(fc): Linear(in_features=3072, out_features=192, bias=True)
|
252 |
+
)
|
253 |
+
(loss): AAMSoftmaxSCTopKLang2Vec(
|
254 |
+
(ce): CrossEntropyLoss()
|
255 |
+
(lang2vec_head): Sequential(
|
256 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
257 |
+
)
|
258 |
+
(lang2vec_loss): MSELoss()
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
Model summary:
|
263 |
+
Class Name: ESPnetLIDUpstreamLang2VecConditionModel
|
264 |
+
Total Number of model parameters: 978.26 M
|
265 |
+
Number of trainable parameters: 978.26 M (100.0%)
|
266 |
+
Size: 3.91 GB
|
267 |
+
Type: torch.float32
|
268 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
|
269 |
+
warnings.warn(
|
270 |
+
[gpue02] 2025-05-16 16:33:30,762 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/lids0
|
271 |
+
[gpue02] 2025-05-16 16:34:05,333 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
|
272 |
+
[gpue02] 2025-05-16 16:34:36,939 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
|
273 |
+
[gpue02] 2025-05-16 16:35:13,502 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
|
274 |
+
[gpue02] 2025-05-16 16:35:46,461 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
|
275 |
+
[gpue02] 2025-05-16 16:36:14,706 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
|
276 |
+
[gpue02] 2025-05-16 16:36:51,347 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
|
277 |
+
[gpue02] 2025-05-16 16:37:26,344 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
|
278 |
+
[gpue02] 2025-05-16 16:38:02,825 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
|
279 |
+
[gpue02] 2025-05-16 16:38:41,474 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
|
280 |
+
[gpue02] 2025-05-16 16:39:17,680 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
|
281 |
+
[gpue02] 2025-05-16 16:39:53,999 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
|
282 |
+
[gpue02] 2025-05-16 16:40:24,699 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
|
283 |
+
[gpue02] 2025-05-16 16:41:04,097 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
|
284 |
+
[gpue02] 2025-05-16 16:41:36,434 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
|
285 |
+
[gpue02] 2025-05-16 16:42:15,847 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
|
286 |
+
[gpue02] 2025-05-16 16:42:47,941 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
|
287 |
+
[gpue02] 2025-05-16 16:43:22,603 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 16
|
288 |
+
[gpue02] 2025-05-16 16:43:43,333 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
|
289 |
+
[gpue02] 2025-05-16 16:43:43,334 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
|
290 |
+
# Accounting: time=641 threads=1
|
291 |
+
# Ended (code 0) at Fri May 16 16:43:44 CDT 2025, elapsed time 641 seconds
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/results
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/lid_inference_test.log
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
2 |
+
# Started at Fri May 16 15:09:41 CDT 2025
|
3 |
+
#
|
4 |
+
/u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
5 |
+
[gpue02] 2025-05-16 15:10:03,018 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
|
6 |
+
/work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
|
7 |
+
torchaudio.set_audio_backend("sox_io")
|
8 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
|
9 |
+
torch.load(model_file, map_location=device),
|
10 |
+
[gpue02] 2025-05-16 15:10:16,727 (lid_inference_dist:86) INFO: Model structure:
|
11 |
+
ESPnetLIDUpstreamLang2VecConditionModel(
|
12 |
+
(frontend): S3prlFrontendLang2VecCondition(
|
13 |
+
(upstream): S3PRLUpstreamLang2VecCondition(
|
14 |
+
(upstream): UpstreamExpertLang2VecCondition(
|
15 |
+
(model): Wav2Vec2ModelLang2VecCondition(
|
16 |
+
(feature_extractor): Wav2Vec2FeatureEncoder(
|
17 |
+
(conv_layers): ModuleList(
|
18 |
+
(0): Wav2Vec2LayerNormConvLayer(
|
19 |
+
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
|
20 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
21 |
+
(activation): GELUActivation()
|
22 |
+
)
|
23 |
+
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
|
24 |
+
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
|
25 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
26 |
+
(activation): GELUActivation()
|
27 |
+
)
|
28 |
+
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
|
29 |
+
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
|
30 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
31 |
+
(activation): GELUActivation()
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(feature_projection): Wav2Vec2FeatureProjection(
|
36 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
37 |
+
(projection): Linear(in_features=512, out_features=1280, bias=True)
|
38 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
39 |
+
)
|
40 |
+
(encoder): Wav2Vec2EncoderLang2VecCondition(
|
41 |
+
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
|
42 |
+
(conv): ParametrizedConv1d(
|
43 |
+
1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
|
44 |
+
(parametrizations): ModuleDict(
|
45 |
+
(weight): ParametrizationList(
|
46 |
+
(0): _WeightNorm()
|
47 |
+
)
|
48 |
+
)
|
49 |
+
)
|
50 |
+
(padding): Wav2Vec2SamePadLayer()
|
51 |
+
(activation): GELUActivation()
|
52 |
+
)
|
53 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
54 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
55 |
+
(layers): ModuleList(
|
56 |
+
(0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
|
57 |
+
(attention): Wav2Vec2SdpaAttention(
|
58 |
+
(k_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
59 |
+
(v_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
60 |
+
(q_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
61 |
+
(out_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
62 |
+
)
|
63 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
64 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
65 |
+
(feed_forward): Wav2Vec2FeedForward(
|
66 |
+
(intermediate_dropout): Dropout(p=0.0, inplace=False)
|
67 |
+
(intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
|
68 |
+
(intermediate_act_fn): GELUActivation()
|
69 |
+
(output_dense): Linear(in_features=5120, out_features=1280, bias=True)
|
70 |
+
(output_dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
(conditioning_projs): ModuleDict(
|
76 |
+
(32): Linear(in_features=299, out_features=1280, bias=True)
|
77 |
+
(36): Linear(in_features=299, out_features=1280, bias=True)
|
78 |
+
(40): Linear(in_features=299, out_features=1280, bias=True)
|
79 |
+
(44): Linear(in_features=299, out_features=1280, bias=True)
|
80 |
+
)
|
81 |
+
(ecapa_encoder): ModuleDict(
|
82 |
+
(32): IdentityEncoder()
|
83 |
+
(36): IdentityEncoder()
|
84 |
+
(40): IdentityEncoder()
|
85 |
+
(44): IdentityEncoder()
|
86 |
+
)
|
87 |
+
(pooling): ModuleDict(
|
88 |
+
(32): ChnAttnStatPooling(
|
89 |
+
(attention): Sequential(
|
90 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
91 |
+
(1): ReLU()
|
92 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
94 |
+
)
|
95 |
+
(softmax): Softmax(dim=2)
|
96 |
+
)
|
97 |
+
(36): ChnAttnStatPooling(
|
98 |
+
(attention): Sequential(
|
99 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
100 |
+
(1): ReLU()
|
101 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
102 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
103 |
+
)
|
104 |
+
(softmax): Softmax(dim=2)
|
105 |
+
)
|
106 |
+
(40): ChnAttnStatPooling(
|
107 |
+
(attention): Sequential(
|
108 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
109 |
+
(1): ReLU()
|
110 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
111 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
112 |
+
)
|
113 |
+
(softmax): Softmax(dim=2)
|
114 |
+
)
|
115 |
+
(44): ChnAttnStatPooling(
|
116 |
+
(attention): Sequential(
|
117 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
118 |
+
(1): ReLU()
|
119 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
120 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
121 |
+
)
|
122 |
+
(softmax): Softmax(dim=2)
|
123 |
+
)
|
124 |
+
)
|
125 |
+
(projector): ModuleDict(
|
126 |
+
(32): RawNet3Projector(
|
127 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
129 |
+
)
|
130 |
+
(36): RawNet3Projector(
|
131 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
132 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
133 |
+
)
|
134 |
+
(40): RawNet3Projector(
|
135 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
136 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
137 |
+
)
|
138 |
+
(44): RawNet3Projector(
|
139 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
140 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(lang2vec_head): ModuleDict(
|
144 |
+
(32): Sequential(
|
145 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
146 |
+
)
|
147 |
+
(36): Sequential(
|
148 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
149 |
+
)
|
150 |
+
(40): Sequential(
|
151 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
152 |
+
)
|
153 |
+
(44): Sequential(
|
154 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
(featurizer): Featurizer()
|
162 |
+
)
|
163 |
+
(normalize): UtteranceMVN(norm_means=True, norm_vars=False)
|
164 |
+
(encoder): EcapaTdnnEncoder(
|
165 |
+
(conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
|
166 |
+
(relu): ReLU()
|
167 |
+
(bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
168 |
+
(layer1): EcapaBlock(
|
169 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
170 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(convs): ModuleList(
|
172 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
|
173 |
+
)
|
174 |
+
(bns): ModuleList(
|
175 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
176 |
+
)
|
177 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
178 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
179 |
+
(relu): ReLU()
|
180 |
+
(se): SEModule(
|
181 |
+
(se): Sequential(
|
182 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
183 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
184 |
+
(2): ReLU()
|
185 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
186 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
187 |
+
(5): Sigmoid()
|
188 |
+
)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
(layer2): EcapaBlock(
|
192 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
193 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(convs): ModuleList(
|
195 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
196 |
+
)
|
197 |
+
(bns): ModuleList(
|
198 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
199 |
+
)
|
200 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
201 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
202 |
+
(relu): ReLU()
|
203 |
+
(se): SEModule(
|
204 |
+
(se): Sequential(
|
205 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
206 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
207 |
+
(2): ReLU()
|
208 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
209 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
210 |
+
(5): Sigmoid()
|
211 |
+
)
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(layer3): EcapaBlock(
|
215 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
216 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
217 |
+
(convs): ModuleList(
|
218 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
|
219 |
+
)
|
220 |
+
(bns): ModuleList(
|
221 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
222 |
+
)
|
223 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
224 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
225 |
+
(relu): ReLU()
|
226 |
+
(se): SEModule(
|
227 |
+
(se): Sequential(
|
228 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
229 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
230 |
+
(2): ReLU()
|
231 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
233 |
+
(5): Sigmoid()
|
234 |
+
)
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
|
238 |
+
(mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
|
239 |
+
)
|
240 |
+
(pooling): ChnAttnStatPooling(
|
241 |
+
(attention): Sequential(
|
242 |
+
(0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
|
243 |
+
(1): ReLU()
|
244 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
245 |
+
(3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
|
246 |
+
)
|
247 |
+
(softmax): Softmax(dim=2)
|
248 |
+
)
|
249 |
+
(projector): RawNet3Projector(
|
250 |
+
(bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
251 |
+
(fc): Linear(in_features=3072, out_features=192, bias=True)
|
252 |
+
)
|
253 |
+
(loss): AAMSoftmaxSCTopKLang2Vec(
|
254 |
+
(ce): CrossEntropyLoss()
|
255 |
+
(lang2vec_head): Sequential(
|
256 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
257 |
+
)
|
258 |
+
(lang2vec_loss): MSELoss()
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
Model summary:
|
263 |
+
Class Name: ESPnetLIDUpstreamLang2VecConditionModel
|
264 |
+
Total Number of model parameters: 978.26 M
|
265 |
+
Number of trainable parameters: 978.26 M (100.0%)
|
266 |
+
Size: 3.91 GB
|
267 |
+
Type: torch.float32
|
268 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
|
269 |
+
warnings.warn(
|
270 |
+
[gpue02] 2025-05-16 15:10:17,080 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/lids0
|
271 |
+
[gpue02] 2025-05-16 15:11:10,973 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
|
272 |
+
[gpue02] 2025-05-16 15:11:43,358 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
|
273 |
+
[gpue02] 2025-05-16 15:11:43,358 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
|
274 |
+
# Accounting: time=123 threads=1
|
275 |
+
# Ended (code 0) at Fri May 16 15:11:44 CDT 2025, elapsed time 123 seconds
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/results
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Accuracy: 94.22%
|
2 |
+
Macro Accuracy: 90.26%
|
3 |
+
Accuracy per Language:
|
4 |
+
isl: 100.00%
|
5 |
+
hrv: 50.00%
|
6 |
+
swe: 94.00%
|
7 |
+
ell: 80.00%
|
8 |
+
lav: 100.00%
|
9 |
+
cmn: 95.65%
|
10 |
+
tur: 90.28%
|
11 |
+
mkd: 100.00%
|
12 |
+
jpn: 100.00%
|
13 |
+
hye: 96.00%
|
14 |
+
dan: 95.96%
|
15 |
+
fra: 97.00%
|
16 |
+
fin: 96.77%
|
17 |
+
pol: 100.00%
|
18 |
+
nor: 62.50%
|
19 |
+
rus: 96.55%
|
20 |
+
urd: 76.92%
|
21 |
+
ara: 96.00%
|
22 |
+
aze: 94.12%
|
23 |
+
ita: 100.00%
|
24 |
+
eng: 93.75%
|
25 |
+
lit: 84.62%
|
26 |
+
spa: 98.18%
|
27 |
+
hun: 100.00%
|
28 |
+
srp: 57.14%
|
29 |
+
ukr: 88.24%
|
30 |
+
est: 95.29%
|
31 |
+
fas: 92.00%
|
32 |
+
nld: 97.00%
|
33 |
+
por: 100.00%
|
34 |
+
slv: 88.89%
|
35 |
+
deu: 95.12%
|
36 |
+
nno: 66.67%
|
37 |
+
Key: ara_AfS6C1PXAdQ__U__S20---0104.730-0111.410.wav, Target: ara, Predicted: hau
|
38 |
+
Key: ara_TPWwuy20K_c__U__S70---0466.380-0472.600.wav, Target: ara, Predicted: hau
|
39 |
+
Key: ara_cwvnYGInNNg__U__S229---0661.830-0670.560.wav, Target: ara, Predicted: heb
|
40 |
+
Key: ara_tl39W93P0r4__U__S32---0282.970-0286.530.wav, Target: ara, Predicted: fra
|
41 |
+
Key: aze_3UUShvAQxQY__U__S199---1315.800-1322.250.wav, Target: aze, Predicted: tur
|
42 |
+
Key: aze_bYKK1m78ecE__U__S91---0592.500-0596.130.wav, Target: aze, Predicted: isl
|
43 |
+
Key: cmn_ZUzq_TIfYL4__U__S39---0442.690-0454.380.wav, Target: cmn, Predicted: tha
|
44 |
+
Key: dan_E3vuA0Mqk1Q__U__S13---0072.140-0083.530.wav, Target: dan, Predicted: nno
|
45 |
+
Key: dan_Nyl6CuW6Qfk__U__S26---0557.690-0560.120.wav, Target: dan, Predicted: nor
|
46 |
+
Key: dan_ZZD1qu4ScPg__U__S14---0166.700-0176.010.wav, Target: dan, Predicted: haw
|
47 |
+
Key: dan_qCg43KdKRr0__U__S0---0843.270-0847.580.wav, Target: dan, Predicted: bod
|
48 |
+
Key: deu_8L3k8XNTtNA__U__S100---2689.380-2692.180.wav, Target: deu, Predicted: nno
|
49 |
+
Key: deu_9O2haSYzftE__U__S0---0000.000-0004.200.wav, Target: deu, Predicted: heb
|
50 |
+
Key: deu_eyZqRcgGkiY__U__S126---1155.890-1162.390.wav, Target: deu, Predicted: nld
|
51 |
+
Key: deu_cMZO2zXTBv8__U__S100---0341.910-0344.350.wav, Target: deu, Predicted: yid
|
52 |
+
Key: ell_bw_mDLVdgtY__U__S18---0119.750-0127.200.wav, Target: ell, Predicted: bre
|
53 |
+
Key: eng_K977aQQpAVk__U__S106---0393.230-0397.100.wav, Target: eng, Predicted: cym
|
54 |
+
Key: eng_4y7p9R2No-4__U__S12---0266.390-0268.460.wav, Target: eng, Predicted: lat
|
55 |
+
Key: eng_eQXHc-tJMXM__U__S11---1066.230-1077.360.wav, Target: eng, Predicted: cym
|
56 |
+
Key: est_5gWpxiFOouQ__U__S2---1635.950-1646.620.wav, Target: est, Predicted: khm
|
57 |
+
Key: eng_xuM9TP8ETJI__U__S1---0063.150-0077.230.wav, Target: eng, Predicted: mar
|
58 |
+
Key: eng_yhU8sj0X-yM__U__S25---0146.220-0152.200.wav, Target: eng, Predicted: nno
|
59 |
+
Key: est_E05LlgvSMg0__U__S156---1171.030-1172.780.wav, Target: est, Predicted: fin
|
60 |
+
Key: est_7vZIuc9qumg__U__S21---0145.690-0153.320.wav, Target: est, Predicted: nep
|
61 |
+
Key: est_gTl2GSJBxNw__U__S0---0000.000-0008.420.wav, Target: est, Predicted: mlt
|
62 |
+
Key: fas_9k1oVW4Ynyw__U__S15---0097.430-0101.630.wav, Target: fas, Predicted: slv
|
63 |
+
Key: fas_EjSRRddYuc4__U__S58---0355.980-0359.590.wav, Target: fas, Predicted: lat
|
64 |
+
Key: fas_SMcjja_krx4__U__S2---0012.190-0021.730.wav, Target: fas, Predicted: tgk
|
65 |
+
Key: fas_gLoBPMrad3E__U__S14---0097.650-0102.010.wav, Target: fas, Predicted: yid
|
66 |
+
Key: fas_XUGZwtXgvRA__U__S154---0993.540-0997.340.wav, Target: fas, Predicted: san
|
67 |
+
Key: fas_x_Di4cq4ixM__U__S100---1353.580-1358.390.wav, Target: fas, Predicted: pus
|
68 |
+
Key: fas_nPts67VQKRQ__U__S250---1629.010-1632.750.wav, Target: fas, Predicted: hat
|
69 |
+
Key: fas_zZCjOs-WwKo__U__S195---1357.430-1377.010.wav, Target: fas, Predicted: aze
|
70 |
+
Key: fin_C4H2GlJRkNU__U__S100---1604.910-1610.210.wav, Target: fin, Predicted: est
|
71 |
+
Key: fin_S_VWbBtBey4__U__S0---0308.380-0310.650.wav, Target: fin, Predicted: khm
|
72 |
+
Key: fin_i6m8DKfYNUM__U__S145---0562.860-0573.500.wav, Target: fin, Predicted: est
|
73 |
+
Key: fra_Lo_JX-8KHEw__U__S151---0284.430-0299.020.wav, Target: fra, Predicted: lin
|
74 |
+
Key: fra_SLfpp704KI8__U__S57---0368.470-0372.910.wav, Target: fra, Predicted: afr
|
75 |
+
Key: fra_pLwARlYGwS0__U__S2---0046.320-0052.700.wav, Target: fra, Predicted: lin
|
76 |
+
Key: hye_DoR3ptr3ahw__U__S28---0216.960-0223.190.wav, Target: hye, Predicted: urd
|
77 |
+
Key: hrv_Jntmbw5_vOI__U__S291---0379.300-0383.970.wav, Target: hrv, Predicted: bos
|
78 |
+
Key: hrv_hUgTLHiQJ60__U__S3---0046.320-0060.040.wav, Target: hrv, Predicted: bos
|
79 |
+
Key: hye_Qmo3P38Ytek__U__S32---0245.460-0249.320.wav, Target: hye, Predicted: snd
|
80 |
+
Key: hye_XM7EQuJEG38__U__S267---1644.620-1648.650.wav, Target: hye, Predicted: amh
|
81 |
+
Key: hye_um6xT5Gjgus__U__S194---1224.460-1234.130.wav, Target: hye, Predicted: lat
|
82 |
+
Key: lit_3svAywrL0_I__U__S149---0461.370-0464.980.wav, Target: lit, Predicted: bre
|
83 |
+
Key: lit_cTaKSWT6ds0__U__S49---0492.750-0499.290.wav, Target: lit, Predicted: slv
|
84 |
+
Key: nld_2C5HehL-Fx0__U__S101---1125.890-1131.720.wav, Target: nld, Predicted: ltz
|
85 |
+
Key: nld_0LhAXOxz-JU__U__S32---0243.280-0247.880.wav, Target: nld, Predicted: afr
|
86 |
+
Key: nld_0LhAXOxz-JU__U__S396---2475.670-2488.950.wav, Target: nld, Predicted: afr
|
87 |
+
Key: nno_iLv9Mp7Z3SE__U__S50---0290.270-0300.430.wav, Target: nno, Predicted: nor
|
88 |
+
Key: nor_97e9pEtHAxg__U__S32---0201.830-0210.250.wav, Target: nor, Predicted: nno
|
89 |
+
Key: nor_HW_49WuFloM__U__S106---0621.590-0626.130.wav, Target: nor, Predicted: nno
|
90 |
+
Key: nor_I1vUI8va8Yc__U__S49---0294.940-0302.560.wav, Target: nor, Predicted: afr
|
91 |
+
Key: nor_hEA8NB6Gojk__U__S1---1704.010-1709.570.wav, Target: nor, Predicted: nno
|
92 |
+
Key: nor_UxHL_uql05E__U__S118---0587.340-0598.790.wav, Target: nor, Predicted: nno
|
93 |
+
Key: nor_tV3Le8SUz_0__U__S276---1831.870-1841.550.wav, Target: nor, Predicted: nno
|
94 |
+
Key: nor_xVNA15ifyIw__U__S494---0311.220-0317.160.wav, Target: nor, Predicted: nno
|
95 |
+
Key: nor_bOnuTgAOkl8__U__S1---0180.450-0187.220.wav, Target: nor, Predicted: nno
|
96 |
+
Key: nor_ySVkmT8SgNM__U__S345---2245.790-2255.930.wav, Target: nor, Predicted: nno
|
97 |
+
Key: slv_Hu-33c4xcwU__U__S100---0534.990-0540.460.wav, Target: slv, Predicted: hrv
|
98 |
+
Key: rus_iUdCazc2qEs__U__S170---0648.590-0665.280.wav, Target: rus, Predicted: bel
|
99 |
+
Key: spa_UYBcNrx8kvQ__U__S186---2292.670-2299.590.wav, Target: spa, Predicted: kor
|
100 |
+
Key: swe_0gbhN4C2JSg__U__S0---0310.630-0319.010.wav, Target: swe, Predicted: nno
|
101 |
+
Key: srp_8dvIaAOLlGA__U__S216---1326.410-1335.490.wav, Target: srp, Predicted: hrv
|
102 |
+
Key: srp_TrZPwrrrC8k__U__S172---1130.440-1138.910.wav, Target: srp, Predicted: hrv
|
103 |
+
Key: swe_0x4xb4AaTy0__U__S0---0301.450-0319.780.wav, Target: swe, Predicted: nno
|
104 |
+
Key: srp_rkQhxxO5Qt4__U__S109---0820.610-0826.190.wav, Target: srp, Predicted: bos
|
105 |
+
Key: swe_PjMuio7mLss__U__S193---0310.690-0316.160.wav, Target: swe, Predicted: nor
|
106 |
+
Key: swe_i7zSYkRMXas__U__S0---1020.080-1026.030.wav, Target: swe, Predicted: nno
|
107 |
+
Key: swe_wMAAiJhj0VA__U__S100---0564.840-0568.420.wav, Target: swe, Predicted: nno
|
108 |
+
Key: tur_-H4m-34Aeoc__U__S60---0434.240-0442.760.wav, Target: tur, Predicted: heb
|
109 |
+
Key: swe_ilhngbAuxvs__U__S14---2441.740-2445.720.wav, Target: swe, Predicted: ltz
|
110 |
+
Key: tur_4C-efpD-DlM__U__S7---0050.890-0055.080.wav, Target: tur, Predicted: ben
|
111 |
+
Key: tur_KfJTU69HRWI__U__S11---0048.380-0056.300.wav, Target: tur, Predicted: aze
|
112 |
+
Key: tur_5IW3HlTJdMc__U__S115---0705.150-0710.380.wav, Target: tur, Predicted: aze
|
113 |
+
Key: tur_a1MRbrMI8_I__U__S145---2439.720-2445.680.wav, Target: tur, Predicted: aze
|
114 |
+
Key: tur_kLouhYz_EQk__U__S13---0102.530-0106.300.wav, Target: tur, Predicted: kor
|
115 |
+
Key: tur_SjS8CCqZxTk__U__S106---0354.470-0358.660.wav, Target: tur, Predicted: nor
|
116 |
+
Key: urd_4tO6ayZxs5s__U__S1---0194.310-0211.150.wav, Target: urd, Predicted: hin
|
117 |
+
Key: ukr_Oa0IlRCP7w0__U__S138---1702.720-1708.290.wav, Target: ukr, Predicted: bos
|
118 |
+
Key: ukr_cSDxFl4xZ0M__U__S275---1824.900-1830.730.wav, Target: ukr, Predicted: rus
|
119 |
+
Key: urd_Ax5M8gcEdCg__U__S1---0105.190-0115.110.wav, Target: urd, Predicted: hin
|
120 |
+
Key: urd_N59t4A1mxfA__U__S101---0715.390-0720.460.wav, Target: urd, Predicted: snd
|
121 |
+
Key: urd_eTfyAm6CFB0__U__S25---0439.860-0446.680.wav, Target: urd, Predicted: hin
|
122 |
+
Key: urd_Tj2pngm_vuA__U__S1---0070.400-0089.660.wav, Target: urd, Predicted: hin
|
123 |
+
Key: urd_J7RizO2mvm4__U__S3---0042.600-0051.180.wav, Target: urd, Predicted: san
|
124 |
+
Key: urd_U_h8Bgywxrc__U__S0---0222.420-0227.610.wav, Target: urd, Predicted: hin
|
125 |
+
Key: urd_n3l7PavcOFk__U__S0---0379.380-0397.930.wav, Target: urd, Predicted: hin
|
126 |
+
Key: urd_o3awRytwrUY__U__S1---0122.040-0129.980.wav, Target: urd, Predicted: fas
|
127 |
+
Key: urd_ySjOb5uaA-U__U__S107---0336.690-0353.110.wav, Target: urd, Predicted: cym
|
128 |
+
Key: urd_o3awRytwrUY__U__S1---0290.850-0306.430.wav, Target: urd, Predicted: fas
|
129 |
+
Key: urd_o3awRytwrUY__U__S1---0632.460-0642.400.wav, Target: urd, Predicted: fas
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/lid_inference_test.log
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
2 |
+
# Started at Fri May 16 15:29:06 CDT 2025
|
3 |
+
#
|
4 |
+
/u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
5 |
+
[gpue02] 2025-05-16 15:29:22,203 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
|
6 |
+
/work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
|
7 |
+
torchaudio.set_audio_backend("sox_io")
|
8 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
|
9 |
+
torch.load(model_file, map_location=device),
|
10 |
+
[gpue02] 2025-05-16 15:29:32,382 (lid_inference_dist:86) INFO: Model structure:
|
11 |
+
ESPnetLIDUpstreamLang2VecConditionModel(
|
12 |
+
(frontend): S3prlFrontendLang2VecCondition(
|
13 |
+
(upstream): S3PRLUpstreamLang2VecCondition(
|
14 |
+
(upstream): UpstreamExpertLang2VecCondition(
|
15 |
+
(model): Wav2Vec2ModelLang2VecCondition(
|
16 |
+
(feature_extractor): Wav2Vec2FeatureEncoder(
|
17 |
+
(conv_layers): ModuleList(
|
18 |
+
(0): Wav2Vec2LayerNormConvLayer(
|
19 |
+
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
|
20 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
21 |
+
(activation): GELUActivation()
|
22 |
+
)
|
23 |
+
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
|
24 |
+
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
|
25 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
26 |
+
(activation): GELUActivation()
|
27 |
+
)
|
28 |
+
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
|
29 |
+
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
|
30 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
31 |
+
(activation): GELUActivation()
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(feature_projection): Wav2Vec2FeatureProjection(
|
36 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
37 |
+
(projection): Linear(in_features=512, out_features=1280, bias=True)
|
38 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
39 |
+
)
|
40 |
+
(encoder): Wav2Vec2EncoderLang2VecCondition(
|
41 |
+
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
|
42 |
+
(conv): ParametrizedConv1d(
|
43 |
+
1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
|
44 |
+
(parametrizations): ModuleDict(
|
45 |
+
(weight): ParametrizationList(
|
46 |
+
(0): _WeightNorm()
|
47 |
+
)
|
48 |
+
)
|
49 |
+
)
|
50 |
+
(padding): Wav2Vec2SamePadLayer()
|
51 |
+
(activation): GELUActivation()
|
52 |
+
)
|
53 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
54 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
55 |
+
(layers): ModuleList(
|
56 |
+
(0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
|
57 |
+
(attention): Wav2Vec2SdpaAttention(
|
58 |
+
(k_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
59 |
+
(v_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
60 |
+
(q_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
61 |
+
(out_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
62 |
+
)
|
63 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
64 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
65 |
+
(feed_forward): Wav2Vec2FeedForward(
|
66 |
+
(intermediate_dropout): Dropout(p=0.0, inplace=False)
|
67 |
+
(intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
|
68 |
+
(intermediate_act_fn): GELUActivation()
|
69 |
+
(output_dense): Linear(in_features=5120, out_features=1280, bias=True)
|
70 |
+
(output_dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
(conditioning_projs): ModuleDict(
|
76 |
+
(32): Linear(in_features=299, out_features=1280, bias=True)
|
77 |
+
(36): Linear(in_features=299, out_features=1280, bias=True)
|
78 |
+
(40): Linear(in_features=299, out_features=1280, bias=True)
|
79 |
+
(44): Linear(in_features=299, out_features=1280, bias=True)
|
80 |
+
)
|
81 |
+
(ecapa_encoder): ModuleDict(
|
82 |
+
(32): IdentityEncoder()
|
83 |
+
(36): IdentityEncoder()
|
84 |
+
(40): IdentityEncoder()
|
85 |
+
(44): IdentityEncoder()
|
86 |
+
)
|
87 |
+
(pooling): ModuleDict(
|
88 |
+
(32): ChnAttnStatPooling(
|
89 |
+
(attention): Sequential(
|
90 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
91 |
+
(1): ReLU()
|
92 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
94 |
+
)
|
95 |
+
(softmax): Softmax(dim=2)
|
96 |
+
)
|
97 |
+
(36): ChnAttnStatPooling(
|
98 |
+
(attention): Sequential(
|
99 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
100 |
+
(1): ReLU()
|
101 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
102 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
103 |
+
)
|
104 |
+
(softmax): Softmax(dim=2)
|
105 |
+
)
|
106 |
+
(40): ChnAttnStatPooling(
|
107 |
+
(attention): Sequential(
|
108 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
109 |
+
(1): ReLU()
|
110 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
111 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
112 |
+
)
|
113 |
+
(softmax): Softmax(dim=2)
|
114 |
+
)
|
115 |
+
(44): ChnAttnStatPooling(
|
116 |
+
(attention): Sequential(
|
117 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
118 |
+
(1): ReLU()
|
119 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
120 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
121 |
+
)
|
122 |
+
(softmax): Softmax(dim=2)
|
123 |
+
)
|
124 |
+
)
|
125 |
+
(projector): ModuleDict(
|
126 |
+
(32): RawNet3Projector(
|
127 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
129 |
+
)
|
130 |
+
(36): RawNet3Projector(
|
131 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
132 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
133 |
+
)
|
134 |
+
(40): RawNet3Projector(
|
135 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
136 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
137 |
+
)
|
138 |
+
(44): RawNet3Projector(
|
139 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
140 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(lang2vec_head): ModuleDict(
|
144 |
+
(32): Sequential(
|
145 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
146 |
+
)
|
147 |
+
(36): Sequential(
|
148 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
149 |
+
)
|
150 |
+
(40): Sequential(
|
151 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
152 |
+
)
|
153 |
+
(44): Sequential(
|
154 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
(featurizer): Featurizer()
|
162 |
+
)
|
163 |
+
(normalize): UtteranceMVN(norm_means=True, norm_vars=False)
|
164 |
+
(encoder): EcapaTdnnEncoder(
|
165 |
+
(conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
|
166 |
+
(relu): ReLU()
|
167 |
+
(bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
168 |
+
(layer1): EcapaBlock(
|
169 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
170 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(convs): ModuleList(
|
172 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
|
173 |
+
)
|
174 |
+
(bns): ModuleList(
|
175 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
176 |
+
)
|
177 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
178 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
179 |
+
(relu): ReLU()
|
180 |
+
(se): SEModule(
|
181 |
+
(se): Sequential(
|
182 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
183 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
184 |
+
(2): ReLU()
|
185 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
186 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
187 |
+
(5): Sigmoid()
|
188 |
+
)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
(layer2): EcapaBlock(
|
192 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
193 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(convs): ModuleList(
|
195 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
196 |
+
)
|
197 |
+
(bns): ModuleList(
|
198 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
199 |
+
)
|
200 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
201 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
202 |
+
(relu): ReLU()
|
203 |
+
(se): SEModule(
|
204 |
+
(se): Sequential(
|
205 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
206 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
207 |
+
(2): ReLU()
|
208 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
209 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
210 |
+
(5): Sigmoid()
|
211 |
+
)
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(layer3): EcapaBlock(
|
215 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
216 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
217 |
+
(convs): ModuleList(
|
218 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
|
219 |
+
)
|
220 |
+
(bns): ModuleList(
|
221 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
222 |
+
)
|
223 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
224 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
225 |
+
(relu): ReLU()
|
226 |
+
(se): SEModule(
|
227 |
+
(se): Sequential(
|
228 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
229 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
230 |
+
(2): ReLU()
|
231 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
233 |
+
(5): Sigmoid()
|
234 |
+
)
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
|
238 |
+
(mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
|
239 |
+
)
|
240 |
+
(pooling): ChnAttnStatPooling(
|
241 |
+
(attention): Sequential(
|
242 |
+
(0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
|
243 |
+
(1): ReLU()
|
244 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
245 |
+
(3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
|
246 |
+
)
|
247 |
+
(softmax): Softmax(dim=2)
|
248 |
+
)
|
249 |
+
(projector): RawNet3Projector(
|
250 |
+
(bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
251 |
+
(fc): Linear(in_features=3072, out_features=192, bias=True)
|
252 |
+
)
|
253 |
+
(loss): AAMSoftmaxSCTopKLang2Vec(
|
254 |
+
(ce): CrossEntropyLoss()
|
255 |
+
(lang2vec_head): Sequential(
|
256 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
257 |
+
)
|
258 |
+
(lang2vec_loss): MSELoss()
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
Model summary:
|
263 |
+
Class Name: ESPnetLIDUpstreamLang2VecConditionModel
|
264 |
+
Total Number of model parameters: 978.26 M
|
265 |
+
Number of trainable parameters: 978.26 M (100.0%)
|
266 |
+
Size: 3.91 GB
|
267 |
+
Type: torch.float32
|
268 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
|
269 |
+
warnings.warn(
|
270 |
+
[gpue02] 2025-05-16 15:29:32,731 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/lids0
|
271 |
+
[gpue02] 2025-05-16 15:30:28,250 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
|
272 |
+
[gpue02] 2025-05-16 15:31:29,388 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
|
273 |
+
[gpue02] 2025-05-16 15:32:30,025 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
|
274 |
+
[gpue02] 2025-05-16 15:33:41,554 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
|
275 |
+
[gpue02] 2025-05-16 15:34:45,848 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
|
276 |
+
[gpue02] 2025-05-16 15:35:40,662 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
|
277 |
+
[gpue02] 2025-05-16 15:36:31,911 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
|
278 |
+
[gpue02] 2025-05-16 15:37:35,086 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
|
279 |
+
[gpue02] 2025-05-16 15:38:34,369 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
|
280 |
+
[gpue02] 2025-05-16 15:39:35,470 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
|
281 |
+
[gpue02] 2025-05-16 15:40:45,143 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
|
282 |
+
[gpue02] 2025-05-16 15:41:44,725 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
|
283 |
+
[gpue02] 2025-05-16 15:42:45,976 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
|
284 |
+
[gpue02] 2025-05-16 15:43:35,253 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
|
285 |
+
[gpue02] 2025-05-16 15:44:35,428 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
|
286 |
+
[gpue02] 2025-05-16 15:45:41,733 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
|
287 |
+
[gpue02] 2025-05-16 15:46:37,468 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 16
|
288 |
+
[gpue02] 2025-05-16 15:47:25,258 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 17
|
289 |
+
[gpue02] 2025-05-16 15:48:14,261 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 18
|
290 |
+
[gpue02] 2025-05-16 15:49:37,718 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 19
|
291 |
+
[gpue02] 2025-05-16 15:50:28,832 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 20
|
292 |
+
[gpue02] 2025-05-16 15:51:17,795 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 21
|
293 |
+
[gpue02] 2025-05-16 15:52:13,077 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 22
|
294 |
+
[gpue02] 2025-05-16 15:53:09,422 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 23
|
295 |
+
[gpue02] 2025-05-16 15:54:14,113 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 24
|
296 |
+
[gpue02] 2025-05-16 15:55:23,133 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 25
|
297 |
+
[gpue02] 2025-05-16 15:56:25,007 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 26
|
298 |
+
[gpue02] 2025-05-16 15:57:22,498 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 27
|
299 |
+
[gpue02] 2025-05-16 15:58:28,784 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 28
|
300 |
+
[gpue02] 2025-05-16 15:59:41,942 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 29
|
301 |
+
[gpue02] 2025-05-16 16:00:45,243 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 30
|
302 |
+
[gpue02] 2025-05-16 16:01:50,443 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 31
|
303 |
+
[gpue02] 2025-05-16 16:02:57,175 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 32
|
304 |
+
[gpue02] 2025-05-16 16:03:49,857 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 33
|
305 |
+
[gpue02] 2025-05-16 16:04:58,821 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 34
|
306 |
+
[gpue02] 2025-05-16 16:06:05,739 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 35
|
307 |
+
[gpue02] 2025-05-16 16:07:04,501 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 36
|
308 |
+
[gpue02] 2025-05-16 16:08:06,650 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 37
|
309 |
+
[gpue02] 2025-05-16 16:08:56,869 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 38
|
310 |
+
[gpue02] 2025-05-16 16:10:42,668 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 39
|
311 |
+
[gpue02] 2025-05-16 16:11:39,638 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 40
|
312 |
+
[gpue02] 2025-05-16 16:12:44,805 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 41
|
313 |
+
[gpue02] 2025-05-16 16:13:44,970 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 42
|
314 |
+
[gpue02] 2025-05-16 16:14:59,216 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 43
|
315 |
+
[gpue02] 2025-05-16 16:15:47,866 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 44
|
316 |
+
[gpue02] 2025-05-16 16:16:46,568 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 45
|
317 |
+
[gpue02] 2025-05-16 16:17:40,642 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 46
|
318 |
+
[gpue02] 2025-05-16 16:18:33,323 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 47
|
319 |
+
[gpue02] 2025-05-16 16:19:25,947 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 48
|
320 |
+
[gpue02] 2025-05-16 16:20:18,394 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 49
|
321 |
+
[gpue02] 2025-05-16 16:21:23,138 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 50
|
322 |
+
[gpue02] 2025-05-16 16:22:24,219 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 51
|
323 |
+
[gpue02] 2025-05-16 16:23:28,259 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 52
|
324 |
+
[gpue02] 2025-05-16 16:24:22,109 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 53
|
325 |
+
[gpue02] 2025-05-16 16:25:19,894 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 54
|
326 |
+
[gpue02] 2025-05-16 16:26:20,392 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 55
|
327 |
+
[gpue02] 2025-05-16 16:27:20,976 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 56
|
328 |
+
[gpue02] 2025-05-16 16:28:22,402 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 57
|
329 |
+
[gpue02] 2025-05-16 16:29:23,094 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 58
|
330 |
+
[gpue02] 2025-05-16 16:30:12,825 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 59
|
331 |
+
[gpue02] 2025-05-16 16:31:12,064 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 60
|
332 |
+
[gpue02] 2025-05-16 16:32:16,256 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 61
|
333 |
+
[gpue02] 2025-05-16 16:33:01,500 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
|
334 |
+
[gpue02] 2025-05-16 16:33:01,500 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
|
335 |
+
# Accounting: time=3836 threads=1
|
336 |
+
# Ended (code 0) at Fri May 16 16:33:02 CDT 2025, elapsed time 3836 seconds
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/results
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/lid_inference_test.log
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
2 |
+
# Started at Fri May 16 15:11:45 CDT 2025
|
3 |
+
#
|
4 |
+
/u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
|
5 |
+
[gpue02] 2025-05-16 15:12:01,248 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
|
6 |
+
/work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
|
7 |
+
torchaudio.set_audio_backend("sox_io")
|
8 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
|
9 |
+
torch.load(model_file, map_location=device),
|
10 |
+
[gpue02] 2025-05-16 15:12:11,661 (lid_inference_dist:86) INFO: Model structure:
|
11 |
+
ESPnetLIDUpstreamLang2VecConditionModel(
|
12 |
+
(frontend): S3prlFrontendLang2VecCondition(
|
13 |
+
(upstream): S3PRLUpstreamLang2VecCondition(
|
14 |
+
(upstream): UpstreamExpertLang2VecCondition(
|
15 |
+
(model): Wav2Vec2ModelLang2VecCondition(
|
16 |
+
(feature_extractor): Wav2Vec2FeatureEncoder(
|
17 |
+
(conv_layers): ModuleList(
|
18 |
+
(0): Wav2Vec2LayerNormConvLayer(
|
19 |
+
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
|
20 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
21 |
+
(activation): GELUActivation()
|
22 |
+
)
|
23 |
+
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
|
24 |
+
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
|
25 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
26 |
+
(activation): GELUActivation()
|
27 |
+
)
|
28 |
+
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
|
29 |
+
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
|
30 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
31 |
+
(activation): GELUActivation()
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(feature_projection): Wav2Vec2FeatureProjection(
|
36 |
+
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
37 |
+
(projection): Linear(in_features=512, out_features=1280, bias=True)
|
38 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
39 |
+
)
|
40 |
+
(encoder): Wav2Vec2EncoderLang2VecCondition(
|
41 |
+
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
|
42 |
+
(conv): ParametrizedConv1d(
|
43 |
+
1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
|
44 |
+
(parametrizations): ModuleDict(
|
45 |
+
(weight): ParametrizationList(
|
46 |
+
(0): _WeightNorm()
|
47 |
+
)
|
48 |
+
)
|
49 |
+
)
|
50 |
+
(padding): Wav2Vec2SamePadLayer()
|
51 |
+
(activation): GELUActivation()
|
52 |
+
)
|
53 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
54 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
55 |
+
(layers): ModuleList(
|
56 |
+
(0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
|
57 |
+
(attention): Wav2Vec2SdpaAttention(
|
58 |
+
(k_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
59 |
+
(v_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
60 |
+
(q_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
61 |
+
(out_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
62 |
+
)
|
63 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
64 |
+
(layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
65 |
+
(feed_forward): Wav2Vec2FeedForward(
|
66 |
+
(intermediate_dropout): Dropout(p=0.0, inplace=False)
|
67 |
+
(intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
|
68 |
+
(intermediate_act_fn): GELUActivation()
|
69 |
+
(output_dense): Linear(in_features=5120, out_features=1280, bias=True)
|
70 |
+
(output_dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
(conditioning_projs): ModuleDict(
|
76 |
+
(32): Linear(in_features=299, out_features=1280, bias=True)
|
77 |
+
(36): Linear(in_features=299, out_features=1280, bias=True)
|
78 |
+
(40): Linear(in_features=299, out_features=1280, bias=True)
|
79 |
+
(44): Linear(in_features=299, out_features=1280, bias=True)
|
80 |
+
)
|
81 |
+
(ecapa_encoder): ModuleDict(
|
82 |
+
(32): IdentityEncoder()
|
83 |
+
(36): IdentityEncoder()
|
84 |
+
(40): IdentityEncoder()
|
85 |
+
(44): IdentityEncoder()
|
86 |
+
)
|
87 |
+
(pooling): ModuleDict(
|
88 |
+
(32): ChnAttnStatPooling(
|
89 |
+
(attention): Sequential(
|
90 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
91 |
+
(1): ReLU()
|
92 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
94 |
+
)
|
95 |
+
(softmax): Softmax(dim=2)
|
96 |
+
)
|
97 |
+
(36): ChnAttnStatPooling(
|
98 |
+
(attention): Sequential(
|
99 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
100 |
+
(1): ReLU()
|
101 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
102 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
103 |
+
)
|
104 |
+
(softmax): Softmax(dim=2)
|
105 |
+
)
|
106 |
+
(40): ChnAttnStatPooling(
|
107 |
+
(attention): Sequential(
|
108 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
109 |
+
(1): ReLU()
|
110 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
111 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
112 |
+
)
|
113 |
+
(softmax): Softmax(dim=2)
|
114 |
+
)
|
115 |
+
(44): ChnAttnStatPooling(
|
116 |
+
(attention): Sequential(
|
117 |
+
(0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
|
118 |
+
(1): ReLU()
|
119 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
120 |
+
(3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
|
121 |
+
)
|
122 |
+
(softmax): Softmax(dim=2)
|
123 |
+
)
|
124 |
+
)
|
125 |
+
(projector): ModuleDict(
|
126 |
+
(32): RawNet3Projector(
|
127 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
129 |
+
)
|
130 |
+
(36): RawNet3Projector(
|
131 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
132 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
133 |
+
)
|
134 |
+
(40): RawNet3Projector(
|
135 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
136 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
137 |
+
)
|
138 |
+
(44): RawNet3Projector(
|
139 |
+
(bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
140 |
+
(fc): Linear(in_features=2560, out_features=192, bias=True)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(lang2vec_head): ModuleDict(
|
144 |
+
(32): Sequential(
|
145 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
146 |
+
)
|
147 |
+
(36): Sequential(
|
148 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
149 |
+
)
|
150 |
+
(40): Sequential(
|
151 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
152 |
+
)
|
153 |
+
(44): Sequential(
|
154 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
(featurizer): Featurizer()
|
162 |
+
)
|
163 |
+
(normalize): UtteranceMVN(norm_means=True, norm_vars=False)
|
164 |
+
(encoder): EcapaTdnnEncoder(
|
165 |
+
(conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
|
166 |
+
(relu): ReLU()
|
167 |
+
(bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
168 |
+
(layer1): EcapaBlock(
|
169 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
170 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(convs): ModuleList(
|
172 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
|
173 |
+
)
|
174 |
+
(bns): ModuleList(
|
175 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
176 |
+
)
|
177 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
178 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
179 |
+
(relu): ReLU()
|
180 |
+
(se): SEModule(
|
181 |
+
(se): Sequential(
|
182 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
183 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
184 |
+
(2): ReLU()
|
185 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
186 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
187 |
+
(5): Sigmoid()
|
188 |
+
)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
(layer2): EcapaBlock(
|
192 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
193 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(convs): ModuleList(
|
195 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
196 |
+
)
|
197 |
+
(bns): ModuleList(
|
198 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
199 |
+
)
|
200 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
201 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
202 |
+
(relu): ReLU()
|
203 |
+
(se): SEModule(
|
204 |
+
(se): Sequential(
|
205 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
206 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
207 |
+
(2): ReLU()
|
208 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
209 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
210 |
+
(5): Sigmoid()
|
211 |
+
)
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(layer3): EcapaBlock(
|
215 |
+
(conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
216 |
+
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
217 |
+
(convs): ModuleList(
|
218 |
+
(0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
|
219 |
+
)
|
220 |
+
(bns): ModuleList(
|
221 |
+
(0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
222 |
+
)
|
223 |
+
(conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
|
224 |
+
(bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
225 |
+
(relu): ReLU()
|
226 |
+
(se): SEModule(
|
227 |
+
(se): Sequential(
|
228 |
+
(0): AdaptiveAvgPool1d(output_size=1)
|
229 |
+
(1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
|
230 |
+
(2): ReLU()
|
231 |
+
(3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
|
233 |
+
(5): Sigmoid()
|
234 |
+
)
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
|
238 |
+
(mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
|
239 |
+
)
|
240 |
+
(pooling): ChnAttnStatPooling(
|
241 |
+
(attention): Sequential(
|
242 |
+
(0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
|
243 |
+
(1): ReLU()
|
244 |
+
(2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
245 |
+
(3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
|
246 |
+
)
|
247 |
+
(softmax): Softmax(dim=2)
|
248 |
+
)
|
249 |
+
(projector): RawNet3Projector(
|
250 |
+
(bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
251 |
+
(fc): Linear(in_features=3072, out_features=192, bias=True)
|
252 |
+
)
|
253 |
+
(loss): AAMSoftmaxSCTopKLang2Vec(
|
254 |
+
(ce): CrossEntropyLoss()
|
255 |
+
(lang2vec_head): Sequential(
|
256 |
+
(0): Linear(in_features=192, out_features=299, bias=True)
|
257 |
+
)
|
258 |
+
(lang2vec_loss): MSELoss()
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
Model summary:
|
263 |
+
Class Name: ESPnetLIDUpstreamLang2VecConditionModel
|
264 |
+
Total Number of model parameters: 978.26 M
|
265 |
+
Number of trainable parameters: 978.26 M (100.0%)
|
266 |
+
Size: 3.91 GB
|
267 |
+
Type: torch.float32
|
268 |
+
/work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
|
269 |
+
warnings.warn(
|
270 |
+
[gpue02] 2025-05-16 15:12:12,017 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/lids0
|
271 |
+
[gpue02] 2025-05-16 15:13:09,809 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
|
272 |
+
[gpue02] 2025-05-16 15:14:05,884 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
|
273 |
+
[gpue02] 2025-05-16 15:14:58,617 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
|
274 |
+
[gpue02] 2025-05-16 15:15:55,618 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
|
275 |
+
[gpue02] 2025-05-16 15:16:53,845 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
|
276 |
+
[gpue02] 2025-05-16 15:17:51,064 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
|
277 |
+
[gpue02] 2025-05-16 15:18:50,990 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
|
278 |
+
[gpue02] 2025-05-16 15:19:55,904 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
|
279 |
+
[gpue02] 2025-05-16 15:20:53,867 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
|
280 |
+
[gpue02] 2025-05-16 15:22:09,543 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
|
281 |
+
[gpue02] 2025-05-16 15:23:04,788 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
|
282 |
+
[gpue02] 2025-05-16 15:23:58,362 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
|
283 |
+
[gpue02] 2025-05-16 15:24:57,466 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
|
284 |
+
[gpue02] 2025-05-16 15:25:59,579 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
|
285 |
+
[gpue02] 2025-05-16 15:26:57,875 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
|
286 |
+
[gpue02] 2025-05-16 15:28:01,852 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
|
287 |
+
[gpue02] 2025-05-16 15:29:04,351 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
|
288 |
+
[gpue02] 2025-05-16 15:29:04,352 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
|
289 |
+
# Accounting: time=1040 threads=1
|
290 |
+
# Ended (code 0) at Fri May 16 15:29:05 CDT 2025, elapsed time 1040 seconds
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/results
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e94aec9eafec16372ab32b8fa94f7820342abeaa4ee3e8bf76c0d2c41e0714c
|
3 |
+
size 333926
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f64f0249df23805707ffb386715a27500e7ada827cb65ff452d4efcb2ad91f8
|
3 |
+
size 88
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ded6556895974f83d53ca564bf7581a90cb3d709499aa60e53b605343ef00696
|
3 |
+
size 88
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ae69aabebb88e4d9c2df7c4454477e7d3dd775f13cce22977dee7d22179f641
|
3 |
+
size 18542
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f0f68b28b509fbd3899c81e179eff342efe5486ea135701cc8765b4bbe5456d
|
3 |
+
size 88
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da635e135ca27fed48691df83327ebf27d61a169b18d7f370b1f2cd0e0284d71
|
3 |
+
size 88
|
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/train.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|