qingzhengwang commited on
Commit
bf57889
·
1 Parent(s): 5b22864
Files changed (20) hide show
  1. README.md +99 -27
  2. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/lid_inference_test.log +290 -0
  3. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/results +0 -0
  4. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log +281 -0
  5. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/results +1628 -0
  6. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log +291 -0
  7. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/results +0 -0
  8. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/lid_inference_test.log +275 -0
  9. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/results +129 -0
  10. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/lid_inference_test.log +336 -0
  11. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/results +0 -0
  12. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/lid_inference_test.log +290 -0
  13. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/results +0 -0
  14. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.0 +3 -0
  15. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.0 +3 -0
  16. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.0 +3 -0
  17. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.1 +3 -0
  18. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.1 +3 -0
  19. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.1 +3 -0
  20. exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/train.log +0 -0
README.md CHANGED
@@ -9,26 +9,110 @@ datasets:
9
  license: cc-by-4.0
10
  ---
11
 
12
- ## ESPnet2 LID model
13
 
14
  ### `espnet/geolid_vl107only_independent_frozen`
15
 
16
- This model was trained by Qingzheng-Wang using geolid recipe in [espnet](https://github.com/espnet/espnet/).
17
 
18
- ### Demo: How to use in ESPnet2
 
 
 
19
 
20
- Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
21
- if you haven't done that already.
 
 
 
 
 
 
 
22
 
23
  ```bash
24
  cd espnet
25
- git checkout 77e4293952083b9e32bc19a5ddc19efe45e70e4a
26
  pip install -e .
27
  cd egs2/geolid/lid1
28
- ./run.sh --skip_data_prep false --skip_train true --download_model espnet/geolid_vl107only_independent_frozen
 
 
 
 
29
  ```
30
 
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ## LID config
34
 
@@ -276,9 +360,16 @@ distributed: false
276
 
277
 
278
 
279
- ### Citing ESPnet
280
 
281
  ```BibTex
 
 
 
 
 
 
 
282
  @inproceedings{watanabe2018espnet,
283
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
284
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
@@ -288,23 +379,4 @@ distributed: false
288
  doi={10.21437/Interspeech.2018-1456},
289
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
290
  }
291
-
292
-
293
-
294
-
295
-
296
-
297
- ```
298
-
299
- or arXiv:
300
-
301
- ```bibtex
302
- @misc{watanabe2018espnet,
303
- title={ESPnet: End-to-End Speech Processing Toolkit},
304
- author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
305
- year={2018},
306
- eprint={1804.00015},
307
- archivePrefix={arXiv},
308
- primaryClass={cs.CL}
309
- }
310
  ```
 
9
  license: cc-by-4.0
10
  ---
11
 
12
+ ## ESPnet2 Spoken Language Identification (LID) model
13
 
14
  ### `espnet/geolid_vl107only_independent_frozen`
15
 
16
+ This geolocation-aware language identification (LID) model is developed using the [ESPnet](https://github.com/espnet/espnet/) toolkit. It integrates the powerful pretrained [MMS-1B](https://huggingface.co/facebook/mms-1b) as the encoder and employs [ECAPA-TDNN](https://arxiv.org/pdf/2005.07143) as the embedding extractor to achieve robust spoken language identification.
17
 
18
+ The main innovations of this model are:
19
+ 1. Incorporating geolocation prediction as an auxiliary task during training.
20
+ 2. Conditioning the intermediate representations of the self-supervised learning (SSL) encoder on intermediate-layer information.
21
+ This geolocation-aware strategy greatly improves robustness, especially for dialects and accented variations.
22
 
23
+ For further details on the geolocation-aware LID methodology, please refer to our paper: *Geolocation-Aware Robust Spoken Language Identification* (arXiv link to be added).
24
+
25
+ ### Usage Guide: How to use in ESPnet2
26
+
27
+ #### Prerequisites
28
+ First, ensure you have ESPnet installed. If not, follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html).
29
+
30
+ #### Quick Start
31
+ Run the following commands to set up and use the pre-trained model:
32
 
33
  ```bash
34
  cd espnet
35
+
36
  pip install -e .
37
  cd egs2/geolid/lid1
38
+
39
+ # Download the exp_combined to egs2/geolid/lid1
40
+ hf download espnet/geolid_vl107only_independent_frozen --local-dir . --exclude "README.md" "meta.yaml" ".gitattributes"
41
+
42
+ ./run_voxlingua107_only.sh --skip_data_prep false --skip_train true --lid_config conf/voxlingua107_only/mms_ecapa_upcon_32_44_it0.4_independent_frozen.yaml
43
  ```
44
 
45
+ This will download the pre-trained model and run inference using the VoxLingua107 test data.
46
 
47
+ ### Train and Evaluation Datasets
48
+
49
+ The training used only the VoxLingua107 dataset, comprising 6,628 hours of speech across 107 languages from YouTube.
50
+
51
+ | Dataset | Domain | #Langs. Train/Test | Dialect | Training Setup (VL107-only) |
52
+ | ------------- | ----------- | ------------------ | ------- | --------------------------- |
53
+ | [VoxLingua107](https://cs.taltech.ee/staff/tanel.alumae/data/voxlingua107/) | YouTube | 107/33 | No | Seen |
54
+ | [Babel](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31a13cefb42647e924e0d2778d341decc44c40e9) | Telephone | 25/25 | No | Unseen |
55
+ | [FLEURS](https://huggingface.co/datasets/google/xtreme_s) | Read speech | 102/102 | No | Unseen |
56
+ | [ML-SUPERB 2.0](https://huggingface.co/datasets/espnet/ml_superb_hf) | Mixed | 137/(137, 8) | Yes | Unseen |
57
+ | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | Parliament | 16/16 | No | Unseen |
58
+
59
+ ### Results
60
+
61
+ **Accuracy (%) on In-domain and Out-of-domain Test Sets**
62
+
63
+ <style>
64
+ .hf-model-cell {
65
+ max-width: 120px;
66
+ overflow-x: auto;
67
+ white-space: nowrap;
68
+ scrollbar-width: thin;
69
+ scrollbar-color: #888 #f1f1f1;
70
+ }
71
+
72
+ .config-cell {
73
+ max-width: 100px;
74
+ overflow-x: auto;
75
+ white-space: nowrap;
76
+ scrollbar-width: thin;
77
+ scrollbar-color: #888 #f1f1f1;
78
+ }
79
+
80
+ .hf-model-cell::-webkit-scrollbar,
81
+ .config-cell::-webkit-scrollbar {
82
+ height: 6px;
83
+ }
84
+
85
+ .hf-model-cell::-webkit-scrollbar-track,
86
+ .config-cell::-webkit-scrollbar-track {
87
+ background: #f1f1f1;
88
+ border-radius: 3px;
89
+ }
90
+
91
+ .hf-model-cell::-webkit-scrollbar-thumb,
92
+ .config-cell::-webkit-scrollbar-thumb {
93
+ background: #888;
94
+ border-radius: 3px;
95
+ }
96
+
97
+ .hf-model-cell::-webkit-scrollbar-thumb:hover,
98
+ .config-cell::-webkit-scrollbar-thumb:hover {
99
+ background: #555;
100
+ }
101
+ </style>
102
+
103
+ <div style="overflow-x: auto;">
104
+
105
+ | ESPnet Recipe | Config | VoxLingua107 | Babel | FLEURS | ML-SUPERB2.0 Dev | ML-SUPERB2.0 Dialect | VoxPopuli | Macro Avg. |
106
+ | ------------------------- | ----------- | ------------ | ----- | ------ | ---------------- | -------------------- | --------- | ---------- |
107
+ | <div class="hf-model-cell">[egs2/geolid/lid1](https://github.com/espnet/espnet/tree/master/egs2/geolid/lid1)</div> | <div class="config-cell">`conf/voxlingua107_only/mms_ecapa_upcon_32_44_it0.4_independent_frozen.yaml`</div> | 94.2 | 87.1 | 95.0 | 89.0 | 77.2 | 90.4 | 88.8 |
108
+
109
+ </div>
110
+
111
+ For more detailed inference results, please refer to the `exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference` directory in this repository.
112
+
113
+ > **Note (2025-08-18):**
114
+ > The corresponding GitHub recipe [egs2/geolid/lid1](https://github.com/espnet/espnet/tree/master/egs2/geolid/lid1) has not yet been merged into the ESPnet master branch.
115
+ > See TODO: add PR link for the latest updates.
116
 
117
  ## LID config
118
 
 
360
 
361
 
362
 
363
+ ### Citation
364
 
365
  ```BibTex
366
+ @inproceedings{wang2025geolid,
367
+ author={Qingzheng Wang, Hye-jin Shim, Jiancheng Sun, and Shinji Watanabe},
368
+ title={Geolocation-Aware Robust Spoken Language Identification},
369
+ year={2025},
370
+ booktitle={Procedings of ASRU},
371
+ }
372
+
373
  @inproceedings{watanabe2018espnet,
374
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
375
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
 
379
  doi={10.21437/Interspeech.2018-1456},
380
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
381
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382
  ```
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/lid_inference_test.log ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt true --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
2
+ # Started at Tue May 27 16:46:05 CDT 2025
3
+ #
4
+ /u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt true --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
5
+ [gpue08] 2025-05-27 16:46:20,609 (abs_task:2406) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
6
+ /work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
7
+ torchaudio.set_audio_backend("sox_io")
8
+ /work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2429: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
9
+ torch.load(model_file, map_location=device),
10
+ [gpue08] 2025-05-27 16:46:34,331 (lid_inference_dist:86) INFO: Model structure:
11
+ ESPnetLIDUpstreamLang2VecConditionModel(
12
+ (frontend): S3prlFrontendLang2VecCondition(
13
+ (upstream): S3PRLUpstreamLang2VecCondition(
14
+ (upstream): UpstreamExpertLang2VecCondition(
15
+ (model): Wav2Vec2ModelLang2VecCondition(
16
+ (feature_extractor): Wav2Vec2FeatureEncoder(
17
+ (conv_layers): ModuleList(
18
+ (0): Wav2Vec2LayerNormConvLayer(
19
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
20
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
21
+ (activation): GELUActivation()
22
+ )
23
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
24
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
25
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
26
+ (activation): GELUActivation()
27
+ )
28
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
29
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
30
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
31
+ (activation): GELUActivation()
32
+ )
33
+ )
34
+ )
35
+ (feature_projection): Wav2Vec2FeatureProjection(
36
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
37
+ (projection): Linear(in_features=512, out_features=1280, bias=True)
38
+ (dropout): Dropout(p=0.1, inplace=False)
39
+ )
40
+ (encoder): Wav2Vec2EncoderLang2VecCondition(
41
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
42
+ (conv): ParametrizedConv1d(
43
+ 1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
44
+ (parametrizations): ModuleDict(
45
+ (weight): ParametrizationList(
46
+ (0): _WeightNorm()
47
+ )
48
+ )
49
+ )
50
+ (padding): Wav2Vec2SamePadLayer()
51
+ (activation): GELUActivation()
52
+ )
53
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
54
+ (dropout): Dropout(p=0.1, inplace=False)
55
+ (layers): ModuleList(
56
+ (0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
57
+ (attention): Wav2Vec2SdpaAttention(
58
+ (k_proj): Linear(in_features=1280, out_features=1280, bias=True)
59
+ (v_proj): Linear(in_features=1280, out_features=1280, bias=True)
60
+ (q_proj): Linear(in_features=1280, out_features=1280, bias=True)
61
+ (out_proj): Linear(in_features=1280, out_features=1280, bias=True)
62
+ )
63
+ (dropout): Dropout(p=0.1, inplace=False)
64
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
65
+ (feed_forward): Wav2Vec2FeedForward(
66
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
67
+ (intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
68
+ (intermediate_act_fn): GELUActivation()
69
+ (output_dense): Linear(in_features=5120, out_features=1280, bias=True)
70
+ (output_dropout): Dropout(p=0.1, inplace=False)
71
+ )
72
+ (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
73
+ )
74
+ )
75
+ (conditioning_projs): ModuleDict(
76
+ (32): Linear(in_features=299, out_features=1280, bias=True)
77
+ (36): Linear(in_features=299, out_features=1280, bias=True)
78
+ (40): Linear(in_features=299, out_features=1280, bias=True)
79
+ (44): Linear(in_features=299, out_features=1280, bias=True)
80
+ )
81
+ (ecapa_encoder): ModuleDict(
82
+ (32): IdentityEncoder()
83
+ (36): IdentityEncoder()
84
+ (40): IdentityEncoder()
85
+ (44): IdentityEncoder()
86
+ )
87
+ (pooling): ModuleDict(
88
+ (32): ChnAttnStatPooling(
89
+ (attention): Sequential(
90
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
91
+ (1): ReLU()
92
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
93
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
94
+ )
95
+ (softmax): Softmax(dim=2)
96
+ )
97
+ (36): ChnAttnStatPooling(
98
+ (attention): Sequential(
99
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
100
+ (1): ReLU()
101
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
102
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
103
+ )
104
+ (softmax): Softmax(dim=2)
105
+ )
106
+ (40): ChnAttnStatPooling(
107
+ (attention): Sequential(
108
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
109
+ (1): ReLU()
110
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
111
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
112
+ )
113
+ (softmax): Softmax(dim=2)
114
+ )
115
+ (44): ChnAttnStatPooling(
116
+ (attention): Sequential(
117
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
118
+ (1): ReLU()
119
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
120
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
121
+ )
122
+ (softmax): Softmax(dim=2)
123
+ )
124
+ )
125
+ (projector): ModuleDict(
126
+ (32): RawNet3Projector(
127
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
128
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
129
+ )
130
+ (36): RawNet3Projector(
131
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
132
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
133
+ )
134
+ (40): RawNet3Projector(
135
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
136
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
137
+ )
138
+ (44): RawNet3Projector(
139
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
140
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
141
+ )
142
+ )
143
+ (lang2vec_head): ModuleDict(
144
+ (32): Sequential(
145
+ (0): Linear(in_features=192, out_features=299, bias=True)
146
+ )
147
+ (36): Sequential(
148
+ (0): Linear(in_features=192, out_features=299, bias=True)
149
+ )
150
+ (40): Sequential(
151
+ (0): Linear(in_features=192, out_features=299, bias=True)
152
+ )
153
+ (44): Sequential(
154
+ (0): Linear(in_features=192, out_features=299, bias=True)
155
+ )
156
+ )
157
+ )
158
+ )
159
+ )
160
+ )
161
+ (featurizer): Featurizer()
162
+ )
163
+ (normalize): UtteranceMVN(norm_means=True, norm_vars=False)
164
+ (encoder): EcapaTdnnEncoder(
165
+ (conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
166
+ (relu): ReLU()
167
+ (bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
168
+ (layer1): EcapaBlock(
169
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
170
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
171
+ (convs): ModuleList(
172
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
173
+ )
174
+ (bns): ModuleList(
175
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
176
+ )
177
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
178
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
179
+ (relu): ReLU()
180
+ (se): SEModule(
181
+ (se): Sequential(
182
+ (0): AdaptiveAvgPool1d(output_size=1)
183
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
184
+ (2): ReLU()
185
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
186
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
187
+ (5): Sigmoid()
188
+ )
189
+ )
190
+ )
191
+ (layer2): EcapaBlock(
192
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
193
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
194
+ (convs): ModuleList(
195
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
196
+ )
197
+ (bns): ModuleList(
198
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
199
+ )
200
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
201
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
202
+ (relu): ReLU()
203
+ (se): SEModule(
204
+ (se): Sequential(
205
+ (0): AdaptiveAvgPool1d(output_size=1)
206
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
207
+ (2): ReLU()
208
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
209
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
210
+ (5): Sigmoid()
211
+ )
212
+ )
213
+ )
214
+ (layer3): EcapaBlock(
215
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
216
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
217
+ (convs): ModuleList(
218
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
219
+ )
220
+ (bns): ModuleList(
221
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
222
+ )
223
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
224
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
225
+ (relu): ReLU()
226
+ (se): SEModule(
227
+ (se): Sequential(
228
+ (0): AdaptiveAvgPool1d(output_size=1)
229
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
230
+ (2): ReLU()
231
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
232
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
233
+ (5): Sigmoid()
234
+ )
235
+ )
236
+ )
237
+ (layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
238
+ (mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
239
+ )
240
+ (pooling): ChnAttnStatPooling(
241
+ (attention): Sequential(
242
+ (0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
243
+ (1): ReLU()
244
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
245
+ (3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
246
+ )
247
+ (softmax): Softmax(dim=2)
248
+ )
249
+ (projector): RawNet3Projector(
250
+ (bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
251
+ (fc): Linear(in_features=3072, out_features=192, bias=True)
252
+ )
253
+ (loss): AAMSoftmaxSCTopKLang2Vec(
254
+ (ce): CrossEntropyLoss()
255
+ (lang2vec_head): Sequential(
256
+ (0): Linear(in_features=192, out_features=299, bias=True)
257
+ )
258
+ (lang2vec_loss): MSELoss()
259
+ )
260
+ )
261
+
262
+ Model summary:
263
+ Class Name: ESPnetLIDUpstreamLang2VecConditionModel
264
+ Total Number of model parameters: 978.26 M
265
+ Number of trainable parameters: 978.26 M (100.0%)
266
+ Size: 3.91 GB
267
+ Type: torch.float32
268
+ /work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
269
+ warnings.warn(
270
+ [gpue08] 2025-05-27 16:46:34,705 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/lids0
271
+ [gpue08] 2025-05-27 16:47:26,844 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
272
+ [gpue08] 2025-05-27 16:48:11,546 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
273
+ [gpue08] 2025-05-27 16:49:00,081 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
274
+ [gpue08] 2025-05-27 16:49:43,568 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
275
+ [gpue08] 2025-05-27 16:50:28,280 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
276
+ [gpue08] 2025-05-27 16:51:12,200 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
277
+ [gpue08] 2025-05-27 16:51:52,954 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
278
+ [gpue08] 2025-05-27 16:52:36,802 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
279
+ [gpue08] 2025-05-27 16:53:21,771 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
280
+ [gpue08] 2025-05-27 16:54:15,927 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
281
+ [gpue08] 2025-05-27 16:55:04,249 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
282
+ [gpue08] 2025-05-27 16:55:53,390 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
283
+ [gpue08] 2025-05-27 16:56:40,872 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
284
+ [gpue08] 2025-05-27 16:57:29,245 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
285
+ [gpue08] 2025-05-27 16:58:21,026 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
286
+ [gpue08] 2025-05-27 16:59:01,689 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
287
+ [gpue08] 2025-05-27 16:59:03,702 (lid_inference_dist:200) INFO: args.save_embd_per_utt: True
288
+ [gpue08] 2025-05-27 16:59:03,703 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
289
+ # Accounting: time=779 threads=1
290
+ # Ended (code 0) at Tue May 27 16:59:04 CDT 2025, elapsed time 779 seconds
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_babel_over_10s_lang_cross_train_voxlingua107_lang/results ADDED
The diff for this file is too large to render. See raw diff
 
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
2
+ # Started at Fri May 16 16:43:45 CDT 2025
3
+ #
4
+ /u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
5
+ [gpue02] 2025-05-16 16:44:01,140 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
6
+ /work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
7
+ torchaudio.set_audio_backend("sox_io")
8
+ /work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
9
+ torch.load(model_file, map_location=device),
10
+ [gpue02] 2025-05-16 16:44:11,133 (lid_inference_dist:86) INFO: Model structure:
11
+ ESPnetLIDUpstreamLang2VecConditionModel(
12
+ (frontend): S3prlFrontendLang2VecCondition(
13
+ (upstream): S3PRLUpstreamLang2VecCondition(
14
+ (upstream): UpstreamExpertLang2VecCondition(
15
+ (model): Wav2Vec2ModelLang2VecCondition(
16
+ (feature_extractor): Wav2Vec2FeatureEncoder(
17
+ (conv_layers): ModuleList(
18
+ (0): Wav2Vec2LayerNormConvLayer(
19
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
20
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
21
+ (activation): GELUActivation()
22
+ )
23
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
24
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
25
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
26
+ (activation): GELUActivation()
27
+ )
28
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
29
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
30
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
31
+ (activation): GELUActivation()
32
+ )
33
+ )
34
+ )
35
+ (feature_projection): Wav2Vec2FeatureProjection(
36
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
37
+ (projection): Linear(in_features=512, out_features=1280, bias=True)
38
+ (dropout): Dropout(p=0.1, inplace=False)
39
+ )
40
+ (encoder): Wav2Vec2EncoderLang2VecCondition(
41
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
42
+ (conv): ParametrizedConv1d(
43
+ 1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
44
+ (parametrizations): ModuleDict(
45
+ (weight): ParametrizationList(
46
+ (0): _WeightNorm()
47
+ )
48
+ )
49
+ )
50
+ (padding): Wav2Vec2SamePadLayer()
51
+ (activation): GELUActivation()
52
+ )
53
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
54
+ (dropout): Dropout(p=0.1, inplace=False)
55
+ (layers): ModuleList(
56
+ (0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
57
+ (attention): Wav2Vec2SdpaAttention(
58
+ (k_proj): Linear(in_features=1280, out_features=1280, bias=True)
59
+ (v_proj): Linear(in_features=1280, out_features=1280, bias=True)
60
+ (q_proj): Linear(in_features=1280, out_features=1280, bias=True)
61
+ (out_proj): Linear(in_features=1280, out_features=1280, bias=True)
62
+ )
63
+ (dropout): Dropout(p=0.1, inplace=False)
64
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
65
+ (feed_forward): Wav2Vec2FeedForward(
66
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
67
+ (intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
68
+ (intermediate_act_fn): GELUActivation()
69
+ (output_dense): Linear(in_features=5120, out_features=1280, bias=True)
70
+ (output_dropout): Dropout(p=0.1, inplace=False)
71
+ )
72
+ (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
73
+ )
74
+ )
75
+ (conditioning_projs): ModuleDict(
76
+ (32): Linear(in_features=299, out_features=1280, bias=True)
77
+ (36): Linear(in_features=299, out_features=1280, bias=True)
78
+ (40): Linear(in_features=299, out_features=1280, bias=True)
79
+ (44): Linear(in_features=299, out_features=1280, bias=True)
80
+ )
81
+ (ecapa_encoder): ModuleDict(
82
+ (32): IdentityEncoder()
83
+ (36): IdentityEncoder()
84
+ (40): IdentityEncoder()
85
+ (44): IdentityEncoder()
86
+ )
87
+ (pooling): ModuleDict(
88
+ (32): ChnAttnStatPooling(
89
+ (attention): Sequential(
90
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
91
+ (1): ReLU()
92
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
93
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
94
+ )
95
+ (softmax): Softmax(dim=2)
96
+ )
97
+ (36): ChnAttnStatPooling(
98
+ (attention): Sequential(
99
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
100
+ (1): ReLU()
101
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
102
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
103
+ )
104
+ (softmax): Softmax(dim=2)
105
+ )
106
+ (40): ChnAttnStatPooling(
107
+ (attention): Sequential(
108
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
109
+ (1): ReLU()
110
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
111
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
112
+ )
113
+ (softmax): Softmax(dim=2)
114
+ )
115
+ (44): ChnAttnStatPooling(
116
+ (attention): Sequential(
117
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
118
+ (1): ReLU()
119
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
120
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
121
+ )
122
+ (softmax): Softmax(dim=2)
123
+ )
124
+ )
125
+ (projector): ModuleDict(
126
+ (32): RawNet3Projector(
127
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
128
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
129
+ )
130
+ (36): RawNet3Projector(
131
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
132
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
133
+ )
134
+ (40): RawNet3Projector(
135
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
136
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
137
+ )
138
+ (44): RawNet3Projector(
139
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
140
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
141
+ )
142
+ )
143
+ (lang2vec_head): ModuleDict(
144
+ (32): Sequential(
145
+ (0): Linear(in_features=192, out_features=299, bias=True)
146
+ )
147
+ (36): Sequential(
148
+ (0): Linear(in_features=192, out_features=299, bias=True)
149
+ )
150
+ (40): Sequential(
151
+ (0): Linear(in_features=192, out_features=299, bias=True)
152
+ )
153
+ (44): Sequential(
154
+ (0): Linear(in_features=192, out_features=299, bias=True)
155
+ )
156
+ )
157
+ )
158
+ )
159
+ )
160
+ )
161
+ (featurizer): Featurizer()
162
+ )
163
+ (normalize): UtteranceMVN(norm_means=True, norm_vars=False)
164
+ (encoder): EcapaTdnnEncoder(
165
+ (conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
166
+ (relu): ReLU()
167
+ (bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
168
+ (layer1): EcapaBlock(
169
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
170
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
171
+ (convs): ModuleList(
172
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
173
+ )
174
+ (bns): ModuleList(
175
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
176
+ )
177
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
178
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
179
+ (relu): ReLU()
180
+ (se): SEModule(
181
+ (se): Sequential(
182
+ (0): AdaptiveAvgPool1d(output_size=1)
183
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
184
+ (2): ReLU()
185
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
186
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
187
+ (5): Sigmoid()
188
+ )
189
+ )
190
+ )
191
+ (layer2): EcapaBlock(
192
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
193
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
194
+ (convs): ModuleList(
195
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
196
+ )
197
+ (bns): ModuleList(
198
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
199
+ )
200
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
201
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
202
+ (relu): ReLU()
203
+ (se): SEModule(
204
+ (se): Sequential(
205
+ (0): AdaptiveAvgPool1d(output_size=1)
206
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
207
+ (2): ReLU()
208
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
209
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
210
+ (5): Sigmoid()
211
+ )
212
+ )
213
+ )
214
+ (layer3): EcapaBlock(
215
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
216
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
217
+ (convs): ModuleList(
218
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
219
+ )
220
+ (bns): ModuleList(
221
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
222
+ )
223
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
224
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
225
+ (relu): ReLU()
226
+ (se): SEModule(
227
+ (se): Sequential(
228
+ (0): AdaptiveAvgPool1d(output_size=1)
229
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
230
+ (2): ReLU()
231
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
232
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
233
+ (5): Sigmoid()
234
+ )
235
+ )
236
+ )
237
+ (layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
238
+ (mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
239
+ )
240
+ (pooling): ChnAttnStatPooling(
241
+ (attention): Sequential(
242
+ (0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
243
+ (1): ReLU()
244
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
245
+ (3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
246
+ )
247
+ (softmax): Softmax(dim=2)
248
+ )
249
+ (projector): RawNet3Projector(
250
+ (bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
251
+ (fc): Linear(in_features=3072, out_features=192, bias=True)
252
+ )
253
+ (loss): AAMSoftmaxSCTopKLang2Vec(
254
+ (ce): CrossEntropyLoss()
255
+ (lang2vec_head): Sequential(
256
+ (0): Linear(in_features=192, out_features=299, bias=True)
257
+ )
258
+ (lang2vec_loss): MSELoss()
259
+ )
260
+ )
261
+
262
+ Model summary:
263
+ Class Name: ESPnetLIDUpstreamLang2VecConditionModel
264
+ Total Number of model parameters: 978.26 M
265
+ Number of trainable parameters: 978.26 M (100.0%)
266
+ Size: 3.91 GB
267
+ Type: torch.float32
268
+ /work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
269
+ warnings.warn(
270
+ [gpue02] 2025-05-16 16:44:11,480 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/lids0
271
+ [gpue02] 2025-05-16 16:44:41,063 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
272
+ [gpue02] 2025-05-16 16:45:04,619 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
273
+ [gpue02] 2025-05-16 16:45:26,674 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
274
+ [gpue02] 2025-05-16 16:45:48,892 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
275
+ [gpue02] 2025-05-16 16:46:12,926 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
276
+ [gpue02] 2025-05-16 16:46:57,918 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
277
+ [gpue02] 2025-05-16 16:47:28,796 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
278
+ [gpue02] 2025-05-16 16:47:31,224 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
279
+ [gpue02] 2025-05-16 16:47:31,225 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
280
+ # Accounting: time=227 threads=1
281
+ # Ended (code 0) at Fri May 16 16:47:32 CDT 2025, elapsed time 227 seconds
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_dialect_ml_superb2_lang_cross_train_voxlingua107_lang/results ADDED
@@ -0,0 +1,1628 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Accuracy: 77.21%
2
+ Macro Accuracy: 85.60%
3
+ Accuracy per Language:
4
+ ara: 70.37%
5
+ guj: 98.95%
6
+ spa: 97.81%
7
+ ell: 71.37%
8
+ tam: 99.08%
9
+ deu: 73.48%
10
+ tel: 99.01%
11
+ eng: 74.73%
12
+ Key: ara_sada_acw_000000, Target: ara, Predicted: tur
13
+ Key: ara_sada_acw_000001, Target: ara, Predicted: hau
14
+ Key: ara_sada_acw_000004, Target: ara, Predicted: tuk
15
+ Key: ara_sada_acw_000005, Target: ara, Predicted: grn
16
+ Key: ara_sada_acw_000006, Target: ara, Predicted: ceb
17
+ Key: ara_sada_acw_000008, Target: ara, Predicted: hau
18
+ Key: ara_sada_acw_000009, Target: ara, Predicted: bos
19
+ Key: ara_sada_acw_000011, Target: ara, Predicted: ben
20
+ Key: ara_sada_acw_000014, Target: ara, Predicted: amh
21
+ Key: ara_sada_acw_000023, Target: ara, Predicted: jav
22
+ Key: ara_sada_acw_000025, Target: ara, Predicted: som
23
+ Key: ara_sada_acw_000029, Target: ara, Predicted: mar
24
+ Key: ara_sada_acw_000033, Target: ara, Predicted: som
25
+ Key: ara_sada_acw_000038, Target: ara, Predicted: eng
26
+ Key: ara_sada_acw_000044, Target: ara, Predicted: hau
27
+ Key: ara_sada_acw_000045, Target: ara, Predicted: fas
28
+ Key: ara_sada_acw_000048, Target: ara, Predicted: eng
29
+ Key: ara_sada_acw_000056, Target: ara, Predicted: hat
30
+ Key: ara_sada_acw_000057, Target: ara, Predicted: hau
31
+ Key: ara_sada_acw_000063, Target: ara, Predicted: amh
32
+ Key: ara_sada_acw_000065, Target: ara, Predicted: tgl
33
+ Key: ara_sada_acw_000067, Target: ara, Predicted: ben
34
+ Key: ara_sada_acw_000069, Target: ara, Predicted: hat
35
+ Key: ara_sada_acw_000071, Target: ara, Predicted: snd
36
+ Key: ara_sada_acw_000075, Target: ara, Predicted: cmn
37
+ Key: ara_sada_acw_000077, Target: ara, Predicted: amh
38
+ Key: ara_sada_acw_000078, Target: ara, Predicted: amh
39
+ Key: ara_sada_acw_000079, Target: ara, Predicted: aze
40
+ Key: ara_sada_acw_000080, Target: ara, Predicted: hau
41
+ Key: ara_sada_acw_000083, Target: ara, Predicted: jav
42
+ Key: ara_sada_acw_000084, Target: ara, Predicted: amh
43
+ Key: ara_sada_acw_000087, Target: ara, Predicted: ceb
44
+ Key: ara_sada_acw_000094, Target: ara, Predicted: tat
45
+ Key: ara_sada_acw_000096, Target: ara, Predicted: hau
46
+ Key: ara_sada_acw_000099, Target: ara, Predicted: amh
47
+ Key: ara_sada_acw_000101, Target: ara, Predicted: cmn
48
+ Key: ara_sada_acw_000103, Target: ara, Predicted: hau
49
+ Key: ara_sada_acw_000106, Target: ara, Predicted: aze
50
+ Key: ara_sada_acw_000110, Target: ara, Predicted: lin
51
+ Key: ara_sada_acw_000116, Target: ara, Predicted: fas
52
+ Key: ara_sada_acw_000117, Target: ara, Predicted: ben
53
+ Key: ara_sada_acw_000118, Target: ara, Predicted: hun
54
+ Key: ara_sada_acw_000123, Target: ara, Predicted: som
55
+ Key: ara_sada_acw_000124, Target: ara, Predicted: hau
56
+ Key: ara_sada_acw_000125, Target: ara, Predicted: heb
57
+ Key: ara_sada_acw_000127, Target: ara, Predicted: nno
58
+ Key: ara_sada_acw_000130, Target: ara, Predicted: swa
59
+ Key: ara_sada_acw_000131, Target: ara, Predicted: mya
60
+ Key: ara_sada_acw_000132, Target: ara, Predicted: jav
61
+ Key: ara_sada_acw_000139, Target: ara, Predicted: jav
62
+ Key: ara_sada_acw_000140, Target: ara, Predicted: ces
63
+ Key: ara_sada_acw_000147, Target: ara, Predicted: mlt
64
+ Key: ara_sada_acw_000149, Target: ara, Predicted: aze
65
+ Key: ara_sada_acw_000153, Target: ara, Predicted: mlg
66
+ Key: ara_sada_acw_000161, Target: ara, Predicted: som
67
+ Key: ara_sada_acw_000162, Target: ara, Predicted: ell
68
+ Key: ara_sada_acw_000163, Target: ara, Predicted: msa
69
+ Key: ara_sada_acw_000164, Target: ara, Predicted: mlt
70
+ Key: ara_sada_acw_000171, Target: ara, Predicted: urd
71
+ Key: ara_sada_acw_000173, Target: ara, Predicted: lav
72
+ Key: ara_sada_afb_000002, Target: ara, Predicted: tat
73
+ Key: ara_sada_afb_000003, Target: ara, Predicted: kan
74
+ Key: ara_sada_afb_000007, Target: ara, Predicted: pus
75
+ Key: ara_sada_afb_000009, Target: ara, Predicted: snd
76
+ Key: ara_sada_afb_000010, Target: ara, Predicted: mlt
77
+ Key: ara_sada_afb_000011, Target: ara, Predicted: guj
78
+ Key: ara_sada_afb_000016, Target: ara, Predicted: amh
79
+ Key: ara_sada_afb_000018, Target: ara, Predicted: amh
80
+ Key: ara_sada_afb_000020, Target: ara, Predicted: som
81
+ Key: ara_sada_afb_000021, Target: ara, Predicted: ell
82
+ Key: ara_sada_afb_000030, Target: ara, Predicted: amh
83
+ Key: ara_sada_afb_000032, Target: ara, Predicted: kaz
84
+ Key: ara_sada_afb_000042, Target: ara, Predicted: yid
85
+ Key: ara_sada_afb_000043, Target: ara, Predicted: amh
86
+ Key: ara_sada_afb_000046, Target: ara, Predicted: urd
87
+ Key: ara_sada_afb_000047, Target: ara, Predicted: hau
88
+ Key: ara_sada_afb_000050, Target: ara, Predicted: som
89
+ Key: ara_sada_afb_000051, Target: ara, Predicted: snd
90
+ Key: ara_sada_afb_000053, Target: ara, Predicted: som
91
+ Key: ara_sada_afb_000057, Target: ara, Predicted: bod
92
+ Key: ara_sada_afb_000058, Target: ara, Predicted: hau
93
+ Key: ara_sada_afb_000071, Target: ara, Predicted: heb
94
+ Key: ara_sada_afb_000072, Target: ara, Predicted: jav
95
+ Key: ara_sada_afb_000073, Target: ara, Predicted: mya
96
+ Key: ara_sada_afb_000080, Target: ara, Predicted: asm
97
+ Key: ara_sada_afb_000084, Target: ara, Predicted: msa
98
+ Key: ara_sada_afb_000085, Target: ara, Predicted: amh
99
+ Key: ara_sada_afb_000088, Target: ara, Predicted: swa
100
+ Key: ara_sada_afb_000094, Target: ara, Predicted: nno
101
+ Key: ara_sada_afb_000099, Target: ara, Predicted: afr
102
+ Key: ara_sada_afb_000104, Target: ara, Predicted: hau
103
+ Key: ara_sada_afb_000106, Target: ara, Predicted: heb
104
+ Key: ara_sada_afb_000108, Target: ara, Predicted: ben
105
+ Key: ara_sada_afb_000117, Target: ara, Predicted: bod
106
+ Key: ara_sada_afb_000118, Target: ara, Predicted: mya
107
+ Key: ara_sada_afb_000119, Target: ara, Predicted: hrv
108
+ Key: ara_sada_afb_000121, Target: ara, Predicted: ell
109
+ Key: ara_sada_afb_000124, Target: ara, Predicted: khm
110
+ Key: ara_sada_afb_000129, Target: ara, Predicted: hau
111
+ Key: ara_sada_afb_000132, Target: ara, Predicted: yid
112
+ Key: ara_sada_afb_000136, Target: ara, Predicted: heb
113
+ Key: ara_sada_afb_000138, Target: ara, Predicted: tat
114
+ Key: ara_sada_afb_000140, Target: ara, Predicted: amh
115
+ Key: ara_sada_afb_000141, Target: ara, Predicted: heb
116
+ Key: ara_sada_afb_000143, Target: ara, Predicted: bod
117
+ Key: ara_sada_afb_000147, Target: ara, Predicted: fas
118
+ Key: ara_sada_afb_000148, Target: ara, Predicted: tur
119
+ Key: ara_sada_afb_000149, Target: ara, Predicted: som
120
+ Key: ara_sada_afb_000151, Target: ara, Predicted: hun
121
+ Key: ara_sada_afb_000153, Target: ara, Predicted: mlt
122
+ Key: ara_sada_afb_000155, Target: ara, Predicted: grn
123
+ Key: ara_sada_afb_000156, Target: ara, Predicted: amh
124
+ Key: ara_sada_afb_000159, Target: ara, Predicted: fas
125
+ Key: ara_sada_afb_000161, Target: ara, Predicted: som
126
+ Key: ara_sada_afb_000162, Target: ara, Predicted: tat
127
+ Key: ara_sada_afb_000164, Target: ara, Predicted: amh
128
+ Key: ara_sada_afb_000166, Target: ara, Predicted: fas
129
+ Key: ara_sada_afb_000167, Target: ara, Predicted: heb
130
+ Key: ara_sada_afb_000168, Target: ara, Predicted: nno
131
+ Key: ara_sada_afb_000173, Target: ara, Predicted: amh
132
+ Key: ara_sada_afb_000181, Target: ara, Predicted: urd
133
+ Key: ara_sada_afb_000183, Target: ara, Predicted: sqi
134
+ Key: ara_sada_afb_000184, Target: ara, Predicted: hau
135
+ Key: ara_sada_afb_000188, Target: ara, Predicted: hin
136
+ Key: ara_sada_afb_000190, Target: ara, Predicted: heb
137
+ Key: ara_sada_afb_000192, Target: ara, Predicted: amh
138
+ Key: ara_sada_afb_000193, Target: ara, Predicted: bos
139
+ Key: ara_sada_afb_000194, Target: ara, Predicted: tat
140
+ Key: ara_sada_afb_000196, Target: ara, Predicted: aze
141
+ Key: ara_sada_afb_000197, Target: ara, Predicted: hau
142
+ Key: ara_sada_afb_000203, Target: ara, Predicted: som
143
+ Key: ara_sada_afb_000208, Target: ara, Predicted: snd
144
+ Key: ara_sada_afb_000212, Target: ara, Predicted: heb
145
+ Key: ara_sada_afb_000220, Target: ara, Predicted: heb
146
+ Key: ara_sada_afb_000221, Target: ara, Predicted: som
147
+ Key: ara_sada_arb_000005, Target: ara, Predicted: heb
148
+ Key: ara_sada_arb_000024, Target: ara, Predicted: amh
149
+ Key: ara_sada_arb_000031, Target: ara, Predicted: yor
150
+ Key: ara_sada_arb_000033, Target: ara, Predicted: yor
151
+ Key: ara_sada_arb_000041, Target: ara, Predicted: mlg
152
+ Key: ara_sada_ars_000007, Target: ara, Predicted: amh
153
+ Key: ara_sada_ars_000008, Target: ara, Predicted: amh
154
+ Key: ara_sada_ars_000016, Target: ara, Predicted: ell
155
+ Key: ara_sada_ars_000018, Target: ara, Predicted: hau
156
+ Key: ara_sada_ars_000019, Target: ara, Predicted: bos
157
+ Key: ara_sada_ars_000030, Target: ara, Predicted: amh
158
+ Key: ara_sada_ars_000031, Target: ara, Predicted: snd
159
+ Key: ara_sada_ars_000032, Target: ara, Predicted: bak
160
+ Key: ara_sada_ars_000033, Target: ara, Predicted: hau
161
+ Key: ara_sada_ars_000038, Target: ara, Predicted: lav
162
+ Key: ara_sada_ars_000039, Target: ara, Predicted: msa
163
+ Key: ara_sada_ars_000042, Target: ara, Predicted: slk
164
+ Key: ara_sada_ars_000043, Target: ara, Predicted: dan
165
+ Key: ara_sada_ars_000044, Target: ara, Predicted: lav
166
+ Key: ara_sada_ars_000053, Target: ara, Predicted: slv
167
+ Key: ara_sada_ars_000055, Target: ara, Predicted: eng
168
+ Key: ara_sada_ars_000058, Target: ara, Predicted: mya
169
+ Key: ara_sada_ars_000061, Target: ara, Predicted: isl
170
+ Key: ara_sada_ars_000069, Target: ara, Predicted: sqi
171
+ Key: ara_sada_ars_000072, Target: ara, Predicted: snd
172
+ Key: ara_sada_ars_000075, Target: ara, Predicted: lao
173
+ Key: ara_sada_ars_000082, Target: ara, Predicted: san
174
+ Key: ara_sada_ars_000090, Target: ara, Predicted: guj
175
+ Key: ara_sada_ars_000091, Target: ara, Predicted: heb
176
+ Key: ara_sada_ars_000092, Target: ara, Predicted: yor
177
+ Key: ara_sada_ars_000098, Target: ara, Predicted: sna
178
+ Key: ara_sada_ars_000105, Target: ara, Predicted: cmn
179
+ Key: ara_sada_ars_000110, Target: ara, Predicted: amh
180
+ Key: ara_sada_ars_000115, Target: ara, Predicted: tat
181
+ Key: ara_sada_ars_000121, Target: ara, Predicted: fra
182
+ Key: ara_sada_ars_000123, Target: ara, Predicted: isl
183
+ Key: ara_sada_ars_000129, Target: ara, Predicted: urd
184
+ Key: ara_sada_ars_000136, Target: ara, Predicted: nno
185
+ Key: ara_sada_ars_000140, Target: ara, Predicted: som
186
+ Key: ara_sada_ars_000146, Target: ara, Predicted: ita
187
+ Key: ara_sada_ars_000152, Target: ara, Predicted: amh
188
+ Key: deu_swissdial_ag_000003, Target: deu, Predicted: nld
189
+ Key: deu_swissdial_ag_000008, Target: deu, Predicted: tat
190
+ Key: deu_swissdial_ag_000013, Target: deu, Predicted: afr
191
+ Key: deu_swissdial_ag_000014, Target: deu, Predicted: afr
192
+ Key: deu_swissdial_ag_000015, Target: deu, Predicted: afr
193
+ Key: deu_swissdial_ag_000016, Target: deu, Predicted: afr
194
+ Key: deu_swissdial_ag_000023, Target: deu, Predicted: afr
195
+ Key: deu_swissdial_ag_000025, Target: deu, Predicted: afr
196
+ Key: deu_swissdial_ag_000026, Target: deu, Predicted: afr
197
+ Key: deu_swissdial_ag_000031, Target: deu, Predicted: nld
198
+ Key: deu_swissdial_ag_000032, Target: deu, Predicted: nld
199
+ Key: deu_swissdial_ag_000035, Target: deu, Predicted: afr
200
+ Key: deu_swissdial_ag_000037, Target: deu, Predicted: afr
201
+ Key: deu_swissdial_ag_000038, Target: deu, Predicted: afr
202
+ Key: deu_swissdial_ag_000040, Target: deu, Predicted: afr
203
+ Key: deu_swissdial_ag_000042, Target: deu, Predicted: nld
204
+ Key: deu_swissdial_ag_000047, Target: deu, Predicted: nld
205
+ Key: deu_swissdial_ag_000055, Target: deu, Predicted: afr
206
+ Key: deu_swissdial_ag_000059, Target: deu, Predicted: afr
207
+ Key: deu_swissdial_ag_000062, Target: deu, Predicted: nld
208
+ Key: deu_swissdial_ag_000064, Target: deu, Predicted: afr
209
+ Key: deu_swissdial_ag_000073, Target: deu, Predicted: afr
210
+ Key: deu_swissdial_ag_000076, Target: deu, Predicted: nld
211
+ Key: deu_swissdial_ag_000084, Target: deu, Predicted: nld
212
+ Key: deu_swissdial_ag_000085, Target: deu, Predicted: nld
213
+ Key: deu_swissdial_ag_000086, Target: deu, Predicted: afr
214
+ Key: deu_swissdial_ag_000088, Target: deu, Predicted: nld
215
+ Key: deu_swissdial_ag_000089, Target: deu, Predicted: yid
216
+ Key: deu_swissdial_ag_000091, Target: deu, Predicted: afr
217
+ Key: deu_swissdial_ag_000092, Target: deu, Predicted: nld
218
+ Key: deu_swissdial_ag_000093, Target: deu, Predicted: afr
219
+ Key: deu_swissdial_ag_000095, Target: deu, Predicted: afr
220
+ Key: deu_swissdial_ag_000096, Target: deu, Predicted: slk
221
+ Key: deu_swissdial_ag_000100, Target: deu, Predicted: nld
222
+ Key: deu_swissdial_ag_000107, Target: deu, Predicted: nld
223
+ Key: deu_swissdial_ag_000108, Target: deu, Predicted: ltz
224
+ Key: deu_swissdial_ag_000110, Target: deu, Predicted: afr
225
+ Key: deu_swissdial_ag_000114, Target: deu, Predicted: nld
226
+ Key: deu_swissdial_ag_000117, Target: deu, Predicted: afr
227
+ Key: deu_swissdial_ag_000118, Target: deu, Predicted: afr
228
+ Key: deu_swissdial_ag_000120, Target: deu, Predicted: afr
229
+ Key: deu_swissdial_ag_000121, Target: deu, Predicted: afr
230
+ Key: deu_swissdial_ag_000122, Target: deu, Predicted: afr
231
+ Key: deu_swissdial_ag_000124, Target: deu, Predicted: hun
232
+ Key: deu_swissdial_ag_000126, Target: deu, Predicted: nld
233
+ Key: deu_swissdial_ag_000127, Target: deu, Predicted: hun
234
+ Key: deu_swissdial_ag_000128, Target: deu, Predicted: afr
235
+ Key: deu_swissdial_ag_000134, Target: deu, Predicted: sqi
236
+ Key: deu_swissdial_ag_000135, Target: deu, Predicted: afr
237
+ Key: deu_swissdial_ag_000138, Target: deu, Predicted: afr
238
+ Key: deu_swissdial_ag_000139, Target: deu, Predicted: afr
239
+ Key: deu_swissdial_ag_000141, Target: deu, Predicted: afr
240
+ Key: deu_swissdial_ag_000148, Target: deu, Predicted: nld
241
+ Key: deu_swissdial_ag_000150, Target: deu, Predicted: afr
242
+ Key: deu_swissdial_ag_000151, Target: deu, Predicted: afr
243
+ Key: deu_swissdial_ag_000159, Target: deu, Predicted: nld
244
+ Key: deu_swissdial_ag_000163, Target: deu, Predicted: afr
245
+ Key: deu_swissdial_be_000004, Target: deu, Predicted: afr
246
+ Key: deu_swissdial_be_000008, Target: deu, Predicted: nld
247
+ Key: deu_swissdial_be_000013, Target: deu, Predicted: afr
248
+ Key: deu_swissdial_be_000016, Target: deu, Predicted: nld
249
+ Key: deu_swissdial_be_000018, Target: deu, Predicted: afr
250
+ Key: deu_swissdial_be_000023, Target: deu, Predicted: afr
251
+ Key: deu_swissdial_be_000024, Target: deu, Predicted: nld
252
+ Key: deu_swissdial_be_000025, Target: deu, Predicted: afr
253
+ Key: deu_swissdial_be_000030, Target: deu, Predicted: nld
254
+ Key: deu_swissdial_be_000031, Target: deu, Predicted: afr
255
+ Key: deu_swissdial_be_000033, Target: deu, Predicted: nld
256
+ Key: deu_swissdial_be_000034, Target: deu, Predicted: afr
257
+ Key: deu_swissdial_be_000035, Target: deu, Predicted: afr
258
+ Key: deu_swissdial_be_000036, Target: deu, Predicted: slv
259
+ Key: deu_swissdial_be_000039, Target: deu, Predicted: afr
260
+ Key: deu_swissdial_be_000040, Target: deu, Predicted: afr
261
+ Key: deu_swissdial_be_000042, Target: deu, Predicted: afr
262
+ Key: deu_swissdial_be_000043, Target: deu, Predicted: afr
263
+ Key: deu_swissdial_be_000048, Target: deu, Predicted: nld
264
+ Key: deu_swissdial_be_000054, Target: deu, Predicted: afr
265
+ Key: deu_swissdial_be_000059, Target: deu, Predicted: nld
266
+ Key: deu_swissdial_be_000060, Target: deu, Predicted: nld
267
+ Key: deu_swissdial_be_000066, Target: deu, Predicted: nld
268
+ Key: deu_swissdial_be_000076, Target: deu, Predicted: afr
269
+ Key: deu_swissdial_be_000084, Target: deu, Predicted: nld
270
+ Key: deu_swissdial_be_000087, Target: deu, Predicted: nld
271
+ Key: deu_swissdial_be_000090, Target: deu, Predicted: afr
272
+ Key: deu_swissdial_be_000091, Target: deu, Predicted: nld
273
+ Key: deu_swissdial_be_000092, Target: deu, Predicted: afr
274
+ Key: deu_swissdial_be_000096, Target: deu, Predicted: afr
275
+ Key: deu_swissdial_be_000103, Target: deu, Predicted: est
276
+ Key: deu_swissdial_be_000107, Target: deu, Predicted: afr
277
+ Key: deu_swissdial_be_000108, Target: deu, Predicted: ltz
278
+ Key: deu_swissdial_be_000112, Target: deu, Predicted: afr
279
+ Key: deu_swissdial_be_000113, Target: deu, Predicted: nld
280
+ Key: deu_swissdial_be_000114, Target: deu, Predicted: nld
281
+ Key: deu_swissdial_be_000115, Target: deu, Predicted: nld
282
+ Key: deu_swissdial_be_000117, Target: deu, Predicted: nld
283
+ Key: deu_swissdial_be_000124, Target: deu, Predicted: nld
284
+ Key: deu_swissdial_be_000125, Target: deu, Predicted: nld
285
+ Key: deu_swissdial_be_000129, Target: deu, Predicted: afr
286
+ Key: deu_swissdial_bs_000003, Target: deu, Predicted: ltz
287
+ Key: deu_swissdial_bs_000008, Target: deu, Predicted: dan
288
+ Key: deu_swissdial_bs_000019, Target: deu, Predicted: dan
289
+ Key: deu_swissdial_bs_000031, Target: deu, Predicted: lat
290
+ Key: deu_swissdial_bs_000036, Target: deu, Predicted: ltz
291
+ Key: deu_swissdial_bs_000039, Target: deu, Predicted: dan
292
+ Key: deu_swissdial_bs_000079, Target: deu, Predicted: ltz
293
+ Key: deu_swissdial_bs_000082, Target: deu, Predicted: ltz
294
+ Key: deu_swissdial_bs_000088, Target: deu, Predicted: ltz
295
+ Key: deu_swissdial_bs_000093, Target: deu, Predicted: nld
296
+ Key: deu_swissdial_bs_000097, Target: deu, Predicted: nno
297
+ Key: deu_swissdial_bs_000114, Target: deu, Predicted: afr
298
+ Key: deu_swissdial_bs_000133, Target: deu, Predicted: nld
299
+ Key: deu_swissdial_bs_000139, Target: deu, Predicted: afr
300
+ Key: deu_swissdial_gr_000010, Target: deu, Predicted: afr
301
+ Key: deu_swissdial_gr_000040, Target: deu, Predicted: afr
302
+ Key: deu_swissdial_gr_000059, Target: deu, Predicted: slv
303
+ Key: deu_swissdial_gr_000063, Target: deu, Predicted: slv
304
+ Key: deu_swissdial_gr_000064, Target: deu, Predicted: slv
305
+ Key: deu_swissdial_gr_000081, Target: deu, Predicted: afr
306
+ Key: deu_swissdial_gr_000088, Target: deu, Predicted: nld
307
+ Key: deu_swissdial_gr_000105, Target: deu, Predicted: afr
308
+ Key: deu_swissdial_gr_000114, Target: deu, Predicted: slv
309
+ Key: deu_swissdial_gr_000115, Target: deu, Predicted: dan
310
+ Key: deu_swissdial_gr_000123, Target: deu, Predicted: slk
311
+ Key: deu_swissdial_gr_000133, Target: deu, Predicted: slv
312
+ Key: deu_swissdial_lu_000002, Target: deu, Predicted: nld
313
+ Key: deu_swissdial_lu_000003, Target: deu, Predicted: nld
314
+ Key: deu_swissdial_lu_000004, Target: deu, Predicted: afr
315
+ Key: deu_swissdial_lu_000006, Target: deu, Predicted: nld
316
+ Key: deu_swissdial_lu_000007, Target: deu, Predicted: afr
317
+ Key: deu_swissdial_lu_000009, Target: deu, Predicted: nld
318
+ Key: deu_swissdial_lu_000011, Target: deu, Predicted: hun
319
+ Key: deu_swissdial_lu_000012, Target: deu, Predicted: afr
320
+ Key: deu_swissdial_lu_000014, Target: deu, Predicted: nld
321
+ Key: deu_swissdial_lu_000016, Target: deu, Predicted: nld
322
+ Key: deu_swissdial_lu_000017, Target: deu, Predicted: nld
323
+ Key: deu_swissdial_lu_000019, Target: deu, Predicted: afr
324
+ Key: deu_swissdial_lu_000021, Target: deu, Predicted: nld
325
+ Key: deu_swissdial_lu_000022, Target: deu, Predicted: nld
326
+ Key: deu_swissdial_lu_000023, Target: deu, Predicted: afr
327
+ Key: deu_swissdial_lu_000024, Target: deu, Predicted: afr
328
+ Key: deu_swissdial_lu_000026, Target: deu, Predicted: nld
329
+ Key: deu_swissdial_lu_000027, Target: deu, Predicted: ltz
330
+ Key: deu_swissdial_lu_000029, Target: deu, Predicted: slk
331
+ Key: deu_swissdial_lu_000031, Target: deu, Predicted: yid
332
+ Key: deu_swissdial_lu_000033, Target: deu, Predicted: nld
333
+ Key: deu_swissdial_lu_000034, Target: deu, Predicted: afr
334
+ Key: deu_swissdial_lu_000036, Target: deu, Predicted: afr
335
+ Key: deu_swissdial_lu_000037, Target: deu, Predicted: nld
336
+ Key: deu_swissdial_lu_000038, Target: deu, Predicted: ltz
337
+ Key: deu_swissdial_lu_000040, Target: deu, Predicted: ltz
338
+ Key: deu_swissdial_lu_000042, Target: deu, Predicted: nld
339
+ Key: deu_swissdial_lu_000043, Target: deu, Predicted: ltz
340
+ Key: deu_swissdial_lu_000044, Target: deu, Predicted: afr
341
+ Key: deu_swissdial_lu_000046, Target: deu, Predicted: afr
342
+ Key: deu_swissdial_lu_000047, Target: deu, Predicted: ltz
343
+ Key: deu_swissdial_lu_000051, Target: deu, Predicted: cym
344
+ Key: deu_swissdial_lu_000052, Target: deu, Predicted: nld
345
+ Key: deu_swissdial_lu_000053, Target: deu, Predicted: afr
346
+ Key: deu_swissdial_lu_000054, Target: deu, Predicted: afr
347
+ Key: deu_swissdial_lu_000055, Target: deu, Predicted: nld
348
+ Key: deu_swissdial_lu_000056, Target: deu, Predicted: afr
349
+ Key: deu_swissdial_lu_000057, Target: deu, Predicted: afr
350
+ Key: deu_swissdial_lu_000058, Target: deu, Predicted: nld
351
+ Key: deu_swissdial_lu_000065, Target: deu, Predicted: hun
352
+ Key: deu_swissdial_lu_000066, Target: deu, Predicted: afr
353
+ Key: deu_swissdial_lu_000067, Target: deu, Predicted: afr
354
+ Key: deu_swissdial_lu_000069, Target: deu, Predicted: nld
355
+ Key: deu_swissdial_lu_000071, Target: deu, Predicted: afr
356
+ Key: deu_swissdial_lu_000072, Target: deu, Predicted: afr
357
+ Key: deu_swissdial_lu_000073, Target: deu, Predicted: isl
358
+ Key: deu_swissdial_lu_000075, Target: deu, Predicted: nld
359
+ Key: deu_swissdial_lu_000077, Target: deu, Predicted: afr
360
+ Key: deu_swissdial_lu_000079, Target: deu, Predicted: afr
361
+ Key: deu_swissdial_lu_000080, Target: deu, Predicted: afr
362
+ Key: deu_swissdial_lu_000081, Target: deu, Predicted: afr
363
+ Key: deu_swissdial_lu_000085, Target: deu, Predicted: nld
364
+ Key: deu_swissdial_lu_000086, Target: deu, Predicted: afr
365
+ Key: deu_swissdial_lu_000087, Target: deu, Predicted: nld
366
+ Key: deu_swissdial_lu_000090, Target: deu, Predicted: nld
367
+ Key: deu_swissdial_lu_000095, Target: deu, Predicted: isl
368
+ Key: deu_swissdial_lu_000096, Target: deu, Predicted: afr
369
+ Key: deu_swissdial_lu_000097, Target: deu, Predicted: nld
370
+ Key: deu_swissdial_lu_000099, Target: deu, Predicted: ltz
371
+ Key: deu_swissdial_lu_000102, Target: deu, Predicted: afr
372
+ Key: deu_swissdial_lu_000103, Target: deu, Predicted: nld
373
+ Key: deu_swissdial_lu_000104, Target: deu, Predicted: nld
374
+ Key: deu_swissdial_lu_000106, Target: deu, Predicted: afr
375
+ Key: deu_swissdial_lu_000107, Target: deu, Predicted: est
376
+ Key: deu_swissdial_lu_000108, Target: deu, Predicted: afr
377
+ Key: deu_swissdial_lu_000112, Target: deu, Predicted: yid
378
+ Key: deu_swissdial_lu_000113, Target: deu, Predicted: nld
379
+ Key: deu_swissdial_lu_000116, Target: deu, Predicted: ltz
380
+ Key: deu_swissdial_lu_000117, Target: deu, Predicted: afr
381
+ Key: deu_swissdial_lu_000120, Target: deu, Predicted: nld
382
+ Key: deu_swissdial_lu_000121, Target: deu, Predicted: afr
383
+ Key: deu_swissdial_lu_000123, Target: deu, Predicted: nld
384
+ Key: deu_swissdial_lu_000125, Target: deu, Predicted: nld
385
+ Key: deu_swissdial_lu_000126, Target: deu, Predicted: afr
386
+ Key: deu_swissdial_lu_000129, Target: deu, Predicted: afr
387
+ Key: deu_swissdial_lu_000130, Target: deu, Predicted: afr
388
+ Key: deu_swissdial_lu_000132, Target: deu, Predicted: nld
389
+ Key: deu_swissdial_lu_000133, Target: deu, Predicted: nld
390
+ Key: deu_swissdial_lu_000134, Target: deu, Predicted: afr
391
+ Key: deu_swissdial_lu_000135, Target: deu, Predicted: afr
392
+ Key: deu_swissdial_lu_000136, Target: deu, Predicted: nld
393
+ Key: deu_swissdial_lu_000137, Target: deu, Predicted: nld
394
+ Key: deu_swissdial_lu_000138, Target: deu, Predicted: afr
395
+ Key: deu_swissdial_lu_000140, Target: deu, Predicted: afr
396
+ Key: deu_swissdial_lu_000144, Target: deu, Predicted: nld
397
+ Key: deu_swissdial_lu_000146, Target: deu, Predicted: afr
398
+ Key: deu_swissdial_lu_000150, Target: deu, Predicted: afr
399
+ Key: deu_swissdial_lu_000151, Target: deu, Predicted: nld
400
+ Key: deu_swissdial_lu_000153, Target: deu, Predicted: afr
401
+ Key: deu_swissdial_lu_000155, Target: deu, Predicted: nld
402
+ Key: deu_swissdial_lu_000157, Target: deu, Predicted: afr
403
+ Key: deu_swissdial_lu_000158, Target: deu, Predicted: nld
404
+ Key: deu_swissdial_lu_000159, Target: deu, Predicted: nld
405
+ Key: deu_swissdial_lu_000162, Target: deu, Predicted: nld
406
+ Key: deu_swissdial_lu_000163, Target: deu, Predicted: nld
407
+ Key: deu_swissdial_lu_000164, Target: deu, Predicted: ltz
408
+ Key: deu_swissdial_lu_000166, Target: deu, Predicted: nld
409
+ Key: deu_swissdial_lu_000167, Target: deu, Predicted: afr
410
+ Key: deu_swissdial_lu_000168, Target: deu, Predicted: afr
411
+ Key: deu_swissdial_lu_000170, Target: deu, Predicted: nld
412
+ Key: deu_swissdial_lu_000172, Target: deu, Predicted: nor
413
+ Key: deu_swissdial_lu_000173, Target: deu, Predicted: afr
414
+ Key: deu_swissdial_sg_000010, Target: deu, Predicted: nld
415
+ Key: deu_swissdial_sg_000046, Target: deu, Predicted: dan
416
+ Key: deu_swissdial_sg_000078, Target: deu, Predicted: nld
417
+ Key: deu_swissdial_sg_000104, Target: deu, Predicted: est
418
+ Key: deu_swissdial_sg_000109, Target: deu, Predicted: afr
419
+ Key: deu_swissdial_vs_000003, Target: deu, Predicted: afr
420
+ Key: deu_swissdial_vs_000004, Target: deu, Predicted: afr
421
+ Key: deu_swissdial_vs_000005, Target: deu, Predicted: nld
422
+ Key: deu_swissdial_vs_000009, Target: deu, Predicted: afr
423
+ Key: deu_swissdial_vs_000010, Target: deu, Predicted: nld
424
+ Key: deu_swissdial_vs_000016, Target: deu, Predicted: nld
425
+ Key: deu_swissdial_vs_000020, Target: deu, Predicted: nld
426
+ Key: deu_swissdial_vs_000021, Target: deu, Predicted: afr
427
+ Key: deu_swissdial_vs_000029, Target: deu, Predicted: nld
428
+ Key: deu_swissdial_vs_000030, Target: deu, Predicted: nld
429
+ Key: deu_swissdial_vs_000032, Target: deu, Predicted: afr
430
+ Key: deu_swissdial_vs_000034, Target: deu, Predicted: nld
431
+ Key: deu_swissdial_vs_000038, Target: deu, Predicted: yid
432
+ Key: deu_swissdial_vs_000042, Target: deu, Predicted: nld
433
+ Key: deu_swissdial_vs_000044, Target: deu, Predicted: nld
434
+ Key: deu_swissdial_vs_000045, Target: deu, Predicted: nld
435
+ Key: deu_swissdial_vs_000047, Target: deu, Predicted: dan
436
+ Key: deu_swissdial_vs_000048, Target: deu, Predicted: afr
437
+ Key: deu_swissdial_vs_000053, Target: deu, Predicted: dan
438
+ Key: deu_swissdial_vs_000055, Target: deu, Predicted: nld
439
+ Key: deu_swissdial_vs_000059, Target: deu, Predicted: afr
440
+ Key: deu_swissdial_vs_000060, Target: deu, Predicted: afr
441
+ Key: deu_swissdial_vs_000064, Target: deu, Predicted: nno
442
+ Key: deu_swissdial_vs_000073, Target: deu, Predicted: nld
443
+ Key: deu_swissdial_vs_000075, Target: deu, Predicted: nld
444
+ Key: deu_swissdial_vs_000076, Target: deu, Predicted: afr
445
+ Key: deu_swissdial_vs_000078, Target: deu, Predicted: cym
446
+ Key: deu_swissdial_vs_000082, Target: deu, Predicted: dan
447
+ Key: deu_swissdial_vs_000083, Target: deu, Predicted: afr
448
+ Key: deu_swissdial_vs_000088, Target: deu, Predicted: afr
449
+ Key: deu_swissdial_vs_000090, Target: deu, Predicted: afr
450
+ Key: deu_swissdial_vs_000091, Target: deu, Predicted: afr
451
+ Key: deu_swissdial_vs_000096, Target: deu, Predicted: afr
452
+ Key: deu_swissdial_vs_000102, Target: deu, Predicted: afr
453
+ Key: deu_swissdial_vs_000105, Target: deu, Predicted: nld
454
+ Key: deu_swissdial_vs_000108, Target: deu, Predicted: slv
455
+ Key: deu_swissdial_vs_000114, Target: deu, Predicted: afr
456
+ Key: deu_swissdial_vs_000116, Target: deu, Predicted: nld
457
+ Key: deu_swissdial_vs_000120, Target: deu, Predicted: afr
458
+ Key: deu_swissdial_vs_000124, Target: deu, Predicted: nld
459
+ Key: deu_swissdial_vs_000127, Target: deu, Predicted: nld
460
+ Key: deu_swissdial_vs_000129, Target: deu, Predicted: nld
461
+ Key: deu_swissdial_vs_000132, Target: deu, Predicted: nld
462
+ Key: deu_swissdial_vs_000136, Target: deu, Predicted: afr
463
+ Key: deu_swissdial_vs_000137, Target: deu, Predicted: afr
464
+ Key: deu_swissdial_zh_000000, Target: deu, Predicted: nld
465
+ Key: deu_swissdial_zh_000006, Target: deu, Predicted: ltz
466
+ Key: deu_swissdial_zh_000007, Target: deu, Predicted: afr
467
+ Key: deu_swissdial_zh_000015, Target: deu, Predicted: nld
468
+ Key: deu_swissdial_zh_000017, Target: deu, Predicted: afr
469
+ Key: deu_swissdial_zh_000029, Target: deu, Predicted: afr
470
+ Key: deu_swissdial_zh_000032, Target: deu, Predicted: afr
471
+ Key: deu_swissdial_zh_000050, Target: deu, Predicted: ltz
472
+ Key: deu_swissdial_zh_000060, Target: deu, Predicted: nld
473
+ Key: deu_swissdial_zh_000066, Target: deu, Predicted: afr
474
+ Key: deu_swissdial_zh_000072, Target: deu, Predicted: nld
475
+ Key: deu_swissdial_zh_000078, Target: deu, Predicted: afr
476
+ Key: deu_swissdial_zh_000080, Target: deu, Predicted: afr
477
+ Key: deu_swissdial_zh_000081, Target: deu, Predicted: afr
478
+ Key: deu_swissdial_zh_000083, Target: deu, Predicted: afr
479
+ Key: deu_swissdial_zh_000086, Target: deu, Predicted: afr
480
+ Key: deu_swissdial_zh_000088, Target: deu, Predicted: slk
481
+ Key: deu_swissdial_zh_000091, Target: deu, Predicted: afr
482
+ Key: deu_swissdial_zh_000094, Target: deu, Predicted: afr
483
+ Key: deu_swissdial_zh_000097, Target: deu, Predicted: afr
484
+ Key: deu_swissdial_zh_000101, Target: deu, Predicted: afr
485
+ Key: deu_swissdial_zh_000103, Target: deu, Predicted: afr
486
+ Key: deu_swissdial_zh_000105, Target: deu, Predicted: afr
487
+ Key: deu_swissdial_zh_000115, Target: deu, Predicted: ltz
488
+ Key: deu_swissdial_zh_000116, Target: deu, Predicted: afr
489
+ Key: deu_swissdial_zh_000120, Target: deu, Predicted: afr
490
+ Key: deu_swissdial_zh_000127, Target: deu, Predicted: nld
491
+ Key: deu_swissdial_zh_000133, Target: deu, Predicted: nld
492
+ Key: deu_swissdial_zh_000134, Target: deu, Predicted: afr
493
+ Key: deu_swissdial_zh_000141, Target: deu, Predicted: afr
494
+ Key: ell_cretan_cre_000002, Target: ell, Predicted: swa
495
+ Key: ell_cretan_cre_000003, Target: ell, Predicted: tgl
496
+ Key: ell_cretan_cre_000006, Target: ell, Predicted: ukr
497
+ Key: ell_cretan_cre_000007, Target: ell, Predicted: srp
498
+ Key: ell_cretan_cre_000011, Target: ell, Predicted: ukr
499
+ Key: ell_cretan_cre_000013, Target: ell, Predicted: snd
500
+ Key: ell_cretan_cre_000014, Target: ell, Predicted: bos
501
+ Key: ell_cretan_cre_000017, Target: ell, Predicted: swa
502
+ Key: ell_cretan_cre_000019, Target: ell, Predicted: slv
503
+ Key: ell_cretan_cre_000020, Target: ell, Predicted: ind
504
+ Key: ell_cretan_cre_000031, Target: ell, Predicted: slv
505
+ Key: ell_cretan_cre_000033, Target: ell, Predicted: lin
506
+ Key: ell_cretan_cre_000034, Target: ell, Predicted: bel
507
+ Key: ell_cretan_cre_000036, Target: ell, Predicted: rus
508
+ Key: ell_cretan_cre_000037, Target: ell, Predicted: bul
509
+ Key: ell_cretan_cre_000039, Target: ell, Predicted: tel
510
+ Key: ell_cretan_cre_000040, Target: ell, Predicted: spa
511
+ Key: ell_cretan_cre_000041, Target: ell, Predicted: mkd
512
+ Key: ell_cretan_cre_000048, Target: ell, Predicted: ukr
513
+ Key: ell_cretan_cre_000050, Target: ell, Predicted: slv
514
+ Key: ell_cretan_cre_000052, Target: ell, Predicted: swa
515
+ Key: ell_cretan_cre_000053, Target: ell, Predicted: lao
516
+ Key: ell_cretan_cre_000054, Target: ell, Predicted: slv
517
+ Key: ell_cretan_cre_000055, Target: ell, Predicted: ukr
518
+ Key: ell_cretan_cre_000059, Target: ell, Predicted: mlg
519
+ Key: ell_cretan_cre_000063, Target: ell, Predicted: mlg
520
+ Key: ell_cretan_cre_000064, Target: ell, Predicted: swa
521
+ Key: ell_cretan_cre_000065, Target: ell, Predicted: mya
522
+ Key: ell_cretan_cre_000066, Target: ell, Predicted: ukr
523
+ Key: ell_cretan_cre_000067, Target: ell, Predicted: cat
524
+ Key: ell_cretan_cre_000071, Target: ell, Predicted: tel
525
+ Key: ell_cretan_cre_000078, Target: ell, Predicted: por
526
+ Key: ell_cretan_cre_000081, Target: ell, Predicted: slv
527
+ Key: ell_cretan_cre_000084, Target: ell, Predicted: nno
528
+ Key: ell_cretan_cre_000088, Target: ell, Predicted: bos
529
+ Key: ell_cretan_cre_000091, Target: ell, Predicted: mlg
530
+ Key: ell_cretan_cre_000092, Target: ell, Predicted: ukr
531
+ Key: ell_cretan_cre_000094, Target: ell, Predicted: grn
532
+ Key: ell_cretan_cre_000096, Target: ell, Predicted: mon
533
+ Key: ell_cretan_cre_000097, Target: ell, Predicted: aze
534
+ Key: ell_cretan_cre_000098, Target: ell, Predicted: pus
535
+ Key: ell_cretan_cre_000099, Target: ell, Predicted: vie
536
+ Key: ell_cretan_cre_000100, Target: ell, Predicted: mlg
537
+ Key: ell_cretan_cre_000101, Target: ell, Predicted: grn
538
+ Key: ell_cretan_cre_000103, Target: ell, Predicted: lat
539
+ Key: ell_cretan_cre_000107, Target: ell, Predicted: tha
540
+ Key: ell_cretan_cre_000110, Target: ell, Predicted: bul
541
+ Key: ell_cretan_cre_000112, Target: ell, Predicted: guj
542
+ Key: ell_cretan_cre_000120, Target: ell, Predicted: por
543
+ Key: ell_cretan_cre_000126, Target: ell, Predicted: mlg
544
+ Key: ell_cretan_cre_000128, Target: ell, Predicted: ron
545
+ Key: ell_cretan_cre_000138, Target: ell, Predicted: glg
546
+ Key: ell_cretan_cre_000139, Target: ell, Predicted: slv
547
+ Key: ell_cretan_cre_000140, Target: ell, Predicted: mya
548
+ Key: ell_cretan_cre_000147, Target: ell, Predicted: sqi
549
+ Key: ell_cretan_cre_000149, Target: ell, Predicted: slv
550
+ Key: ell_cretan_cre_000150, Target: ell, Predicted: ukr
551
+ Key: ell_cretan_cre_000151, Target: ell, Predicted: sun
552
+ Key: ell_cretan_cre_000153, Target: ell, Predicted: lit
553
+ Key: ell_cretan_cre_000156, Target: ell, Predicted: lao
554
+ Key: ell_cretan_cre_000157, Target: ell, Predicted: ukr
555
+ Key: ell_cretan_cre_000160, Target: ell, Predicted: ron
556
+ Key: ell_cretan_cre_000161, Target: ell, Predicted: sqi
557
+ Key: ell_cretan_cre_000162, Target: ell, Predicted: ukr
558
+ Key: ell_cretan_cre_000163, Target: ell, Predicted: swa
559
+ Key: ell_cretan_cre_000167, Target: ell, Predicted: mkd
560
+ Key: ell_cretan_cre_000168, Target: ell, Predicted: hin
561
+ Key: ell_cretan_cre_000170, Target: ell, Predicted: mri
562
+ Key: ell_cretan_cre_000171, Target: ell, Predicted: slv
563
+ Key: ell_cretan_cre_000172, Target: ell, Predicted: hrv
564
+ Key: ell_cretan_cre_000173, Target: ell, Predicted: sqi
565
+ Key: ell_cretan_cre_000174, Target: ell, Predicted: bel
566
+ Key: ell_cretan_cre_000177, Target: ell, Predicted: lit
567
+ Key: ell_cretan_cre_000185, Target: ell, Predicted: bod
568
+ Key: ell_cretan_cre_000187, Target: ell, Predicted: por
569
+ Key: ell_cretan_cre_000188, Target: ell, Predicted: lav
570
+ Key: ell_cretan_cre_000189, Target: ell, Predicted: mkd
571
+ Key: ell_cretan_cre_000195, Target: ell, Predicted: por
572
+ Key: ell_cretan_cre_000196, Target: ell, Predicted: tel
573
+ Key: ell_cretan_cre_000197, Target: ell, Predicted: por
574
+ Key: ell_cretan_cre_000203, Target: ell, Predicted: kan
575
+ Key: ell_cretan_cre_000206, Target: ell, Predicted: aze
576
+ Key: ell_cretan_cre_000210, Target: ell, Predicted: bos
577
+ Key: ell_cretan_cre_000216, Target: ell, Predicted: lit
578
+ Key: ell_cretan_cre_000219, Target: ell, Predicted: hat
579
+ Key: ell_cretan_cre_000221, Target: ell, Predicted: sqi
580
+ Key: ell_cretan_cre_000225, Target: ell, Predicted: swa
581
+ Key: ell_cretan_cre_000226, Target: ell, Predicted: hrv
582
+ Key: ell_cretan_cre_000228, Target: ell, Predicted: bel
583
+ Key: ell_cretan_cre_000230, Target: ell, Predicted: swa
584
+ Key: ell_cretan_cre_000232, Target: ell, Predicted: hrv
585
+ Key: ell_cretan_cre_000233, Target: ell, Predicted: fin
586
+ Key: ell_cretan_cre_000235, Target: ell, Predicted: mkd
587
+ Key: ell_cretan_cre_000237, Target: ell, Predicted: ron
588
+ Key: ell_cretan_cre_000239, Target: ell, Predicted: ukr
589
+ Key: ell_cretan_cre_000240, Target: ell, Predicted: lit
590
+ Key: ell_cretan_cre_000241, Target: ell, Predicted: pus
591
+ Key: ell_cretan_cre_000242, Target: ell, Predicted: pus
592
+ Key: ell_cretan_cre_000245, Target: ell, Predicted: por
593
+ Key: ell_cretan_cre_000248, Target: ell, Predicted: amh
594
+ Key: ell_cretan_cre_000249, Target: ell, Predicted: swa
595
+ Key: ell_cretan_cre_000250, Target: ell, Predicted: ron
596
+ Key: ell_cretan_cre_000251, Target: ell, Predicted: tgl
597
+ Key: ell_cretan_cre_000252, Target: ell, Predicted: lin
598
+ Key: ell_cretan_cre_000254, Target: ell, Predicted: lit
599
+ Key: ell_cretan_cre_000261, Target: ell, Predicted: asm
600
+ Key: ell_cretan_cre_000264, Target: ell, Predicted: swa
601
+ Key: ell_cretan_cre_000265, Target: ell, Predicted: ceb
602
+ Key: ell_cretan_cre_000266, Target: ell, Predicted: bel
603
+ Key: ell_cretan_cre_000267, Target: ell, Predicted: spa
604
+ Key: ell_cretan_cre_000268, Target: ell, Predicted: bod
605
+ Key: ell_cretan_cre_000270, Target: ell, Predicted: ron
606
+ Key: ell_cretan_cre_000274, Target: ell, Predicted: slv
607
+ Key: ell_cretan_cre_000275, Target: ell, Predicted: bel
608
+ Key: ell_cretan_cre_000281, Target: ell, Predicted: ben
609
+ Key: ell_cretan_cre_000282, Target: ell, Predicted: mlg
610
+ Key: ell_cretan_cre_000283, Target: ell, Predicted: lit
611
+ Key: ell_cretan_cre_000285, Target: ell, Predicted: mar
612
+ Key: ell_cretan_cre_000286, Target: ell, Predicted: khm
613
+ Key: ell_cretan_cre_000288, Target: ell, Predicted: mlg
614
+ Key: ell_messenian_mes_000009, Target: ell, Predicted: eus
615
+ Key: ell_messenian_mes_000011, Target: ell, Predicted: afr
616
+ Key: ell_messenian_mes_000012, Target: ell, Predicted: tgl
617
+ Key: ell_messenian_mes_000043, Target: ell, Predicted: slv
618
+ Key: ell_messenian_mes_000056, Target: ell, Predicted: nno
619
+ Key: ell_messenian_mes_000058, Target: ell, Predicted: asm
620
+ Key: ell_messenian_mes_000077, Target: ell, Predicted: ces
621
+ Key: ell_messenian_mes_000079, Target: ell, Predicted: afr
622
+ Key: ell_messenian_mes_000085, Target: ell, Predicted: ita
623
+ Key: ell_messenian_mes_000099, Target: ell, Predicted: mkd
624
+ Key: ell_messenian_mes_000110, Target: ell, Predicted: ind
625
+ Key: ell_messenian_mes_000136, Target: ell, Predicted: nno
626
+ Key: ell_messenian_mes_000139, Target: ell, Predicted: slv
627
+ Key: ell_messenian_mes_000141, Target: ell, Predicted: mkd
628
+ Key: ell_messenian_mes_000155, Target: ell, Predicted: mri
629
+ Key: ell_messenian_mes_000161, Target: ell, Predicted: hrv
630
+ Key: ell_messenian_mes_000164, Target: ell, Predicted: cat
631
+ Key: ell_messenian_mes_000182, Target: ell, Predicted: tgl
632
+ Key: eng_globe_aus_000015, Target: eng, Predicted: fra
633
+ Key: eng_globe_aus_000039, Target: eng, Predicted: ceb
634
+ Key: eng_globe_aus_000054, Target: eng, Predicted: bul
635
+ Key: eng_globe_aus_000082, Target: eng, Predicted: bod
636
+ Key: eng_globe_aus_000118, Target: eng, Predicted: slv
637
+ Key: eng_globe_bre_000034, Target: eng, Predicted: hun
638
+ Key: eng_globe_bre_000050, Target: eng, Predicted: glv
639
+ Key: eng_globe_bre_000052, Target: eng, Predicted: cym
640
+ Key: eng_globe_bre_000054, Target: eng, Predicted: swe
641
+ Key: eng_globe_bre_000089, Target: eng, Predicted: cym
642
+ Key: eng_globe_bre_000099, Target: eng, Predicted: deu
643
+ Key: eng_globe_bre_000100, Target: eng, Predicted: cym
644
+ Key: eng_globe_bre_000103, Target: eng, Predicted: deu
645
+ Key: eng_globe_bre_000107, Target: eng, Predicted: lit
646
+ Key: eng_globe_bre_000116, Target: eng, Predicted: cym
647
+ Key: eng_globe_bre_000130, Target: eng, Predicted: cym
648
+ Key: eng_globe_bre_000133, Target: eng, Predicted: nor
649
+ Key: eng_globe_bre_000144, Target: eng, Predicted: dan
650
+ Key: eng_globe_bre_000152, Target: eng, Predicted: tgl
651
+ Key: eng_globe_can_000033, Target: eng, Predicted: ell
652
+ Key: eng_globe_can_000063, Target: eng, Predicted: cmn
653
+ Key: eng_globe_can_000069, Target: eng, Predicted: mya
654
+ Key: eng_globe_can_000112, Target: eng, Predicted: glv
655
+ Key: eng_globe_can_000134, Target: eng, Predicted: cym
656
+ Key: eng_globe_fil_000011, Target: eng, Predicted: tgl
657
+ Key: eng_globe_fil_000014, Target: eng, Predicted: tgl
658
+ Key: eng_globe_fil_000016, Target: eng, Predicted: khm
659
+ Key: eng_globe_fil_000018, Target: eng, Predicted: tgl
660
+ Key: eng_globe_fil_000019, Target: eng, Predicted: kor
661
+ Key: eng_globe_fil_000021, Target: eng, Predicted: war
662
+ Key: eng_globe_fil_000026, Target: eng, Predicted: ces
663
+ Key: eng_globe_fil_000027, Target: eng, Predicted: tgl
664
+ Key: eng_globe_fil_000032, Target: eng, Predicted: slk
665
+ Key: eng_globe_fil_000033, Target: eng, Predicted: tgl
666
+ Key: eng_globe_fil_000036, Target: eng, Predicted: tgl
667
+ Key: eng_globe_fil_000042, Target: eng, Predicted: tgl
668
+ Key: eng_globe_fil_000043, Target: eng, Predicted: tgl
669
+ Key: eng_globe_fil_000045, Target: eng, Predicted: tgl
670
+ Key: eng_globe_fil_000064, Target: eng, Predicted: tgl
671
+ Key: eng_globe_fil_000070, Target: eng, Predicted: glv
672
+ Key: eng_globe_fil_000077, Target: eng, Predicted: tgl
673
+ Key: eng_globe_fil_000080, Target: eng, Predicted: mya
674
+ Key: eng_globe_fil_000087, Target: eng, Predicted: ceb
675
+ Key: eng_globe_fil_000088, Target: eng, Predicted: tgl
676
+ Key: eng_globe_fil_000089, Target: eng, Predicted: cym
677
+ Key: eng_globe_fil_000096, Target: eng, Predicted: tgl
678
+ Key: eng_globe_fil_000104, Target: eng, Predicted: fra
679
+ Key: eng_globe_fil_000106, Target: eng, Predicted: tgl
680
+ Key: eng_globe_fil_000113, Target: eng, Predicted: tgl
681
+ Key: eng_globe_fil_000117, Target: eng, Predicted: tgl
682
+ Key: eng_globe_fil_000123, Target: eng, Predicted: tgl
683
+ Key: eng_globe_fil_000130, Target: eng, Predicted: tgl
684
+ Key: eng_globe_fil_000132, Target: eng, Predicted: ceb
685
+ Key: eng_globe_fil_000133, Target: eng, Predicted: tgl
686
+ Key: eng_globe_fil_000146, Target: eng, Predicted: tgl
687
+ Key: eng_globe_fil_000152, Target: eng, Predicted: tgl
688
+ Key: eng_globe_fil_000155, Target: eng, Predicted: tgl
689
+ Key: eng_globe_fil_000156, Target: eng, Predicted: tgl
690
+ Key: eng_globe_fil_000158, Target: eng, Predicted: tgl
691
+ Key: eng_globe_fil_000159, Target: eng, Predicted: tgl
692
+ Key: eng_globe_fil_000163, Target: eng, Predicted: tgl
693
+ Key: eng_globe_gle_000007, Target: eng, Predicted: cym
694
+ Key: eng_globe_gle_000020, Target: eng, Predicted: nld
695
+ Key: eng_globe_gle_000022, Target: eng, Predicted: glv
696
+ Key: eng_globe_gle_000045, Target: eng, Predicted: glv
697
+ Key: eng_globe_gle_000050, Target: eng, Predicted: glv
698
+ Key: eng_globe_gle_000069, Target: eng, Predicted: glv
699
+ Key: eng_globe_gle_000079, Target: eng, Predicted: ita
700
+ Key: eng_globe_gle_000087, Target: eng, Predicted: cym
701
+ Key: eng_globe_gle_000150, Target: eng, Predicted: glv
702
+ Key: eng_globe_gle_000154, Target: eng, Predicted: pan
703
+ Key: eng_globe_gle_000159, Target: eng, Predicted: mri
704
+ Key: eng_globe_gle_000162, Target: eng, Predicted: glv
705
+ Key: eng_globe_gle_000167, Target: eng, Predicted: hin
706
+ Key: eng_globe_nze_000004, Target: eng, Predicted: glv
707
+ Key: eng_globe_nze_000020, Target: eng, Predicted: cym
708
+ Key: eng_globe_nze_000029, Target: eng, Predicted: asm
709
+ Key: eng_globe_nze_000094, Target: eng, Predicted: nld
710
+ Key: eng_globe_nze_000108, Target: eng, Predicted: snd
711
+ Key: eng_globe_nze_000118, Target: eng, Predicted: bul
712
+ Key: eng_globe_nze_000127, Target: eng, Predicted: cym
713
+ Key: eng_globe_nze_000150, Target: eng, Predicted: cym
714
+ Key: eng_globe_sae_000007, Target: eng, Predicted: ron
715
+ Key: eng_globe_sae_000008, Target: eng, Predicted: asm
716
+ Key: eng_globe_sae_000011, Target: eng, Predicted: tam
717
+ Key: eng_globe_sae_000015, Target: eng, Predicted: pan
718
+ Key: eng_globe_sae_000035, Target: eng, Predicted: afr
719
+ Key: eng_globe_sae_000045, Target: eng, Predicted: afr
720
+ Key: eng_globe_sae_000047, Target: eng, Predicted: asm
721
+ Key: eng_globe_sae_000050, Target: eng, Predicted: kan
722
+ Key: eng_globe_sae_000058, Target: eng, Predicted: hin
723
+ Key: eng_globe_sae_000062, Target: eng, Predicted: ben
724
+ Key: eng_globe_sae_000063, Target: eng, Predicted: fra
725
+ Key: eng_globe_sae_000066, Target: eng, Predicted: cym
726
+ Key: eng_globe_sae_000079, Target: eng, Predicted: pan
727
+ Key: eng_globe_sae_000090, Target: eng, Predicted: epo
728
+ Key: eng_globe_sae_000100, Target: eng, Predicted: hin
729
+ Key: eng_globe_sae_000102, Target: eng, Predicted: hun
730
+ Key: eng_globe_sae_000104, Target: eng, Predicted: tgl
731
+ Key: eng_globe_sae_000109, Target: eng, Predicted: glv
732
+ Key: eng_globe_sae_000110, Target: eng, Predicted: afr
733
+ Key: eng_globe_sae_000115, Target: eng, Predicted: pan
734
+ Key: eng_globe_sae_000119, Target: eng, Predicted: mri
735
+ Key: eng_globe_sae_000120, Target: eng, Predicted: cym
736
+ Key: eng_globe_sae_000134, Target: eng, Predicted: tgl
737
+ Key: eng_globe_sae_000140, Target: eng, Predicted: tuk
738
+ Key: eng_globe_sae_000143, Target: eng, Predicted: slv
739
+ Key: eng_globe_sae_000144, Target: eng, Predicted: sna
740
+ Key: eng_globe_sae_000160, Target: eng, Predicted: fra
741
+ Key: eng_globe_sae_000161, Target: eng, Predicted: tel
742
+ Key: eng_globe_sae_000165, Target: eng, Predicted: hin
743
+ Key: eng_globe_sae_000168, Target: eng, Predicted: ina
744
+ Key: eng_globe_sae_000169, Target: eng, Predicted: tam
745
+ Key: eng_globe_sco_000002, Target: eng, Predicted: cym
746
+ Key: eng_globe_sco_000009, Target: eng, Predicted: cym
747
+ Key: eng_globe_sco_000011, Target: eng, Predicted: glv
748
+ Key: eng_globe_sco_000017, Target: eng, Predicted: glv
749
+ Key: eng_globe_sco_000035, Target: eng, Predicted: glv
750
+ Key: eng_globe_sco_000036, Target: eng, Predicted: cym
751
+ Key: eng_globe_sco_000038, Target: eng, Predicted: sna
752
+ Key: eng_globe_sco_000047, Target: eng, Predicted: cym
753
+ Key: eng_globe_sco_000048, Target: eng, Predicted: glv
754
+ Key: eng_globe_sco_000052, Target: eng, Predicted: cym
755
+ Key: eng_globe_sco_000062, Target: eng, Predicted: cym
756
+ Key: eng_globe_sco_000065, Target: eng, Predicted: glv
757
+ Key: eng_globe_sco_000067, Target: eng, Predicted: lat
758
+ Key: eng_globe_sco_000072, Target: eng, Predicted: glv
759
+ Key: eng_globe_sco_000078, Target: eng, Predicted: cym
760
+ Key: eng_globe_sco_000090, Target: eng, Predicted: glv
761
+ Key: eng_globe_sco_000093, Target: eng, Predicted: glv
762
+ Key: eng_globe_sco_000099, Target: eng, Predicted: cym
763
+ Key: eng_globe_sco_000106, Target: eng, Predicted: cym
764
+ Key: eng_globe_sco_000108, Target: eng, Predicted: glv
765
+ Key: eng_globe_sco_000109, Target: eng, Predicted: glv
766
+ Key: eng_globe_sco_000110, Target: eng, Predicted: glv
767
+ Key: eng_globe_sco_000112, Target: eng, Predicted: glv
768
+ Key: eng_globe_sco_000116, Target: eng, Predicted: cym
769
+ Key: eng_globe_sco_000118, Target: eng, Predicted: isl
770
+ Key: eng_globe_sco_000126, Target: eng, Predicted: cym
771
+ Key: eng_globe_sco_000129, Target: eng, Predicted: glv
772
+ Key: eng_globe_sco_000141, Target: eng, Predicted: glv
773
+ Key: eng_globe_sco_000142, Target: eng, Predicted: glv
774
+ Key: eng_globe_sco_000144, Target: eng, Predicted: nld
775
+ Key: eng_globe_sco_000150, Target: eng, Predicted: por
776
+ Key: eng_globe_use_000004, Target: eng, Predicted: glv
777
+ Key: eng_globe_use_000023, Target: eng, Predicted: msa
778
+ Key: eng_globe_use_000038, Target: eng, Predicted: dan
779
+ Key: eng_globe_use_000057, Target: eng, Predicted: mri
780
+ Key: eng_globe_use_000059, Target: eng, Predicted: afr
781
+ Key: eng_globe_use_000061, Target: eng, Predicted: hau
782
+ Key: eng_globe_use_000076, Target: eng, Predicted: khm
783
+ Key: eng_globe_use_000098, Target: eng, Predicted: tel
784
+ Key: eng_globe_use_000102, Target: eng, Predicted: deu
785
+ Key: eng_globe_use_000115, Target: eng, Predicted: jpn
786
+ Key: eng_globe_use_000164, Target: eng, Predicted: glv
787
+ Key: eng_globe_use_000175, Target: eng, Predicted: tgl
788
+ Key: eng_l2arctic_ara_000001, Target: eng, Predicted: ara
789
+ Key: eng_l2arctic_ara_000002, Target: eng, Predicted: ara
790
+ Key: eng_l2arctic_ara_000003, Target: eng, Predicted: ara
791
+ Key: eng_l2arctic_ara_000007, Target: eng, Predicted: ara
792
+ Key: eng_l2arctic_ara_000011, Target: eng, Predicted: ara
793
+ Key: eng_l2arctic_ara_000013, Target: eng, Predicted: ara
794
+ Key: eng_l2arctic_ara_000015, Target: eng, Predicted: ara
795
+ Key: eng_l2arctic_ara_000018, Target: eng, Predicted: tuk
796
+ Key: eng_l2arctic_ara_000021, Target: eng, Predicted: ara
797
+ Key: eng_l2arctic_ara_000023, Target: eng, Predicted: ara
798
+ Key: eng_l2arctic_ara_000028, Target: eng, Predicted: ara
799
+ Key: eng_l2arctic_ara_000029, Target: eng, Predicted: ron
800
+ Key: eng_l2arctic_ara_000030, Target: eng, Predicted: kan
801
+ Key: eng_l2arctic_ara_000031, Target: eng, Predicted: ell
802
+ Key: eng_l2arctic_ara_000032, Target: eng, Predicted: ara
803
+ Key: eng_l2arctic_ara_000037, Target: eng, Predicted: ara
804
+ Key: eng_l2arctic_ara_000038, Target: eng, Predicted: ara
805
+ Key: eng_l2arctic_ara_000039, Target: eng, Predicted: ara
806
+ Key: eng_l2arctic_ara_000042, Target: eng, Predicted: ara
807
+ Key: eng_l2arctic_ara_000044, Target: eng, Predicted: ina
808
+ Key: eng_l2arctic_ara_000045, Target: eng, Predicted: ara
809
+ Key: eng_l2arctic_ara_000046, Target: eng, Predicted: ara
810
+ Key: eng_l2arctic_ara_000051, Target: eng, Predicted: ara
811
+ Key: eng_l2arctic_ara_000061, Target: eng, Predicted: ara
812
+ Key: eng_l2arctic_ara_000068, Target: eng, Predicted: ara
813
+ Key: eng_l2arctic_ara_000069, Target: eng, Predicted: ara
814
+ Key: eng_l2arctic_ara_000070, Target: eng, Predicted: nor
815
+ Key: eng_l2arctic_ara_000072, Target: eng, Predicted: ara
816
+ Key: eng_l2arctic_ara_000074, Target: eng, Predicted: ara
817
+ Key: eng_l2arctic_ara_000077, Target: eng, Predicted: pol
818
+ Key: eng_l2arctic_ara_000079, Target: eng, Predicted: fra
819
+ Key: eng_l2arctic_ara_000080, Target: eng, Predicted: hun
820
+ Key: eng_l2arctic_ara_000083, Target: eng, Predicted: tgk
821
+ Key: eng_l2arctic_ara_000087, Target: eng, Predicted: amh
822
+ Key: eng_l2arctic_ara_000088, Target: eng, Predicted: ara
823
+ Key: eng_l2arctic_ara_000092, Target: eng, Predicted: cym
824
+ Key: eng_l2arctic_ara_000096, Target: eng, Predicted: hau
825
+ Key: eng_l2arctic_ara_000097, Target: eng, Predicted: ara
826
+ Key: eng_l2arctic_ara_000100, Target: eng, Predicted: tgk
827
+ Key: eng_l2arctic_ara_000105, Target: eng, Predicted: nld
828
+ Key: eng_l2arctic_ara_000109, Target: eng, Predicted: fra
829
+ Key: eng_l2arctic_ara_000115, Target: eng, Predicted: ara
830
+ Key: eng_l2arctic_ara_000119, Target: eng, Predicted: tuk
831
+ Key: eng_l2arctic_ara_000120, Target: eng, Predicted: pol
832
+ Key: eng_l2arctic_ara_000121, Target: eng, Predicted: ara
833
+ Key: eng_l2arctic_ara_000122, Target: eng, Predicted: hye
834
+ Key: eng_l2arctic_ara_000123, Target: eng, Predicted: kat
835
+ Key: eng_l2arctic_ara_000127, Target: eng, Predicted: ara
836
+ Key: eng_l2arctic_ara_000129, Target: eng, Predicted: ara
837
+ Key: eng_l2arctic_ara_000130, Target: eng, Predicted: ben
838
+ Key: eng_l2arctic_ara_000133, Target: eng, Predicted: hye
839
+ Key: eng_l2arctic_ara_000140, Target: eng, Predicted: ara
840
+ Key: eng_l2arctic_ara_000146, Target: eng, Predicted: pus
841
+ Key: eng_l2arctic_ara_000155, Target: eng, Predicted: pus
842
+ Key: eng_l2arctic_ara_000164, Target: eng, Predicted: ara
843
+ Key: eng_l2arctic_ara_000166, Target: eng, Predicted: tgk
844
+ Key: eng_l2arctic_ara_000167, Target: eng, Predicted: ara
845
+ Key: eng_l2arctic_cmn_000010, Target: eng, Predicted: cmn
846
+ Key: eng_l2arctic_cmn_000011, Target: eng, Predicted: cmn
847
+ Key: eng_l2arctic_cmn_000019, Target: eng, Predicted: cmn
848
+ Key: eng_l2arctic_cmn_000027, Target: eng, Predicted: bod
849
+ Key: eng_l2arctic_cmn_000042, Target: eng, Predicted: cmn
850
+ Key: eng_l2arctic_cmn_000047, Target: eng, Predicted: khm
851
+ Key: eng_l2arctic_cmn_000052, Target: eng, Predicted: cmn
852
+ Key: eng_l2arctic_cmn_000058, Target: eng, Predicted: cmn
853
+ Key: eng_l2arctic_cmn_000060, Target: eng, Predicted: cmn
854
+ Key: eng_l2arctic_cmn_000063, Target: eng, Predicted: cmn
855
+ Key: eng_l2arctic_cmn_000071, Target: eng, Predicted: cmn
856
+ Key: eng_l2arctic_cmn_000075, Target: eng, Predicted: bod
857
+ Key: eng_l2arctic_cmn_000076, Target: eng, Predicted: bod
858
+ Key: eng_l2arctic_cmn_000077, Target: eng, Predicted: cmn
859
+ Key: eng_l2arctic_cmn_000078, Target: eng, Predicted: cmn
860
+ Key: eng_l2arctic_cmn_000080, Target: eng, Predicted: bod
861
+ Key: eng_l2arctic_cmn_000087, Target: eng, Predicted: bod
862
+ Key: eng_l2arctic_cmn_000088, Target: eng, Predicted: bod
863
+ Key: eng_l2arctic_cmn_000091, Target: eng, Predicted: bod
864
+ Key: eng_l2arctic_cmn_000094, Target: eng, Predicted: ben
865
+ Key: eng_l2arctic_cmn_000097, Target: eng, Predicted: bod
866
+ Key: eng_l2arctic_cmn_000098, Target: eng, Predicted: mya
867
+ Key: eng_l2arctic_cmn_000100, Target: eng, Predicted: bod
868
+ Key: eng_l2arctic_cmn_000102, Target: eng, Predicted: khm
869
+ Key: eng_l2arctic_cmn_000106, Target: eng, Predicted: cmn
870
+ Key: eng_l2arctic_cmn_000107, Target: eng, Predicted: cmn
871
+ Key: eng_l2arctic_cmn_000108, Target: eng, Predicted: cmn
872
+ Key: eng_l2arctic_cmn_000113, Target: eng, Predicted: cmn
873
+ Key: eng_l2arctic_cmn_000114, Target: eng, Predicted: cmn
874
+ Key: eng_l2arctic_cmn_000115, Target: eng, Predicted: bod
875
+ Key: eng_l2arctic_cmn_000116, Target: eng, Predicted: cmn
876
+ Key: eng_l2arctic_cmn_000120, Target: eng, Predicted: kor
877
+ Key: eng_l2arctic_cmn_000125, Target: eng, Predicted: mya
878
+ Key: eng_l2arctic_cmn_000126, Target: eng, Predicted: cmn
879
+ Key: eng_l2arctic_cmn_000127, Target: eng, Predicted: bod
880
+ Key: eng_l2arctic_cmn_000128, Target: eng, Predicted: kor
881
+ Key: eng_l2arctic_cmn_000130, Target: eng, Predicted: bod
882
+ Key: eng_l2arctic_cmn_000132, Target: eng, Predicted: bod
883
+ Key: eng_l2arctic_cmn_000133, Target: eng, Predicted: fas
884
+ Key: eng_l2arctic_cmn_000134, Target: eng, Predicted: hau
885
+ Key: eng_l2arctic_cmn_000135, Target: eng, Predicted: cmn
886
+ Key: eng_l2arctic_cmn_000137, Target: eng, Predicted: cmn
887
+ Key: eng_l2arctic_cmn_000138, Target: eng, Predicted: mya
888
+ Key: eng_l2arctic_cmn_000139, Target: eng, Predicted: cmn
889
+ Key: eng_l2arctic_cmn_000141, Target: eng, Predicted: lao
890
+ Key: eng_l2arctic_cmn_000142, Target: eng, Predicted: bod
891
+ Key: eng_l2arctic_cmn_000143, Target: eng, Predicted: cmn
892
+ Key: eng_l2arctic_cmn_000146, Target: eng, Predicted: cmn
893
+ Key: eng_l2arctic_hin_000005, Target: eng, Predicted: kan
894
+ Key: eng_l2arctic_hin_000007, Target: eng, Predicted: hin
895
+ Key: eng_l2arctic_hin_000010, Target: eng, Predicted: mar
896
+ Key: eng_l2arctic_hin_000014, Target: eng, Predicted: hin
897
+ Key: eng_l2arctic_hin_000016, Target: eng, Predicted: mar
898
+ Key: eng_l2arctic_hin_000019, Target: eng, Predicted: mar
899
+ Key: eng_l2arctic_hin_000020, Target: eng, Predicted: tel
900
+ Key: eng_l2arctic_hin_000022, Target: eng, Predicted: mar
901
+ Key: eng_l2arctic_hin_000024, Target: eng, Predicted: mar
902
+ Key: eng_l2arctic_hin_000025, Target: eng, Predicted: hin
903
+ Key: eng_l2arctic_hin_000033, Target: eng, Predicted: guj
904
+ Key: eng_l2arctic_hin_000040, Target: eng, Predicted: snd
905
+ Key: eng_l2arctic_hin_000054, Target: eng, Predicted: hin
906
+ Key: eng_l2arctic_hin_000055, Target: eng, Predicted: mar
907
+ Key: eng_l2arctic_hin_000057, Target: eng, Predicted: tam
908
+ Key: eng_l2arctic_hin_000061, Target: eng, Predicted: mar
909
+ Key: eng_l2arctic_hin_000064, Target: eng, Predicted: ben
910
+ Key: eng_l2arctic_hin_000065, Target: eng, Predicted: mar
911
+ Key: eng_l2arctic_hin_000069, Target: eng, Predicted: haw
912
+ Key: eng_l2arctic_hin_000078, Target: eng, Predicted: ben
913
+ Key: eng_l2arctic_hin_000080, Target: eng, Predicted: pan
914
+ Key: eng_l2arctic_hin_000085, Target: eng, Predicted: tam
915
+ Key: eng_l2arctic_hin_000096, Target: eng, Predicted: snd
916
+ Key: eng_l2arctic_hin_000101, Target: eng, Predicted: hin
917
+ Key: eng_l2arctic_hin_000102, Target: eng, Predicted: tam
918
+ Key: eng_l2arctic_hin_000103, Target: eng, Predicted: tam
919
+ Key: eng_l2arctic_hin_000104, Target: eng, Predicted: tel
920
+ Key: eng_l2arctic_hin_000106, Target: eng, Predicted: tam
921
+ Key: eng_l2arctic_hin_000107, Target: eng, Predicted: kan
922
+ Key: eng_l2arctic_hin_000108, Target: eng, Predicted: kan
923
+ Key: eng_l2arctic_hin_000110, Target: eng, Predicted: tel
924
+ Key: eng_l2arctic_hin_000113, Target: eng, Predicted: kan
925
+ Key: eng_l2arctic_hin_000114, Target: eng, Predicted: kan
926
+ Key: eng_l2arctic_hin_000116, Target: eng, Predicted: tel
927
+ Key: eng_l2arctic_hin_000117, Target: eng, Predicted: tam
928
+ Key: eng_l2arctic_hin_000118, Target: eng, Predicted: mar
929
+ Key: eng_l2arctic_hin_000119, Target: eng, Predicted: tam
930
+ Key: eng_l2arctic_hin_000122, Target: eng, Predicted: mar
931
+ Key: eng_l2arctic_hin_000123, Target: eng, Predicted: ben
932
+ Key: eng_l2arctic_hin_000125, Target: eng, Predicted: ara
933
+ Key: eng_l2arctic_hin_000126, Target: eng, Predicted: ben
934
+ Key: eng_l2arctic_hin_000127, Target: eng, Predicted: tel
935
+ Key: eng_l2arctic_hin_000128, Target: eng, Predicted: tam
936
+ Key: eng_l2arctic_hin_000129, Target: eng, Predicted: tam
937
+ Key: eng_l2arctic_hin_000130, Target: eng, Predicted: mar
938
+ Key: eng_l2arctic_hin_000131, Target: eng, Predicted: tel
939
+ Key: eng_l2arctic_hin_000132, Target: eng, Predicted: tel
940
+ Key: eng_l2arctic_hin_000133, Target: eng, Predicted: hin
941
+ Key: eng_l2arctic_hin_000138, Target: eng, Predicted: tam
942
+ Key: eng_l2arctic_hin_000140, Target: eng, Predicted: mar
943
+ Key: eng_l2arctic_hin_000141, Target: eng, Predicted: mar
944
+ Key: eng_l2arctic_hin_000142, Target: eng, Predicted: kan
945
+ Key: eng_l2arctic_hin_000143, Target: eng, Predicted: hin
946
+ Key: eng_l2arctic_hin_000144, Target: eng, Predicted: tam
947
+ Key: eng_l2arctic_hin_000146, Target: eng, Predicted: tel
948
+ Key: eng_l2arctic_hin_000147, Target: eng, Predicted: tam
949
+ Key: eng_l2arctic_hin_000149, Target: eng, Predicted: mar
950
+ Key: eng_l2arctic_hin_000152, Target: eng, Predicted: tam
951
+ Key: eng_l2arctic_hin_000153, Target: eng, Predicted: mar
952
+ Key: eng_l2arctic_hin_000154, Target: eng, Predicted: kan
953
+ Key: eng_l2arctic_hin_000155, Target: eng, Predicted: tam
954
+ Key: eng_l2arctic_hin_000156, Target: eng, Predicted: ben
955
+ Key: eng_l2arctic_hin_000157, Target: eng, Predicted: kan
956
+ Key: eng_l2arctic_hin_000158, Target: eng, Predicted: hin
957
+ Key: eng_l2arctic_hin_000159, Target: eng, Predicted: tel
958
+ Key: eng_l2arctic_hin_000161, Target: eng, Predicted: kan
959
+ Key: eng_l2arctic_hin_000162, Target: eng, Predicted: kan
960
+ Key: eng_l2arctic_hin_000163, Target: eng, Predicted: tam
961
+ Key: eng_l2arctic_hin_000164, Target: eng, Predicted: hin
962
+ Key: eng_l2arctic_hin_000165, Target: eng, Predicted: tam
963
+ Key: eng_l2arctic_hin_000166, Target: eng, Predicted: hrv
964
+ Key: eng_l2arctic_hin_000167, Target: eng, Predicted: tam
965
+ Key: eng_l2arctic_hin_000168, Target: eng, Predicted: kan
966
+ Key: eng_l2arctic_hin_000169, Target: eng, Predicted: hin
967
+ Key: eng_l2arctic_hin_000170, Target: eng, Predicted: kan
968
+ Key: eng_l2arctic_hin_000171, Target: eng, Predicted: kan
969
+ Key: eng_l2arctic_hin_000173, Target: eng, Predicted: kan
970
+ Key: eng_l2arctic_hin_000175, Target: eng, Predicted: pan
971
+ Key: eng_l2arctic_hin_000176, Target: eng, Predicted: glv
972
+ Key: eng_l2arctic_hin_000180, Target: eng, Predicted: kan
973
+ Key: eng_l2arctic_hin_000182, Target: eng, Predicted: ben
974
+ Key: eng_l2arctic_hin_000183, Target: eng, Predicted: kan
975
+ Key: eng_l2arctic_hin_000186, Target: eng, Predicted: hin
976
+ Key: eng_l2arctic_hin_000187, Target: eng, Predicted: kan
977
+ Key: eng_l2arctic_hin_000188, Target: eng, Predicted: tel
978
+ Key: eng_l2arctic_hin_000189, Target: eng, Predicted: tuk
979
+ Key: eng_l2arctic_hin_000191, Target: eng, Predicted: ben
980
+ Key: eng_l2arctic_hin_000193, Target: eng, Predicted: tam
981
+ Key: eng_l2arctic_hin_000194, Target: eng, Predicted: kan
982
+ Key: eng_l2arctic_hin_000195, Target: eng, Predicted: tam
983
+ Key: eng_l2arctic_hin_000196, Target: eng, Predicted: mar
984
+ Key: eng_l2arctic_hin_000197, Target: eng, Predicted: kan
985
+ Key: eng_l2arctic_hin_000199, Target: eng, Predicted: ben
986
+ Key: eng_l2arctic_hin_000200, Target: eng, Predicted: kan
987
+ Key: eng_l2arctic_hin_000201, Target: eng, Predicted: kan
988
+ Key: eng_l2arctic_hin_000203, Target: eng, Predicted: tel
989
+ Key: eng_l2arctic_hin_000204, Target: eng, Predicted: tam
990
+ Key: eng_l2arctic_hin_000205, Target: eng, Predicted: kan
991
+ Key: eng_l2arctic_kor_000022, Target: eng, Predicted: ltz
992
+ Key: eng_l2arctic_kor_000069, Target: eng, Predicted: dan
993
+ Key: eng_l2arctic_kor_000112, Target: eng, Predicted: lat
994
+ Key: eng_l2arctic_kor_000118, Target: eng, Predicted: vie
995
+ Key: eng_l2arctic_kor_000137, Target: eng, Predicted: lao
996
+ Key: eng_l2arctic_kor_000157, Target: eng, Predicted: hun
997
+ Key: eng_l2arctic_kor_000165, Target: eng, Predicted: slv
998
+ Key: eng_l2arctic_spa_000014, Target: eng, Predicted: heb
999
+ Key: eng_l2arctic_spa_000027, Target: eng, Predicted: spa
1000
+ Key: eng_l2arctic_spa_000033, Target: eng, Predicted: pol
1001
+ Key: eng_l2arctic_spa_000035, Target: eng, Predicted: spa
1002
+ Key: eng_l2arctic_spa_000036, Target: eng, Predicted: spa
1003
+ Key: eng_l2arctic_spa_000045, Target: eng, Predicted: spa
1004
+ Key: eng_l2arctic_spa_000047, Target: eng, Predicted: fra
1005
+ Key: eng_l2arctic_spa_000052, Target: eng, Predicted: spa
1006
+ Key: eng_l2arctic_spa_000055, Target: eng, Predicted: spa
1007
+ Key: eng_l2arctic_spa_000062, Target: eng, Predicted: spa
1008
+ Key: eng_l2arctic_spa_000063, Target: eng, Predicted: spa
1009
+ Key: eng_l2arctic_spa_000067, Target: eng, Predicted: cym
1010
+ Key: eng_l2arctic_spa_000068, Target: eng, Predicted: tgk
1011
+ Key: eng_l2arctic_spa_000070, Target: eng, Predicted: sqi
1012
+ Key: eng_l2arctic_spa_000071, Target: eng, Predicted: spa
1013
+ Key: eng_l2arctic_spa_000076, Target: eng, Predicted: spa
1014
+ Key: eng_l2arctic_spa_000078, Target: eng, Predicted: spa
1015
+ Key: eng_l2arctic_spa_000102, Target: eng, Predicted: mar
1016
+ Key: eng_l2arctic_spa_000119, Target: eng, Predicted: hun
1017
+ Key: eng_l2arctic_spa_000149, Target: eng, Predicted: fin
1018
+ Key: eng_l2arctic_vie_000002, Target: eng, Predicted: bod
1019
+ Key: eng_l2arctic_vie_000004, Target: eng, Predicted: war
1020
+ Key: eng_l2arctic_vie_000005, Target: eng, Predicted: bod
1021
+ Key: eng_l2arctic_vie_000007, Target: eng, Predicted: lao
1022
+ Key: eng_l2arctic_vie_000015, Target: eng, Predicted: lao
1023
+ Key: eng_l2arctic_vie_000016, Target: eng, Predicted: lat
1024
+ Key: eng_l2arctic_vie_000019, Target: eng, Predicted: bod
1025
+ Key: eng_l2arctic_vie_000022, Target: eng, Predicted: guj
1026
+ Key: eng_l2arctic_vie_000026, Target: eng, Predicted: afr
1027
+ Key: eng_l2arctic_vie_000028, Target: eng, Predicted: mya
1028
+ Key: eng_l2arctic_vie_000042, Target: eng, Predicted: lao
1029
+ Key: eng_l2arctic_vie_000045, Target: eng, Predicted: tgl
1030
+ Key: eng_l2arctic_vie_000047, Target: eng, Predicted: khm
1031
+ Key: eng_l2arctic_vie_000053, Target: eng, Predicted: nno
1032
+ Key: eng_l2arctic_vie_000055, Target: eng, Predicted: lao
1033
+ Key: eng_l2arctic_vie_000062, Target: eng, Predicted: mya
1034
+ Key: eng_l2arctic_vie_000064, Target: eng, Predicted: lao
1035
+ Key: eng_l2arctic_vie_000066, Target: eng, Predicted: kor
1036
+ Key: eng_l2arctic_vie_000069, Target: eng, Predicted: mri
1037
+ Key: eng_l2arctic_vie_000074, Target: eng, Predicted: bod
1038
+ Key: eng_l2arctic_vie_000088, Target: eng, Predicted: mya
1039
+ Key: eng_l2arctic_vie_000092, Target: eng, Predicted: vie
1040
+ Key: eng_l2arctic_vie_000106, Target: eng, Predicted: msa
1041
+ Key: eng_l2arctic_vie_000107, Target: eng, Predicted: lao
1042
+ Key: eng_l2arctic_vie_000109, Target: eng, Predicted: cym
1043
+ Key: eng_l2arctic_vie_000120, Target: eng, Predicted: mya
1044
+ Key: eng_l2arctic_vie_000125, Target: eng, Predicted: cym
1045
+ Key: eng_l2arctic_vie_000131, Target: eng, Predicted: bod
1046
+ Key: eng_l2arctic_vie_000135, Target: eng, Predicted: mya
1047
+ Key: eng_l2arctic_vie_000145, Target: eng, Predicted: cym
1048
+ Key: eng_l2arctic_vie_000148, Target: eng, Predicted: vie
1049
+ Key: eng_l2arctic_vie_000151, Target: eng, Predicted: vie
1050
+ Key: eng_l2arctic_vie_000153, Target: eng, Predicted: lao
1051
+ Key: eng_l2arctic_vie_000158, Target: eng, Predicted: vie
1052
+ Key: eng_l2arctic_vie_000163, Target: eng, Predicted: vie
1053
+ Key: eng_openslr83_nor_000017, Target: eng, Predicted: glv
1054
+ Key: eng_openslr83_sco_000000, Target: eng, Predicted: cym
1055
+ Key: eng_openslr83_sco_000005, Target: eng, Predicted: cym
1056
+ Key: eng_openslr83_sco_000007, Target: eng, Predicted: cym
1057
+ Key: eng_openslr83_sco_000016, Target: eng, Predicted: cym
1058
+ Key: eng_openslr83_sco_000034, Target: eng, Predicted: cym
1059
+ Key: eng_openslr83_sou_000065, Target: eng, Predicted: cym
1060
+ Key: eng_openslr83_wel_000015, Target: eng, Predicted: cym
1061
+ Key: eng_openslr83_wel_000032, Target: eng, Predicted: cym
1062
+ Key: eng_openslr83_wel_000037, Target: eng, Predicted: cym
1063
+ Key: eng_openslr83_wel_000040, Target: eng, Predicted: glv
1064
+ Key: eng_openslr83_wel_000053, Target: eng, Predicted: glv
1065
+ Key: eng_openslr83_wel_000055, Target: eng, Predicted: glv
1066
+ Key: eng_openslr83_wel_000065, Target: eng, Predicted: cym
1067
+ Key: eng_openslr83_wel_000073, Target: eng, Predicted: glv
1068
+ Key: eng_openslr83_wel_000074, Target: eng, Predicted: glv
1069
+ Key: eng_openslr83_wel_000076, Target: eng, Predicted: cym
1070
+ Key: eng_openslr83_wel_000079, Target: eng, Predicted: cym
1071
+ Key: eng_openslr83_wel_000081, Target: eng, Predicted: cym
1072
+ Key: eng_openslr83_wel_000084, Target: eng, Predicted: cym
1073
+ Key: eng_openslr83_wel_000085, Target: eng, Predicted: glv
1074
+ Key: eng_openslr83_wel_000086, Target: eng, Predicted: cym
1075
+ Key: eng_openslr83_wel_000087, Target: eng, Predicted: cym
1076
+ Key: eng_openslr83_wel_000092, Target: eng, Predicted: cym
1077
+ Key: eng_voxpopuli_ces_000000, Target: eng, Predicted: ces
1078
+ Key: eng_voxpopuli_ces_000001, Target: eng, Predicted: ces
1079
+ Key: eng_voxpopuli_ces_000002, Target: eng, Predicted: ces
1080
+ Key: eng_voxpopuli_ces_000003, Target: eng, Predicted: ces
1081
+ Key: eng_voxpopuli_ces_000004, Target: eng, Predicted: fin
1082
+ Key: eng_voxpopuli_ces_000005, Target: eng, Predicted: ces
1083
+ Key: eng_voxpopuli_ces_000006, Target: eng, Predicted: ces
1084
+ Key: eng_voxpopuli_ces_000007, Target: eng, Predicted: ces
1085
+ Key: eng_voxpopuli_ces_000008, Target: eng, Predicted: ces
1086
+ Key: eng_voxpopuli_ces_000009, Target: eng, Predicted: ces
1087
+ Key: eng_voxpopuli_ces_000010, Target: eng, Predicted: ces
1088
+ Key: eng_voxpopuli_ces_000011, Target: eng, Predicted: ces
1089
+ Key: eng_voxpopuli_ces_000012, Target: eng, Predicted: ces
1090
+ Key: eng_voxpopuli_ces_000013, Target: eng, Predicted: ces
1091
+ Key: eng_voxpopuli_ces_000014, Target: eng, Predicted: ces
1092
+ Key: eng_voxpopuli_ces_000015, Target: eng, Predicted: ces
1093
+ Key: eng_voxpopuli_ces_000016, Target: eng, Predicted: ces
1094
+ Key: eng_voxpopuli_ces_000017, Target: eng, Predicted: ces
1095
+ Key: eng_voxpopuli_ces_000018, Target: eng, Predicted: ces
1096
+ Key: eng_voxpopuli_ces_000019, Target: eng, Predicted: ces
1097
+ Key: eng_voxpopuli_ces_000020, Target: eng, Predicted: ces
1098
+ Key: eng_voxpopuli_ces_000022, Target: eng, Predicted: ces
1099
+ Key: eng_voxpopuli_ces_000023, Target: eng, Predicted: ces
1100
+ Key: eng_voxpopuli_ces_000024, Target: eng, Predicted: ces
1101
+ Key: eng_voxpopuli_ces_000025, Target: eng, Predicted: ces
1102
+ Key: eng_voxpopuli_ces_000026, Target: eng, Predicted: ces
1103
+ Key: eng_voxpopuli_ces_000027, Target: eng, Predicted: ces
1104
+ Key: eng_voxpopuli_ces_000028, Target: eng, Predicted: ces
1105
+ Key: eng_voxpopuli_ces_000029, Target: eng, Predicted: ces
1106
+ Key: eng_voxpopuli_ces_000030, Target: eng, Predicted: ces
1107
+ Key: eng_voxpopuli_ces_000031, Target: eng, Predicted: ces
1108
+ Key: eng_voxpopuli_ces_000032, Target: eng, Predicted: ces
1109
+ Key: eng_voxpopuli_ces_000033, Target: eng, Predicted: ces
1110
+ Key: eng_voxpopuli_ces_000034, Target: eng, Predicted: ces
1111
+ Key: eng_voxpopuli_ces_000035, Target: eng, Predicted: ces
1112
+ Key: eng_voxpopuli_ces_000036, Target: eng, Predicted: ces
1113
+ Key: eng_voxpopuli_ces_000038, Target: eng, Predicted: ces
1114
+ Key: eng_voxpopuli_ces_000039, Target: eng, Predicted: ces
1115
+ Key: eng_voxpopuli_ces_000040, Target: eng, Predicted: ces
1116
+ Key: eng_voxpopuli_ces_000041, Target: eng, Predicted: ces
1117
+ Key: eng_voxpopuli_ces_000042, Target: eng, Predicted: ces
1118
+ Key: eng_voxpopuli_ces_000043, Target: eng, Predicted: ces
1119
+ Key: eng_voxpopuli_ces_000044, Target: eng, Predicted: ces
1120
+ Key: eng_voxpopuli_ces_000045, Target: eng, Predicted: ces
1121
+ Key: eng_voxpopuli_ces_000046, Target: eng, Predicted: ces
1122
+ Key: eng_voxpopuli_ces_000047, Target: eng, Predicted: ces
1123
+ Key: eng_voxpopuli_ces_000048, Target: eng, Predicted: ces
1124
+ Key: eng_voxpopuli_ces_000049, Target: eng, Predicted: ces
1125
+ Key: eng_voxpopuli_ces_000050, Target: eng, Predicted: ces
1126
+ Key: eng_voxpopuli_ces_000051, Target: eng, Predicted: ces
1127
+ Key: eng_voxpopuli_ces_000052, Target: eng, Predicted: ces
1128
+ Key: eng_voxpopuli_ces_000053, Target: eng, Predicted: ces
1129
+ Key: eng_voxpopuli_ces_000054, Target: eng, Predicted: ces
1130
+ Key: eng_voxpopuli_ces_000055, Target: eng, Predicted: ces
1131
+ Key: eng_voxpopuli_deu_000001, Target: eng, Predicted: deu
1132
+ Key: eng_voxpopuli_deu_000002, Target: eng, Predicted: deu
1133
+ Key: eng_voxpopuli_deu_000004, Target: eng, Predicted: cym
1134
+ Key: eng_voxpopuli_deu_000013, Target: eng, Predicted: deu
1135
+ Key: eng_voxpopuli_deu_000016, Target: eng, Predicted: deu
1136
+ Key: eng_voxpopuli_deu_000020, Target: eng, Predicted: deu
1137
+ Key: eng_voxpopuli_deu_000030, Target: eng, Predicted: deu
1138
+ Key: eng_voxpopuli_deu_000034, Target: eng, Predicted: deu
1139
+ Key: eng_voxpopuli_deu_000037, Target: eng, Predicted: deu
1140
+ Key: eng_voxpopuli_deu_000039, Target: eng, Predicted: deu
1141
+ Key: eng_voxpopuli_deu_000041, Target: eng, Predicted: deu
1142
+ Key: eng_voxpopuli_deu_000043, Target: eng, Predicted: deu
1143
+ Key: eng_voxpopuli_deu_000045, Target: eng, Predicted: deu
1144
+ Key: eng_voxpopuli_deu_000050, Target: eng, Predicted: deu
1145
+ Key: eng_voxpopuli_deu_000061, Target: eng, Predicted: deu
1146
+ Key: eng_voxpopuli_deu_000063, Target: eng, Predicted: deu
1147
+ Key: eng_voxpopuli_deu_000065, Target: eng, Predicted: deu
1148
+ Key: eng_voxpopuli_est_000000, Target: eng, Predicted: est
1149
+ Key: eng_voxpopuli_est_000001, Target: eng, Predicted: est
1150
+ Key: eng_voxpopuli_est_000002, Target: eng, Predicted: est
1151
+ Key: eng_voxpopuli_est_000004, Target: eng, Predicted: est
1152
+ Key: eng_voxpopuli_est_000005, Target: eng, Predicted: est
1153
+ Key: eng_voxpopuli_est_000006, Target: eng, Predicted: est
1154
+ Key: eng_voxpopuli_est_000007, Target: eng, Predicted: est
1155
+ Key: eng_voxpopuli_est_000008, Target: eng, Predicted: est
1156
+ Key: eng_voxpopuli_est_000009, Target: eng, Predicted: est
1157
+ Key: eng_voxpopuli_est_000010, Target: eng, Predicted: est
1158
+ Key: eng_voxpopuli_est_000011, Target: eng, Predicted: est
1159
+ Key: eng_voxpopuli_est_000012, Target: eng, Predicted: lav
1160
+ Key: eng_voxpopuli_est_000013, Target: eng, Predicted: est
1161
+ Key: eng_voxpopuli_est_000014, Target: eng, Predicted: est
1162
+ Key: eng_voxpopuli_est_000015, Target: eng, Predicted: est
1163
+ Key: eng_voxpopuli_est_000016, Target: eng, Predicted: est
1164
+ Key: eng_voxpopuli_est_000017, Target: eng, Predicted: deu
1165
+ Key: eng_voxpopuli_est_000019, Target: eng, Predicted: est
1166
+ Key: eng_voxpopuli_est_000020, Target: eng, Predicted: est
1167
+ Key: eng_voxpopuli_est_000021, Target: eng, Predicted: est
1168
+ Key: eng_voxpopuli_est_000022, Target: eng, Predicted: est
1169
+ Key: eng_voxpopuli_est_000023, Target: eng, Predicted: est
1170
+ Key: eng_voxpopuli_est_000024, Target: eng, Predicted: est
1171
+ Key: eng_voxpopuli_est_000025, Target: eng, Predicted: est
1172
+ Key: eng_voxpopuli_est_000026, Target: eng, Predicted: est
1173
+ Key: eng_voxpopuli_est_000027, Target: eng, Predicted: est
1174
+ Key: eng_voxpopuli_est_000028, Target: eng, Predicted: est
1175
+ Key: eng_voxpopuli_est_000031, Target: eng, Predicted: est
1176
+ Key: eng_voxpopuli_est_000032, Target: eng, Predicted: est
1177
+ Key: eng_voxpopuli_est_000034, Target: eng, Predicted: est
1178
+ Key: eng_voxpopuli_est_000035, Target: eng, Predicted: est
1179
+ Key: eng_voxpopuli_est_000036, Target: eng, Predicted: est
1180
+ Key: eng_voxpopuli_est_000037, Target: eng, Predicted: est
1181
+ Key: eng_voxpopuli_est_000038, Target: eng, Predicted: est
1182
+ Key: eng_voxpopuli_est_000039, Target: eng, Predicted: est
1183
+ Key: eng_voxpopuli_est_000040, Target: eng, Predicted: est
1184
+ Key: eng_voxpopuli_est_000041, Target: eng, Predicted: est
1185
+ Key: eng_voxpopuli_est_000042, Target: eng, Predicted: est
1186
+ Key: eng_voxpopuli_est_000043, Target: eng, Predicted: est
1187
+ Key: eng_voxpopuli_est_000044, Target: eng, Predicted: est
1188
+ Key: eng_voxpopuli_est_000045, Target: eng, Predicted: est
1189
+ Key: eng_voxpopuli_est_000046, Target: eng, Predicted: est
1190
+ Key: eng_voxpopuli_est_000047, Target: eng, Predicted: est
1191
+ Key: eng_voxpopuli_est_000048, Target: eng, Predicted: est
1192
+ Key: eng_voxpopuli_est_000049, Target: eng, Predicted: est
1193
+ Key: eng_voxpopuli_est_000050, Target: eng, Predicted: est
1194
+ Key: eng_voxpopuli_est_000051, Target: eng, Predicted: est
1195
+ Key: eng_voxpopuli_est_000052, Target: eng, Predicted: est
1196
+ Key: eng_voxpopuli_est_000053, Target: eng, Predicted: est
1197
+ Key: eng_voxpopuli_fin_000000, Target: eng, Predicted: fin
1198
+ Key: eng_voxpopuli_fin_000001, Target: eng, Predicted: fin
1199
+ Key: eng_voxpopuli_fin_000002, Target: eng, Predicted: fin
1200
+ Key: eng_voxpopuli_fin_000003, Target: eng, Predicted: fin
1201
+ Key: eng_voxpopuli_fin_000005, Target: eng, Predicted: fin
1202
+ Key: eng_voxpopuli_fin_000006, Target: eng, Predicted: fin
1203
+ Key: eng_voxpopuli_fin_000007, Target: eng, Predicted: lav
1204
+ Key: eng_voxpopuli_fin_000008, Target: eng, Predicted: fin
1205
+ Key: eng_voxpopuli_fin_000009, Target: eng, Predicted: fin
1206
+ Key: eng_voxpopuli_fin_000010, Target: eng, Predicted: fin
1207
+ Key: eng_voxpopuli_fin_000011, Target: eng, Predicted: fin
1208
+ Key: eng_voxpopuli_fin_000012, Target: eng, Predicted: fin
1209
+ Key: eng_voxpopuli_fin_000013, Target: eng, Predicted: fin
1210
+ Key: eng_voxpopuli_fin_000014, Target: eng, Predicted: fin
1211
+ Key: eng_voxpopuli_fin_000015, Target: eng, Predicted: fin
1212
+ Key: eng_voxpopuli_fin_000016, Target: eng, Predicted: fin
1213
+ Key: eng_voxpopuli_fin_000017, Target: eng, Predicted: fin
1214
+ Key: eng_voxpopuli_fin_000018, Target: eng, Predicted: fin
1215
+ Key: eng_voxpopuli_fin_000019, Target: eng, Predicted: fin
1216
+ Key: eng_voxpopuli_fin_000020, Target: eng, Predicted: fin
1217
+ Key: eng_voxpopuli_fin_000021, Target: eng, Predicted: fin
1218
+ Key: eng_voxpopuli_fin_000022, Target: eng, Predicted: fin
1219
+ Key: eng_voxpopuli_fin_000023, Target: eng, Predicted: fin
1220
+ Key: eng_voxpopuli_fin_000024, Target: eng, Predicted: fin
1221
+ Key: eng_voxpopuli_fin_000025, Target: eng, Predicted: fin
1222
+ Key: eng_voxpopuli_fin_000026, Target: eng, Predicted: fin
1223
+ Key: eng_voxpopuli_fin_000027, Target: eng, Predicted: fin
1224
+ Key: eng_voxpopuli_fin_000028, Target: eng, Predicted: fin
1225
+ Key: eng_voxpopuli_fin_000029, Target: eng, Predicted: fin
1226
+ Key: eng_voxpopuli_fin_000030, Target: eng, Predicted: fin
1227
+ Key: eng_voxpopuli_fin_000031, Target: eng, Predicted: fin
1228
+ Key: eng_voxpopuli_fin_000032, Target: eng, Predicted: fin
1229
+ Key: eng_voxpopuli_fin_000033, Target: eng, Predicted: fin
1230
+ Key: eng_voxpopuli_fin_000034, Target: eng, Predicted: fin
1231
+ Key: eng_voxpopuli_fin_000035, Target: eng, Predicted: fin
1232
+ Key: eng_voxpopuli_fin_000036, Target: eng, Predicted: fin
1233
+ Key: eng_voxpopuli_fin_000037, Target: eng, Predicted: fin
1234
+ Key: eng_voxpopuli_fin_000038, Target: eng, Predicted: fin
1235
+ Key: eng_voxpopuli_fin_000039, Target: eng, Predicted: fin
1236
+ Key: eng_voxpopuli_fin_000040, Target: eng, Predicted: fin
1237
+ Key: eng_voxpopuli_fin_000041, Target: eng, Predicted: fin
1238
+ Key: eng_voxpopuli_fin_000042, Target: eng, Predicted: fin
1239
+ Key: eng_voxpopuli_fin_000043, Target: eng, Predicted: fin
1240
+ Key: eng_voxpopuli_fin_000044, Target: eng, Predicted: fin
1241
+ Key: eng_voxpopuli_fin_000045, Target: eng, Predicted: fin
1242
+ Key: eng_voxpopuli_fin_000046, Target: eng, Predicted: fin
1243
+ Key: eng_voxpopuli_fin_000047, Target: eng, Predicted: fin
1244
+ Key: eng_voxpopuli_fin_000049, Target: eng, Predicted: fin
1245
+ Key: eng_voxpopuli_fin_000050, Target: eng, Predicted: fin
1246
+ Key: eng_voxpopuli_fin_000051, Target: eng, Predicted: mri
1247
+ Key: eng_voxpopuli_fin_000052, Target: eng, Predicted: fin
1248
+ Key: eng_voxpopuli_fin_000053, Target: eng, Predicted: fin
1249
+ Key: eng_voxpopuli_fin_000054, Target: eng, Predicted: fin
1250
+ Key: eng_voxpopuli_fin_000055, Target: eng, Predicted: fin
1251
+ Key: eng_voxpopuli_fin_000056, Target: eng, Predicted: fin
1252
+ Key: eng_voxpopuli_fin_000057, Target: eng, Predicted: fin
1253
+ Key: eng_voxpopuli_fin_000058, Target: eng, Predicted: fin
1254
+ Key: eng_voxpopuli_fin_000059, Target: eng, Predicted: fin
1255
+ Key: eng_voxpopuli_fin_000060, Target: eng, Predicted: fin
1256
+ Key: eng_voxpopuli_fra_000000, Target: eng, Predicted: nld
1257
+ Key: eng_voxpopuli_fra_000002, Target: eng, Predicted: ell
1258
+ Key: eng_voxpopuli_fra_000003, Target: eng, Predicted: lav
1259
+ Key: eng_voxpopuli_fra_000004, Target: eng, Predicted: nld
1260
+ Key: eng_voxpopuli_fra_000005, Target: eng, Predicted: nld
1261
+ Key: eng_voxpopuli_fra_000006, Target: eng, Predicted: por
1262
+ Key: eng_voxpopuli_fra_000007, Target: eng, Predicted: nld
1263
+ Key: eng_voxpopuli_fra_000008, Target: eng, Predicted: nld
1264
+ Key: eng_voxpopuli_fra_000009, Target: eng, Predicted: nld
1265
+ Key: eng_voxpopuli_fra_000010, Target: eng, Predicted: ell
1266
+ Key: eng_voxpopuli_fra_000011, Target: eng, Predicted: nld
1267
+ Key: eng_voxpopuli_fra_000012, Target: eng, Predicted: nld
1268
+ Key: eng_voxpopuli_fra_000013, Target: eng, Predicted: nld
1269
+ Key: eng_voxpopuli_fra_000014, Target: eng, Predicted: mya
1270
+ Key: eng_voxpopuli_fra_000015, Target: eng, Predicted: nld
1271
+ Key: eng_voxpopuli_fra_000016, Target: eng, Predicted: nld
1272
+ Key: eng_voxpopuli_fra_000017, Target: eng, Predicted: nld
1273
+ Key: eng_voxpopuli_fra_000018, Target: eng, Predicted: nld
1274
+ Key: eng_voxpopuli_fra_000019, Target: eng, Predicted: slk
1275
+ Key: eng_voxpopuli_fra_000021, Target: eng, Predicted: nld
1276
+ Key: eng_voxpopuli_fra_000022, Target: eng, Predicted: por
1277
+ Key: eng_voxpopuli_fra_000023, Target: eng, Predicted: nld
1278
+ Key: eng_voxpopuli_fra_000024, Target: eng, Predicted: ell
1279
+ Key: eng_voxpopuli_fra_000025, Target: eng, Predicted: nld
1280
+ Key: eng_voxpopuli_fra_000026, Target: eng, Predicted: nld
1281
+ Key: eng_voxpopuli_fra_000027, Target: eng, Predicted: nld
1282
+ Key: eng_voxpopuli_fra_000028, Target: eng, Predicted: por
1283
+ Key: eng_voxpopuli_fra_000029, Target: eng, Predicted: cym
1284
+ Key: eng_voxpopuli_fra_000030, Target: eng, Predicted: nld
1285
+ Key: eng_voxpopuli_fra_000032, Target: eng, Predicted: nld
1286
+ Key: eng_voxpopuli_fra_000033, Target: eng, Predicted: nld
1287
+ Key: eng_voxpopuli_fra_000034, Target: eng, Predicted: nld
1288
+ Key: eng_voxpopuli_fra_000035, Target: eng, Predicted: nld
1289
+ Key: eng_voxpopuli_fra_000036, Target: eng, Predicted: nld
1290
+ Key: eng_voxpopuli_fra_000037, Target: eng, Predicted: nld
1291
+ Key: eng_voxpopuli_fra_000038, Target: eng, Predicted: por
1292
+ Key: eng_voxpopuli_fra_000039, Target: eng, Predicted: cym
1293
+ Key: eng_voxpopuli_fra_000040, Target: eng, Predicted: nld
1294
+ Key: eng_voxpopuli_fra_000041, Target: eng, Predicted: lav
1295
+ Key: eng_voxpopuli_fra_000042, Target: eng, Predicted: nld
1296
+ Key: eng_voxpopuli_fra_000043, Target: eng, Predicted: slv
1297
+ Key: eng_voxpopuli_fra_000044, Target: eng, Predicted: nld
1298
+ Key: eng_voxpopuli_fra_000045, Target: eng, Predicted: fra
1299
+ Key: eng_voxpopuli_fra_000046, Target: eng, Predicted: por
1300
+ Key: eng_voxpopuli_fra_000047, Target: eng, Predicted: fra
1301
+ Key: eng_voxpopuli_fra_000048, Target: eng, Predicted: nld
1302
+ Key: eng_voxpopuli_fra_000049, Target: eng, Predicted: nld
1303
+ Key: eng_voxpopuli_fra_000050, Target: eng, Predicted: por
1304
+ Key: eng_voxpopuli_fra_000051, Target: eng, Predicted: por
1305
+ Key: eng_voxpopuli_fra_000053, Target: eng, Predicted: nld
1306
+ Key: eng_voxpopuli_fra_000055, Target: eng, Predicted: por
1307
+ Key: eng_voxpopuli_fra_000056, Target: eng, Predicted: nld
1308
+ Key: eng_voxpopuli_fra_000057, Target: eng, Predicted: nld
1309
+ Key: eng_voxpopuli_fra_000058, Target: eng, Predicted: nld
1310
+ Key: eng_voxpopuli_fra_000059, Target: eng, Predicted: ell
1311
+ Key: eng_voxpopuli_hun_000000, Target: eng, Predicted: hun
1312
+ Key: eng_voxpopuli_hun_000001, Target: eng, Predicted: hun
1313
+ Key: eng_voxpopuli_hun_000004, Target: eng, Predicted: hun
1314
+ Key: eng_voxpopuli_hun_000005, Target: eng, Predicted: hun
1315
+ Key: eng_voxpopuli_hun_000006, Target: eng, Predicted: hun
1316
+ Key: eng_voxpopuli_hun_000007, Target: eng, Predicted: hun
1317
+ Key: eng_voxpopuli_hun_000008, Target: eng, Predicted: hun
1318
+ Key: eng_voxpopuli_hun_000009, Target: eng, Predicted: hun
1319
+ Key: eng_voxpopuli_hun_000012, Target: eng, Predicted: hun
1320
+ Key: eng_voxpopuli_hun_000013, Target: eng, Predicted: hun
1321
+ Key: eng_voxpopuli_hun_000014, Target: eng, Predicted: hun
1322
+ Key: eng_voxpopuli_hun_000015, Target: eng, Predicted: hun
1323
+ Key: eng_voxpopuli_hun_000018, Target: eng, Predicted: hun
1324
+ Key: eng_voxpopuli_hun_000019, Target: eng, Predicted: hun
1325
+ Key: eng_voxpopuli_hun_000020, Target: eng, Predicted: hun
1326
+ Key: eng_voxpopuli_hun_000021, Target: eng, Predicted: hun
1327
+ Key: eng_voxpopuli_hun_000022, Target: eng, Predicted: hun
1328
+ Key: eng_voxpopuli_hun_000023, Target: eng, Predicted: hun
1329
+ Key: eng_voxpopuli_hun_000025, Target: eng, Predicted: hun
1330
+ Key: eng_voxpopuli_hun_000026, Target: eng, Predicted: hun
1331
+ Key: eng_voxpopuli_hun_000027, Target: eng, Predicted: hun
1332
+ Key: eng_voxpopuli_hun_000029, Target: eng, Predicted: hun
1333
+ Key: eng_voxpopuli_hun_000030, Target: eng, Predicted: hun
1334
+ Key: eng_voxpopuli_hun_000031, Target: eng, Predicted: hun
1335
+ Key: eng_voxpopuli_hun_000032, Target: eng, Predicted: hun
1336
+ Key: eng_voxpopuli_hun_000033, Target: eng, Predicted: hun
1337
+ Key: eng_voxpopuli_hun_000034, Target: eng, Predicted: hun
1338
+ Key: eng_voxpopuli_hun_000036, Target: eng, Predicted: hun
1339
+ Key: eng_voxpopuli_hun_000037, Target: eng, Predicted: hun
1340
+ Key: eng_voxpopuli_hun_000038, Target: eng, Predicted: hun
1341
+ Key: eng_voxpopuli_hun_000039, Target: eng, Predicted: hun
1342
+ Key: eng_voxpopuli_hun_000040, Target: eng, Predicted: hun
1343
+ Key: eng_voxpopuli_hun_000042, Target: eng, Predicted: hun
1344
+ Key: eng_voxpopuli_hun_000043, Target: eng, Predicted: hun
1345
+ Key: eng_voxpopuli_hun_000044, Target: eng, Predicted: hun
1346
+ Key: eng_voxpopuli_hun_000046, Target: eng, Predicted: hun
1347
+ Key: eng_voxpopuli_hun_000048, Target: eng, Predicted: hun
1348
+ Key: eng_voxpopuli_hun_000049, Target: eng, Predicted: hun
1349
+ Key: eng_voxpopuli_hun_000052, Target: eng, Predicted: hun
1350
+ Key: eng_voxpopuli_hun_000054, Target: eng, Predicted: hun
1351
+ Key: eng_voxpopuli_hun_000056, Target: eng, Predicted: hun
1352
+ Key: eng_voxpopuli_hun_000057, Target: eng, Predicted: hun
1353
+ Key: eng_voxpopuli_hun_000058, Target: eng, Predicted: hun
1354
+ Key: eng_voxpopuli_hun_000059, Target: eng, Predicted: hun
1355
+ Key: eng_voxpopuli_hun_000060, Target: eng, Predicted: hun
1356
+ Key: eng_voxpopuli_hun_000062, Target: eng, Predicted: hun
1357
+ Key: eng_voxpopuli_hun_000065, Target: eng, Predicted: hun
1358
+ Key: eng_voxpopuli_hun_000066, Target: eng, Predicted: hun
1359
+ Key: eng_voxpopuli_hun_000067, Target: eng, Predicted: hun
1360
+ Key: eng_voxpopuli_hun_000069, Target: eng, Predicted: hun
1361
+ Key: eng_voxpopuli_hun_000070, Target: eng, Predicted: hun
1362
+ Key: eng_voxpopuli_hun_000071, Target: eng, Predicted: hun
1363
+ Key: eng_voxpopuli_hun_000072, Target: eng, Predicted: hun
1364
+ Key: eng_voxpopuli_hun_000073, Target: eng, Predicted: hun
1365
+ Key: eng_voxpopuli_hun_000074, Target: eng, Predicted: hun
1366
+ Key: eng_voxpopuli_hun_000075, Target: eng, Predicted: hun
1367
+ Key: eng_voxpopuli_hun_000076, Target: eng, Predicted: hun
1368
+ Key: eng_voxpopuli_ita_000000, Target: eng, Predicted: ita
1369
+ Key: eng_voxpopuli_ita_000001, Target: eng, Predicted: ita
1370
+ Key: eng_voxpopuli_ita_000002, Target: eng, Predicted: ita
1371
+ Key: eng_voxpopuli_ita_000003, Target: eng, Predicted: ita
1372
+ Key: eng_voxpopuli_ita_000004, Target: eng, Predicted: ita
1373
+ Key: eng_voxpopuli_ita_000006, Target: eng, Predicted: ita
1374
+ Key: eng_voxpopuli_ita_000007, Target: eng, Predicted: ita
1375
+ Key: eng_voxpopuli_ita_000008, Target: eng, Predicted: ita
1376
+ Key: eng_voxpopuli_ita_000009, Target: eng, Predicted: slv
1377
+ Key: eng_voxpopuli_ita_000011, Target: eng, Predicted: ita
1378
+ Key: eng_voxpopuli_ita_000012, Target: eng, Predicted: cym
1379
+ Key: eng_voxpopuli_ita_000014, Target: eng, Predicted: ita
1380
+ Key: eng_voxpopuli_ita_000015, Target: eng, Predicted: ita
1381
+ Key: eng_voxpopuli_ita_000016, Target: eng, Predicted: slk
1382
+ Key: eng_voxpopuli_ita_000017, Target: eng, Predicted: ita
1383
+ Key: eng_voxpopuli_ita_000019, Target: eng, Predicted: ita
1384
+ Key: eng_voxpopuli_ita_000020, Target: eng, Predicted: ita
1385
+ Key: eng_voxpopuli_ita_000021, Target: eng, Predicted: ita
1386
+ Key: eng_voxpopuli_ita_000022, Target: eng, Predicted: ita
1387
+ Key: eng_voxpopuli_ita_000023, Target: eng, Predicted: ita
1388
+ Key: eng_voxpopuli_ita_000024, Target: eng, Predicted: ita
1389
+ Key: eng_voxpopuli_ita_000025, Target: eng, Predicted: ita
1390
+ Key: eng_voxpopuli_ita_000026, Target: eng, Predicted: hrv
1391
+ Key: eng_voxpopuli_ita_000028, Target: eng, Predicted: ita
1392
+ Key: eng_voxpopuli_ita_000029, Target: eng, Predicted: ita
1393
+ Key: eng_voxpopuli_ita_000030, Target: eng, Predicted: ita
1394
+ Key: eng_voxpopuli_ita_000031, Target: eng, Predicted: ita
1395
+ Key: eng_voxpopuli_ita_000032, Target: eng, Predicted: ita
1396
+ Key: eng_voxpopuli_ita_000033, Target: eng, Predicted: ces
1397
+ Key: eng_voxpopuli_ita_000035, Target: eng, Predicted: ita
1398
+ Key: eng_voxpopuli_ita_000036, Target: eng, Predicted: ita
1399
+ Key: eng_voxpopuli_ita_000037, Target: eng, Predicted: ita
1400
+ Key: eng_voxpopuli_ita_000038, Target: eng, Predicted: ita
1401
+ Key: eng_voxpopuli_ita_000039, Target: eng, Predicted: ita
1402
+ Key: eng_voxpopuli_ita_000040, Target: eng, Predicted: hrv
1403
+ Key: eng_voxpopuli_ita_000041, Target: eng, Predicted: nld
1404
+ Key: eng_voxpopuli_ita_000042, Target: eng, Predicted: ita
1405
+ Key: eng_voxpopuli_ita_000043, Target: eng, Predicted: ita
1406
+ Key: eng_voxpopuli_ita_000044, Target: eng, Predicted: hrv
1407
+ Key: eng_voxpopuli_ita_000045, Target: eng, Predicted: ita
1408
+ Key: eng_voxpopuli_ita_000046, Target: eng, Predicted: ita
1409
+ Key: eng_voxpopuli_ita_000047, Target: eng, Predicted: hrv
1410
+ Key: eng_voxpopuli_ita_000048, Target: eng, Predicted: ita
1411
+ Key: eng_voxpopuli_ita_000049, Target: eng, Predicted: ita
1412
+ Key: eng_voxpopuli_ita_000050, Target: eng, Predicted: ita
1413
+ Key: eng_voxpopuli_ita_000051, Target: eng, Predicted: ita
1414
+ Key: eng_voxpopuli_ita_000052, Target: eng, Predicted: ita
1415
+ Key: eng_voxpopuli_ita_000053, Target: eng, Predicted: ara
1416
+ Key: eng_voxpopuli_ita_000054, Target: eng, Predicted: ita
1417
+ Key: eng_voxpopuli_ita_000055, Target: eng, Predicted: ita
1418
+ Key: eng_voxpopuli_ita_000056, Target: eng, Predicted: ita
1419
+ Key: eng_voxpopuli_ita_000057, Target: eng, Predicted: ita
1420
+ Key: eng_voxpopuli_ita_000058, Target: eng, Predicted: ita
1421
+ Key: eng_voxpopuli_ita_000059, Target: eng, Predicted: ita
1422
+ Key: eng_voxpopuli_ita_000060, Target: eng, Predicted: ita
1423
+ Key: eng_voxpopuli_nld_000009, Target: eng, Predicted: nld
1424
+ Key: eng_voxpopuli_nld_000010, Target: eng, Predicted: nld
1425
+ Key: eng_voxpopuli_nld_000013, Target: eng, Predicted: nld
1426
+ Key: eng_voxpopuli_nld_000015, Target: eng, Predicted: nld
1427
+ Key: eng_voxpopuli_nld_000017, Target: eng, Predicted: nld
1428
+ Key: eng_voxpopuli_nld_000022, Target: eng, Predicted: nld
1429
+ Key: eng_voxpopuli_nld_000023, Target: eng, Predicted: nld
1430
+ Key: eng_voxpopuli_nld_000024, Target: eng, Predicted: mlt
1431
+ Key: eng_voxpopuli_nld_000026, Target: eng, Predicted: hau
1432
+ Key: eng_voxpopuli_nld_000029, Target: eng, Predicted: nld
1433
+ Key: eng_voxpopuli_nld_000031, Target: eng, Predicted: nld
1434
+ Key: eng_voxpopuli_nld_000034, Target: eng, Predicted: nld
1435
+ Key: eng_voxpopuli_nld_000036, Target: eng, Predicted: nld
1436
+ Key: eng_voxpopuli_nld_000038, Target: eng, Predicted: nld
1437
+ Key: eng_voxpopuli_nld_000040, Target: eng, Predicted: nld
1438
+ Key: eng_voxpopuli_nld_000041, Target: eng, Predicted: nld
1439
+ Key: eng_voxpopuli_nld_000042, Target: eng, Predicted: nld
1440
+ Key: eng_voxpopuli_nld_000047, Target: eng, Predicted: nld
1441
+ Key: eng_voxpopuli_nld_000051, Target: eng, Predicted: nld
1442
+ Key: eng_voxpopuli_nld_000057, Target: eng, Predicted: nld
1443
+ Key: eng_voxpopuli_nld_000060, Target: eng, Predicted: nld
1444
+ Key: eng_voxpopuli_nld_000062, Target: eng, Predicted: nld
1445
+ Key: eng_voxpopuli_nld_000064, Target: eng, Predicted: nld
1446
+ Key: eng_voxpopuli_pol_000001, Target: eng, Predicted: pol
1447
+ Key: eng_voxpopuli_pol_000002, Target: eng, Predicted: pol
1448
+ Key: eng_voxpopuli_pol_000006, Target: eng, Predicted: pol
1449
+ Key: eng_voxpopuli_pol_000007, Target: eng, Predicted: pol
1450
+ Key: eng_voxpopuli_pol_000008, Target: eng, Predicted: pol
1451
+ Key: eng_voxpopuli_pol_000009, Target: eng, Predicted: deu
1452
+ Key: eng_voxpopuli_pol_000011, Target: eng, Predicted: pol
1453
+ Key: eng_voxpopuli_pol_000012, Target: eng, Predicted: pol
1454
+ Key: eng_voxpopuli_pol_000013, Target: eng, Predicted: pol
1455
+ Key: eng_voxpopuli_pol_000015, Target: eng, Predicted: pol
1456
+ Key: eng_voxpopuli_pol_000017, Target: eng, Predicted: pol
1457
+ Key: eng_voxpopuli_pol_000019, Target: eng, Predicted: pol
1458
+ Key: eng_voxpopuli_pol_000020, Target: eng, Predicted: pol
1459
+ Key: eng_voxpopuli_pol_000021, Target: eng, Predicted: pol
1460
+ Key: eng_voxpopuli_pol_000022, Target: eng, Predicted: pol
1461
+ Key: eng_voxpopuli_pol_000023, Target: eng, Predicted: pol
1462
+ Key: eng_voxpopuli_pol_000024, Target: eng, Predicted: pol
1463
+ Key: eng_voxpopuli_pol_000025, Target: eng, Predicted: pol
1464
+ Key: eng_voxpopuli_pol_000026, Target: eng, Predicted: pol
1465
+ Key: eng_voxpopuli_pol_000027, Target: eng, Predicted: pol
1466
+ Key: eng_voxpopuli_pol_000028, Target: eng, Predicted: pol
1467
+ Key: eng_voxpopuli_pol_000029, Target: eng, Predicted: pol
1468
+ Key: eng_voxpopuli_pol_000030, Target: eng, Predicted: pol
1469
+ Key: eng_voxpopuli_pol_000031, Target: eng, Predicted: pol
1470
+ Key: eng_voxpopuli_pol_000032, Target: eng, Predicted: pol
1471
+ Key: eng_voxpopuli_pol_000034, Target: eng, Predicted: pol
1472
+ Key: eng_voxpopuli_pol_000037, Target: eng, Predicted: pol
1473
+ Key: eng_voxpopuli_pol_000038, Target: eng, Predicted: pol
1474
+ Key: eng_voxpopuli_pol_000040, Target: eng, Predicted: hun
1475
+ Key: eng_voxpopuli_pol_000041, Target: eng, Predicted: pol
1476
+ Key: eng_voxpopuli_pol_000042, Target: eng, Predicted: pol
1477
+ Key: eng_voxpopuli_pol_000044, Target: eng, Predicted: pol
1478
+ Key: eng_voxpopuli_pol_000045, Target: eng, Predicted: pol
1479
+ Key: eng_voxpopuli_pol_000046, Target: eng, Predicted: pol
1480
+ Key: eng_voxpopuli_pol_000047, Target: eng, Predicted: pol
1481
+ Key: eng_voxpopuli_pol_000048, Target: eng, Predicted: pol
1482
+ Key: eng_voxpopuli_pol_000050, Target: eng, Predicted: pol
1483
+ Key: eng_voxpopuli_pol_000052, Target: eng, Predicted: pol
1484
+ Key: eng_voxpopuli_pol_000053, Target: eng, Predicted: pol
1485
+ Key: eng_voxpopuli_pol_000058, Target: eng, Predicted: pol
1486
+ Key: eng_voxpopuli_pol_000059, Target: eng, Predicted: pol
1487
+ Key: eng_voxpopuli_ron_000000, Target: eng, Predicted: ron
1488
+ Key: eng_voxpopuli_ron_000002, Target: eng, Predicted: ron
1489
+ Key: eng_voxpopuli_ron_000003, Target: eng, Predicted: ron
1490
+ Key: eng_voxpopuli_ron_000005, Target: eng, Predicted: ron
1491
+ Key: eng_voxpopuli_ron_000006, Target: eng, Predicted: hun
1492
+ Key: eng_voxpopuli_ron_000007, Target: eng, Predicted: ron
1493
+ Key: eng_voxpopuli_ron_000008, Target: eng, Predicted: ron
1494
+ Key: eng_voxpopuli_ron_000012, Target: eng, Predicted: ron
1495
+ Key: eng_voxpopuli_ron_000013, Target: eng, Predicted: ron
1496
+ Key: eng_voxpopuli_ron_000014, Target: eng, Predicted: ron
1497
+ Key: eng_voxpopuli_ron_000015, Target: eng, Predicted: ron
1498
+ Key: eng_voxpopuli_ron_000016, Target: eng, Predicted: ron
1499
+ Key: eng_voxpopuli_ron_000017, Target: eng, Predicted: ron
1500
+ Key: eng_voxpopuli_ron_000018, Target: eng, Predicted: ron
1501
+ Key: eng_voxpopuli_ron_000019, Target: eng, Predicted: hun
1502
+ Key: eng_voxpopuli_ron_000020, Target: eng, Predicted: ron
1503
+ Key: eng_voxpopuli_ron_000021, Target: eng, Predicted: ron
1504
+ Key: eng_voxpopuli_ron_000024, Target: eng, Predicted: ron
1505
+ Key: eng_voxpopuli_ron_000025, Target: eng, Predicted: ron
1506
+ Key: eng_voxpopuli_ron_000026, Target: eng, Predicted: ron
1507
+ Key: eng_voxpopuli_ron_000029, Target: eng, Predicted: ron
1508
+ Key: eng_voxpopuli_ron_000030, Target: eng, Predicted: ron
1509
+ Key: eng_voxpopuli_ron_000031, Target: eng, Predicted: ron
1510
+ Key: eng_voxpopuli_ron_000032, Target: eng, Predicted: ron
1511
+ Key: eng_voxpopuli_ron_000033, Target: eng, Predicted: ron
1512
+ Key: eng_voxpopuli_ron_000034, Target: eng, Predicted: ron
1513
+ Key: eng_voxpopuli_ron_000035, Target: eng, Predicted: ron
1514
+ Key: eng_voxpopuli_ron_000036, Target: eng, Predicted: ron
1515
+ Key: eng_voxpopuli_ron_000037, Target: eng, Predicted: ron
1516
+ Key: eng_voxpopuli_ron_000038, Target: eng, Predicted: ron
1517
+ Key: eng_voxpopuli_ron_000039, Target: eng, Predicted: ron
1518
+ Key: eng_voxpopuli_ron_000040, Target: eng, Predicted: ron
1519
+ Key: eng_voxpopuli_ron_000041, Target: eng, Predicted: ron
1520
+ Key: eng_voxpopuli_ron_000044, Target: eng, Predicted: ron
1521
+ Key: eng_voxpopuli_ron_000045, Target: eng, Predicted: ron
1522
+ Key: eng_voxpopuli_ron_000046, Target: eng, Predicted: ron
1523
+ Key: eng_voxpopuli_ron_000047, Target: eng, Predicted: ell
1524
+ Key: eng_voxpopuli_ron_000048, Target: eng, Predicted: ron
1525
+ Key: eng_voxpopuli_ron_000049, Target: eng, Predicted: ron
1526
+ Key: eng_voxpopuli_ron_000050, Target: eng, Predicted: ron
1527
+ Key: eng_voxpopuli_ron_000051, Target: eng, Predicted: ron
1528
+ Key: eng_voxpopuli_ron_000052, Target: eng, Predicted: ron
1529
+ Key: eng_voxpopuli_ron_000053, Target: eng, Predicted: ron
1530
+ Key: eng_voxpopuli_ron_000054, Target: eng, Predicted: ron
1531
+ Key: eng_voxpopuli_ron_000055, Target: eng, Predicted: ron
1532
+ Key: eng_voxpopuli_ron_000056, Target: eng, Predicted: ron
1533
+ Key: eng_voxpopuli_ron_000057, Target: eng, Predicted: ron
1534
+ Key: eng_voxpopuli_ron_000060, Target: eng, Predicted: ron
1535
+ Key: eng_voxpopuli_ron_000063, Target: eng, Predicted: ron
1536
+ Key: eng_voxpopuli_ron_000065, Target: eng, Predicted: ron
1537
+ Key: eng_voxpopuli_ron_000066, Target: eng, Predicted: ron
1538
+ Key: eng_voxpopuli_slk_000000, Target: eng, Predicted: slk
1539
+ Key: eng_voxpopuli_slk_000001, Target: eng, Predicted: slk
1540
+ Key: eng_voxpopuli_slk_000005, Target: eng, Predicted: slk
1541
+ Key: eng_voxpopuli_slk_000006, Target: eng, Predicted: slk
1542
+ Key: eng_voxpopuli_slk_000007, Target: eng, Predicted: slk
1543
+ Key: eng_voxpopuli_slk_000009, Target: eng, Predicted: slk
1544
+ Key: eng_voxpopuli_slk_000010, Target: eng, Predicted: slk
1545
+ Key: eng_voxpopuli_slk_000011, Target: eng, Predicted: slk
1546
+ Key: eng_voxpopuli_slk_000012, Target: eng, Predicted: hrv
1547
+ Key: eng_voxpopuli_slk_000015, Target: eng, Predicted: slk
1548
+ Key: eng_voxpopuli_slk_000016, Target: eng, Predicted: slk
1549
+ Key: eng_voxpopuli_slk_000017, Target: eng, Predicted: ces
1550
+ Key: eng_voxpopuli_slk_000019, Target: eng, Predicted: slk
1551
+ Key: eng_voxpopuli_slk_000020, Target: eng, Predicted: slk
1552
+ Key: eng_voxpopuli_slk_000022, Target: eng, Predicted: slk
1553
+ Key: eng_voxpopuli_slk_000023, Target: eng, Predicted: ces
1554
+ Key: eng_voxpopuli_slk_000026, Target: eng, Predicted: slk
1555
+ Key: eng_voxpopuli_slk_000027, Target: eng, Predicted: slk
1556
+ Key: eng_voxpopuli_slk_000028, Target: eng, Predicted: slk
1557
+ Key: eng_voxpopuli_slk_000029, Target: eng, Predicted: slk
1558
+ Key: eng_voxpopuli_slk_000032, Target: eng, Predicted: pol
1559
+ Key: eng_voxpopuli_slk_000034, Target: eng, Predicted: ces
1560
+ Key: eng_voxpopuli_slk_000035, Target: eng, Predicted: nld
1561
+ Key: eng_voxpopuli_slk_000037, Target: eng, Predicted: slk
1562
+ Key: eng_voxpopuli_slk_000039, Target: eng, Predicted: slk
1563
+ Key: eng_voxpopuli_slk_000040, Target: eng, Predicted: slk
1564
+ Key: eng_voxpopuli_slk_000041, Target: eng, Predicted: slk
1565
+ Key: eng_voxpopuli_slk_000042, Target: eng, Predicted: slk
1566
+ Key: eng_voxpopuli_slk_000043, Target: eng, Predicted: ces
1567
+ Key: eng_voxpopuli_slk_000044, Target: eng, Predicted: ces
1568
+ Key: eng_voxpopuli_slk_000045, Target: eng, Predicted: slk
1569
+ Key: eng_voxpopuli_slk_000047, Target: eng, Predicted: slk
1570
+ Key: eng_voxpopuli_slk_000048, Target: eng, Predicted: slk
1571
+ Key: eng_voxpopuli_slk_000049, Target: eng, Predicted: slk
1572
+ Key: eng_voxpopuli_slk_000050, Target: eng, Predicted: slk
1573
+ Key: eng_voxpopuli_slk_000051, Target: eng, Predicted: slk
1574
+ Key: eng_voxpopuli_slk_000052, Target: eng, Predicted: slk
1575
+ Key: eng_voxpopuli_slk_000054, Target: eng, Predicted: slk
1576
+ Key: eng_voxpopuli_slk_000055, Target: eng, Predicted: slk
1577
+ Key: eng_voxpopuli_slk_000057, Target: eng, Predicted: slk
1578
+ Key: eng_voxpopuli_slk_000059, Target: eng, Predicted: slk
1579
+ Key: eng_voxpopuli_slk_000060, Target: eng, Predicted: ara
1580
+ Key: eng_voxpopuli_slk_000062, Target: eng, Predicted: ces
1581
+ Key: eng_voxpopuli_slk_000063, Target: eng, Predicted: pol
1582
+ Key: eng_voxpopuli_slk_000064, Target: eng, Predicted: slk
1583
+ Key: eng_voxpopuli_spa_000000, Target: eng, Predicted: spa
1584
+ Key: eng_voxpopuli_spa_000003, Target: eng, Predicted: spa
1585
+ Key: eng_voxpopuli_spa_000007, Target: eng, Predicted: cym
1586
+ Key: eng_voxpopuli_spa_000010, Target: eng, Predicted: spa
1587
+ Key: eng_voxpopuli_spa_000017, Target: eng, Predicted: glg
1588
+ Key: eng_voxpopuli_spa_000020, Target: eng, Predicted: cat
1589
+ Key: eng_voxpopuli_spa_000021, Target: eng, Predicted: spa
1590
+ Key: eng_voxpopuli_spa_000023, Target: eng, Predicted: cym
1591
+ Key: eng_voxpopuli_spa_000027, Target: eng, Predicted: cym
1592
+ Key: eng_voxpopuli_spa_000029, Target: eng, Predicted: spa
1593
+ Key: eng_voxpopuli_spa_000030, Target: eng, Predicted: cym
1594
+ Key: eng_voxpopuli_spa_000032, Target: eng, Predicted: spa
1595
+ Key: eng_voxpopuli_spa_000033, Target: eng, Predicted: cym
1596
+ Key: eng_voxpopuli_spa_000035, Target: eng, Predicted: glg
1597
+ Key: eng_voxpopuli_spa_000036, Target: eng, Predicted: cym
1598
+ Key: eng_voxpopuli_spa_000037, Target: eng, Predicted: cym
1599
+ Key: eng_voxpopuli_spa_000040, Target: eng, Predicted: cym
1600
+ Key: eng_voxpopuli_spa_000043, Target: eng, Predicted: hau
1601
+ Key: eng_voxpopuli_spa_000047, Target: eng, Predicted: cym
1602
+ Key: eng_voxpopuli_spa_000050, Target: eng, Predicted: ell
1603
+ Key: eng_voxpopuli_spa_000052, Target: eng, Predicted: cym
1604
+ Key: eng_voxpopuli_spa_000053, Target: eng, Predicted: cym
1605
+ Key: eng_voxpopuli_spa_000058, Target: eng, Predicted: ell
1606
+ Key: eng_voxpopuli_spa_000059, Target: eng, Predicted: cym
1607
+ Key: eng_voxpopuli_spa_000060, Target: eng, Predicted: ara
1608
+ Key: eng_voxpopuli_spa_000064, Target: eng, Predicted: cym
1609
+ Key: eng_voxpopuli_spa_000067, Target: eng, Predicted: spa
1610
+ Key: eng_voxpopuli_spa_000068, Target: eng, Predicted: spa
1611
+ Key: guj_ms_speech_guj_000038, Target: guj, Predicted: mar
1612
+ Key: spa_openslr_spa_arg_000006, Target: spa, Predicted: ita
1613
+ Key: spa_openslr_spa_arg_000015, Target: spa, Predicted: por
1614
+ Key: spa_openslr_spa_arg_000022, Target: spa, Predicted: dan
1615
+ Key: spa_openslr_spa_arg_000062, Target: spa, Predicted: eus
1616
+ Key: spa_openslr_spa_arg_000114, Target: spa, Predicted: eus
1617
+ Key: spa_openslr_spa_chi_000022, Target: spa, Predicted: grn
1618
+ Key: spa_openslr_spa_col_000007, Target: spa, Predicted: epo
1619
+ Key: spa_openslr_spa_col_000044, Target: spa, Predicted: por
1620
+ Key: spa_openslr_spa_col_000056, Target: spa, Predicted: ita
1621
+ Key: spa_openslr_spa_col_000095, Target: spa, Predicted: fas
1622
+ Key: spa_openslr_spa_per_000015, Target: spa, Predicted: eus
1623
+ Key: spa_openslr_spa_per_000035, Target: spa, Predicted: ita
1624
+ Key: spa_openslr_spa_pue_000014, Target: spa, Predicted: grn
1625
+ Key: spa_openslr_spa_pue_000071, Target: spa, Predicted: ita
1626
+ Key: spa_openslr_spa_ven_000112, Target: spa, Predicted: eus
1627
+ Key: tam_ms_speech_tam_000102, Target: tam, Predicted: tel
1628
+ Key: tel_ms_speech_tel_000014, Target: tel, Predicted: mal
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/lid_inference_test.log ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
2
+ # Started at Fri May 16 16:33:03 CDT 2025
3
+ #
4
+ /u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_ml_superb2_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
5
+ [gpue02] 2025-05-16 16:33:20,000 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
6
+ /work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
7
+ torchaudio.set_audio_backend("sox_io")
8
+ /work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
9
+ torch.load(model_file, map_location=device),
10
+ [gpue02] 2025-05-16 16:33:30,412 (lid_inference_dist:86) INFO: Model structure:
11
+ ESPnetLIDUpstreamLang2VecConditionModel(
12
+ (frontend): S3prlFrontendLang2VecCondition(
13
+ (upstream): S3PRLUpstreamLang2VecCondition(
14
+ (upstream): UpstreamExpertLang2VecCondition(
15
+ (model): Wav2Vec2ModelLang2VecCondition(
16
+ (feature_extractor): Wav2Vec2FeatureEncoder(
17
+ (conv_layers): ModuleList(
18
+ (0): Wav2Vec2LayerNormConvLayer(
19
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
20
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
21
+ (activation): GELUActivation()
22
+ )
23
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
24
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
25
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
26
+ (activation): GELUActivation()
27
+ )
28
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
29
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
30
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
31
+ (activation): GELUActivation()
32
+ )
33
+ )
34
+ )
35
+ (feature_projection): Wav2Vec2FeatureProjection(
36
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
37
+ (projection): Linear(in_features=512, out_features=1280, bias=True)
38
+ (dropout): Dropout(p=0.1, inplace=False)
39
+ )
40
+ (encoder): Wav2Vec2EncoderLang2VecCondition(
41
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
42
+ (conv): ParametrizedConv1d(
43
+ 1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
44
+ (parametrizations): ModuleDict(
45
+ (weight): ParametrizationList(
46
+ (0): _WeightNorm()
47
+ )
48
+ )
49
+ )
50
+ (padding): Wav2Vec2SamePadLayer()
51
+ (activation): GELUActivation()
52
+ )
53
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
54
+ (dropout): Dropout(p=0.1, inplace=False)
55
+ (layers): ModuleList(
56
+ (0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
57
+ (attention): Wav2Vec2SdpaAttention(
58
+ (k_proj): Linear(in_features=1280, out_features=1280, bias=True)
59
+ (v_proj): Linear(in_features=1280, out_features=1280, bias=True)
60
+ (q_proj): Linear(in_features=1280, out_features=1280, bias=True)
61
+ (out_proj): Linear(in_features=1280, out_features=1280, bias=True)
62
+ )
63
+ (dropout): Dropout(p=0.1, inplace=False)
64
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
65
+ (feed_forward): Wav2Vec2FeedForward(
66
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
67
+ (intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
68
+ (intermediate_act_fn): GELUActivation()
69
+ (output_dense): Linear(in_features=5120, out_features=1280, bias=True)
70
+ (output_dropout): Dropout(p=0.1, inplace=False)
71
+ )
72
+ (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
73
+ )
74
+ )
75
+ (conditioning_projs): ModuleDict(
76
+ (32): Linear(in_features=299, out_features=1280, bias=True)
77
+ (36): Linear(in_features=299, out_features=1280, bias=True)
78
+ (40): Linear(in_features=299, out_features=1280, bias=True)
79
+ (44): Linear(in_features=299, out_features=1280, bias=True)
80
+ )
81
+ (ecapa_encoder): ModuleDict(
82
+ (32): IdentityEncoder()
83
+ (36): IdentityEncoder()
84
+ (40): IdentityEncoder()
85
+ (44): IdentityEncoder()
86
+ )
87
+ (pooling): ModuleDict(
88
+ (32): ChnAttnStatPooling(
89
+ (attention): Sequential(
90
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
91
+ (1): ReLU()
92
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
93
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
94
+ )
95
+ (softmax): Softmax(dim=2)
96
+ )
97
+ (36): ChnAttnStatPooling(
98
+ (attention): Sequential(
99
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
100
+ (1): ReLU()
101
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
102
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
103
+ )
104
+ (softmax): Softmax(dim=2)
105
+ )
106
+ (40): ChnAttnStatPooling(
107
+ (attention): Sequential(
108
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
109
+ (1): ReLU()
110
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
111
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
112
+ )
113
+ (softmax): Softmax(dim=2)
114
+ )
115
+ (44): ChnAttnStatPooling(
116
+ (attention): Sequential(
117
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
118
+ (1): ReLU()
119
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
120
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
121
+ )
122
+ (softmax): Softmax(dim=2)
123
+ )
124
+ )
125
+ (projector): ModuleDict(
126
+ (32): RawNet3Projector(
127
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
128
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
129
+ )
130
+ (36): RawNet3Projector(
131
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
132
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
133
+ )
134
+ (40): RawNet3Projector(
135
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
136
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
137
+ )
138
+ (44): RawNet3Projector(
139
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
140
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
141
+ )
142
+ )
143
+ (lang2vec_head): ModuleDict(
144
+ (32): Sequential(
145
+ (0): Linear(in_features=192, out_features=299, bias=True)
146
+ )
147
+ (36): Sequential(
148
+ (0): Linear(in_features=192, out_features=299, bias=True)
149
+ )
150
+ (40): Sequential(
151
+ (0): Linear(in_features=192, out_features=299, bias=True)
152
+ )
153
+ (44): Sequential(
154
+ (0): Linear(in_features=192, out_features=299, bias=True)
155
+ )
156
+ )
157
+ )
158
+ )
159
+ )
160
+ )
161
+ (featurizer): Featurizer()
162
+ )
163
+ (normalize): UtteranceMVN(norm_means=True, norm_vars=False)
164
+ (encoder): EcapaTdnnEncoder(
165
+ (conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
166
+ (relu): ReLU()
167
+ (bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
168
+ (layer1): EcapaBlock(
169
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
170
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
171
+ (convs): ModuleList(
172
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
173
+ )
174
+ (bns): ModuleList(
175
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
176
+ )
177
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
178
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
179
+ (relu): ReLU()
180
+ (se): SEModule(
181
+ (se): Sequential(
182
+ (0): AdaptiveAvgPool1d(output_size=1)
183
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
184
+ (2): ReLU()
185
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
186
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
187
+ (5): Sigmoid()
188
+ )
189
+ )
190
+ )
191
+ (layer2): EcapaBlock(
192
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
193
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
194
+ (convs): ModuleList(
195
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
196
+ )
197
+ (bns): ModuleList(
198
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
199
+ )
200
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
201
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
202
+ (relu): ReLU()
203
+ (se): SEModule(
204
+ (se): Sequential(
205
+ (0): AdaptiveAvgPool1d(output_size=1)
206
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
207
+ (2): ReLU()
208
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
209
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
210
+ (5): Sigmoid()
211
+ )
212
+ )
213
+ )
214
+ (layer3): EcapaBlock(
215
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
216
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
217
+ (convs): ModuleList(
218
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
219
+ )
220
+ (bns): ModuleList(
221
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
222
+ )
223
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
224
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
225
+ (relu): ReLU()
226
+ (se): SEModule(
227
+ (se): Sequential(
228
+ (0): AdaptiveAvgPool1d(output_size=1)
229
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
230
+ (2): ReLU()
231
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
232
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
233
+ (5): Sigmoid()
234
+ )
235
+ )
236
+ )
237
+ (layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
238
+ (mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
239
+ )
240
+ (pooling): ChnAttnStatPooling(
241
+ (attention): Sequential(
242
+ (0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
243
+ (1): ReLU()
244
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
245
+ (3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
246
+ )
247
+ (softmax): Softmax(dim=2)
248
+ )
249
+ (projector): RawNet3Projector(
250
+ (bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
251
+ (fc): Linear(in_features=3072, out_features=192, bias=True)
252
+ )
253
+ (loss): AAMSoftmaxSCTopKLang2Vec(
254
+ (ce): CrossEntropyLoss()
255
+ (lang2vec_head): Sequential(
256
+ (0): Linear(in_features=192, out_features=299, bias=True)
257
+ )
258
+ (lang2vec_loss): MSELoss()
259
+ )
260
+ )
261
+
262
+ Model summary:
263
+ Class Name: ESPnetLIDUpstreamLang2VecConditionModel
264
+ Total Number of model parameters: 978.26 M
265
+ Number of trainable parameters: 978.26 M (100.0%)
266
+ Size: 3.91 GB
267
+ Type: torch.float32
268
+ /work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
269
+ warnings.warn(
270
+ [gpue02] 2025-05-16 16:33:30,762 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/lids0
271
+ [gpue02] 2025-05-16 16:34:05,333 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
272
+ [gpue02] 2025-05-16 16:34:36,939 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
273
+ [gpue02] 2025-05-16 16:35:13,502 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
274
+ [gpue02] 2025-05-16 16:35:46,461 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
275
+ [gpue02] 2025-05-16 16:36:14,706 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
276
+ [gpue02] 2025-05-16 16:36:51,347 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
277
+ [gpue02] 2025-05-16 16:37:26,344 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
278
+ [gpue02] 2025-05-16 16:38:02,825 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
279
+ [gpue02] 2025-05-16 16:38:41,474 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
280
+ [gpue02] 2025-05-16 16:39:17,680 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
281
+ [gpue02] 2025-05-16 16:39:53,999 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
282
+ [gpue02] 2025-05-16 16:40:24,699 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
283
+ [gpue02] 2025-05-16 16:41:04,097 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
284
+ [gpue02] 2025-05-16 16:41:36,434 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
285
+ [gpue02] 2025-05-16 16:42:15,847 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
286
+ [gpue02] 2025-05-16 16:42:47,941 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
287
+ [gpue02] 2025-05-16 16:43:22,603 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 16
288
+ [gpue02] 2025-05-16 16:43:43,333 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
289
+ [gpue02] 2025-05-16 16:43:43,334 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
290
+ # Accounting: time=641 threads=1
291
+ # Ended (code 0) at Fri May 16 16:43:44 CDT 2025, elapsed time 641 seconds
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_ml_superb2_lang_cross_train_voxlingua107_lang/results ADDED
The diff for this file is too large to render. See raw diff
 
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/lid_inference_test.log ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
2
+ # Started at Fri May 16 15:09:41 CDT 2025
3
+ #
4
+ /u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/dev_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
5
+ [gpue02] 2025-05-16 15:10:03,018 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
6
+ /work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
7
+ torchaudio.set_audio_backend("sox_io")
8
+ /work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
9
+ torch.load(model_file, map_location=device),
10
+ [gpue02] 2025-05-16 15:10:16,727 (lid_inference_dist:86) INFO: Model structure:
11
+ ESPnetLIDUpstreamLang2VecConditionModel(
12
+ (frontend): S3prlFrontendLang2VecCondition(
13
+ (upstream): S3PRLUpstreamLang2VecCondition(
14
+ (upstream): UpstreamExpertLang2VecCondition(
15
+ (model): Wav2Vec2ModelLang2VecCondition(
16
+ (feature_extractor): Wav2Vec2FeatureEncoder(
17
+ (conv_layers): ModuleList(
18
+ (0): Wav2Vec2LayerNormConvLayer(
19
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
20
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
21
+ (activation): GELUActivation()
22
+ )
23
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
24
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
25
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
26
+ (activation): GELUActivation()
27
+ )
28
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
29
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
30
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
31
+ (activation): GELUActivation()
32
+ )
33
+ )
34
+ )
35
+ (feature_projection): Wav2Vec2FeatureProjection(
36
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
37
+ (projection): Linear(in_features=512, out_features=1280, bias=True)
38
+ (dropout): Dropout(p=0.1, inplace=False)
39
+ )
40
+ (encoder): Wav2Vec2EncoderLang2VecCondition(
41
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
42
+ (conv): ParametrizedConv1d(
43
+ 1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
44
+ (parametrizations): ModuleDict(
45
+ (weight): ParametrizationList(
46
+ (0): _WeightNorm()
47
+ )
48
+ )
49
+ )
50
+ (padding): Wav2Vec2SamePadLayer()
51
+ (activation): GELUActivation()
52
+ )
53
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
54
+ (dropout): Dropout(p=0.1, inplace=False)
55
+ (layers): ModuleList(
56
+ (0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
57
+ (attention): Wav2Vec2SdpaAttention(
58
+ (k_proj): Linear(in_features=1280, out_features=1280, bias=True)
59
+ (v_proj): Linear(in_features=1280, out_features=1280, bias=True)
60
+ (q_proj): Linear(in_features=1280, out_features=1280, bias=True)
61
+ (out_proj): Linear(in_features=1280, out_features=1280, bias=True)
62
+ )
63
+ (dropout): Dropout(p=0.1, inplace=False)
64
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
65
+ (feed_forward): Wav2Vec2FeedForward(
66
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
67
+ (intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
68
+ (intermediate_act_fn): GELUActivation()
69
+ (output_dense): Linear(in_features=5120, out_features=1280, bias=True)
70
+ (output_dropout): Dropout(p=0.1, inplace=False)
71
+ )
72
+ (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
73
+ )
74
+ )
75
+ (conditioning_projs): ModuleDict(
76
+ (32): Linear(in_features=299, out_features=1280, bias=True)
77
+ (36): Linear(in_features=299, out_features=1280, bias=True)
78
+ (40): Linear(in_features=299, out_features=1280, bias=True)
79
+ (44): Linear(in_features=299, out_features=1280, bias=True)
80
+ )
81
+ (ecapa_encoder): ModuleDict(
82
+ (32): IdentityEncoder()
83
+ (36): IdentityEncoder()
84
+ (40): IdentityEncoder()
85
+ (44): IdentityEncoder()
86
+ )
87
+ (pooling): ModuleDict(
88
+ (32): ChnAttnStatPooling(
89
+ (attention): Sequential(
90
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
91
+ (1): ReLU()
92
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
93
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
94
+ )
95
+ (softmax): Softmax(dim=2)
96
+ )
97
+ (36): ChnAttnStatPooling(
98
+ (attention): Sequential(
99
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
100
+ (1): ReLU()
101
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
102
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
103
+ )
104
+ (softmax): Softmax(dim=2)
105
+ )
106
+ (40): ChnAttnStatPooling(
107
+ (attention): Sequential(
108
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
109
+ (1): ReLU()
110
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
111
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
112
+ )
113
+ (softmax): Softmax(dim=2)
114
+ )
115
+ (44): ChnAttnStatPooling(
116
+ (attention): Sequential(
117
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
118
+ (1): ReLU()
119
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
120
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
121
+ )
122
+ (softmax): Softmax(dim=2)
123
+ )
124
+ )
125
+ (projector): ModuleDict(
126
+ (32): RawNet3Projector(
127
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
128
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
129
+ )
130
+ (36): RawNet3Projector(
131
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
132
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
133
+ )
134
+ (40): RawNet3Projector(
135
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
136
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
137
+ )
138
+ (44): RawNet3Projector(
139
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
140
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
141
+ )
142
+ )
143
+ (lang2vec_head): ModuleDict(
144
+ (32): Sequential(
145
+ (0): Linear(in_features=192, out_features=299, bias=True)
146
+ )
147
+ (36): Sequential(
148
+ (0): Linear(in_features=192, out_features=299, bias=True)
149
+ )
150
+ (40): Sequential(
151
+ (0): Linear(in_features=192, out_features=299, bias=True)
152
+ )
153
+ (44): Sequential(
154
+ (0): Linear(in_features=192, out_features=299, bias=True)
155
+ )
156
+ )
157
+ )
158
+ )
159
+ )
160
+ )
161
+ (featurizer): Featurizer()
162
+ )
163
+ (normalize): UtteranceMVN(norm_means=True, norm_vars=False)
164
+ (encoder): EcapaTdnnEncoder(
165
+ (conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
166
+ (relu): ReLU()
167
+ (bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
168
+ (layer1): EcapaBlock(
169
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
170
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
171
+ (convs): ModuleList(
172
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
173
+ )
174
+ (bns): ModuleList(
175
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
176
+ )
177
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
178
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
179
+ (relu): ReLU()
180
+ (se): SEModule(
181
+ (se): Sequential(
182
+ (0): AdaptiveAvgPool1d(output_size=1)
183
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
184
+ (2): ReLU()
185
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
186
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
187
+ (5): Sigmoid()
188
+ )
189
+ )
190
+ )
191
+ (layer2): EcapaBlock(
192
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
193
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
194
+ (convs): ModuleList(
195
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
196
+ )
197
+ (bns): ModuleList(
198
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
199
+ )
200
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
201
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
202
+ (relu): ReLU()
203
+ (se): SEModule(
204
+ (se): Sequential(
205
+ (0): AdaptiveAvgPool1d(output_size=1)
206
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
207
+ (2): ReLU()
208
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
209
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
210
+ (5): Sigmoid()
211
+ )
212
+ )
213
+ )
214
+ (layer3): EcapaBlock(
215
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
216
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
217
+ (convs): ModuleList(
218
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
219
+ )
220
+ (bns): ModuleList(
221
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
222
+ )
223
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
224
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
225
+ (relu): ReLU()
226
+ (se): SEModule(
227
+ (se): Sequential(
228
+ (0): AdaptiveAvgPool1d(output_size=1)
229
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
230
+ (2): ReLU()
231
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
232
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
233
+ (5): Sigmoid()
234
+ )
235
+ )
236
+ )
237
+ (layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
238
+ (mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
239
+ )
240
+ (pooling): ChnAttnStatPooling(
241
+ (attention): Sequential(
242
+ (0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
243
+ (1): ReLU()
244
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
245
+ (3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
246
+ )
247
+ (softmax): Softmax(dim=2)
248
+ )
249
+ (projector): RawNet3Projector(
250
+ (bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
251
+ (fc): Linear(in_features=3072, out_features=192, bias=True)
252
+ )
253
+ (loss): AAMSoftmaxSCTopKLang2Vec(
254
+ (ce): CrossEntropyLoss()
255
+ (lang2vec_head): Sequential(
256
+ (0): Linear(in_features=192, out_features=299, bias=True)
257
+ )
258
+ (lang2vec_loss): MSELoss()
259
+ )
260
+ )
261
+
262
+ Model summary:
263
+ Class Name: ESPnetLIDUpstreamLang2VecConditionModel
264
+ Total Number of model parameters: 978.26 M
265
+ Number of trainable parameters: 978.26 M (100.0%)
266
+ Size: 3.91 GB
267
+ Type: torch.float32
268
+ /work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
269
+ warnings.warn(
270
+ [gpue02] 2025-05-16 15:10:17,080 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/lids0
271
+ [gpue02] 2025-05-16 15:11:10,973 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
272
+ [gpue02] 2025-05-16 15:11:43,358 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
273
+ [gpue02] 2025-05-16 15:11:43,358 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
274
+ # Accounting: time=123 threads=1
275
+ # Ended (code 0) at Fri May 16 15:11:44 CDT 2025, elapsed time 123 seconds
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/dev_voxlingua107_lang/results ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Accuracy: 94.22%
2
+ Macro Accuracy: 90.26%
3
+ Accuracy per Language:
4
+ isl: 100.00%
5
+ hrv: 50.00%
6
+ swe: 94.00%
7
+ ell: 80.00%
8
+ lav: 100.00%
9
+ cmn: 95.65%
10
+ tur: 90.28%
11
+ mkd: 100.00%
12
+ jpn: 100.00%
13
+ hye: 96.00%
14
+ dan: 95.96%
15
+ fra: 97.00%
16
+ fin: 96.77%
17
+ pol: 100.00%
18
+ nor: 62.50%
19
+ rus: 96.55%
20
+ urd: 76.92%
21
+ ara: 96.00%
22
+ aze: 94.12%
23
+ ita: 100.00%
24
+ eng: 93.75%
25
+ lit: 84.62%
26
+ spa: 98.18%
27
+ hun: 100.00%
28
+ srp: 57.14%
29
+ ukr: 88.24%
30
+ est: 95.29%
31
+ fas: 92.00%
32
+ nld: 97.00%
33
+ por: 100.00%
34
+ slv: 88.89%
35
+ deu: 95.12%
36
+ nno: 66.67%
37
+ Key: ara_AfS6C1PXAdQ__U__S20---0104.730-0111.410.wav, Target: ara, Predicted: hau
38
+ Key: ara_TPWwuy20K_c__U__S70---0466.380-0472.600.wav, Target: ara, Predicted: hau
39
+ Key: ara_cwvnYGInNNg__U__S229---0661.830-0670.560.wav, Target: ara, Predicted: heb
40
+ Key: ara_tl39W93P0r4__U__S32---0282.970-0286.530.wav, Target: ara, Predicted: fra
41
+ Key: aze_3UUShvAQxQY__U__S199---1315.800-1322.250.wav, Target: aze, Predicted: tur
42
+ Key: aze_bYKK1m78ecE__U__S91---0592.500-0596.130.wav, Target: aze, Predicted: isl
43
+ Key: cmn_ZUzq_TIfYL4__U__S39---0442.690-0454.380.wav, Target: cmn, Predicted: tha
44
+ Key: dan_E3vuA0Mqk1Q__U__S13---0072.140-0083.530.wav, Target: dan, Predicted: nno
45
+ Key: dan_Nyl6CuW6Qfk__U__S26---0557.690-0560.120.wav, Target: dan, Predicted: nor
46
+ Key: dan_ZZD1qu4ScPg__U__S14---0166.700-0176.010.wav, Target: dan, Predicted: haw
47
+ Key: dan_qCg43KdKRr0__U__S0---0843.270-0847.580.wav, Target: dan, Predicted: bod
48
+ Key: deu_8L3k8XNTtNA__U__S100---2689.380-2692.180.wav, Target: deu, Predicted: nno
49
+ Key: deu_9O2haSYzftE__U__S0---0000.000-0004.200.wav, Target: deu, Predicted: heb
50
+ Key: deu_eyZqRcgGkiY__U__S126---1155.890-1162.390.wav, Target: deu, Predicted: nld
51
+ Key: deu_cMZO2zXTBv8__U__S100---0341.910-0344.350.wav, Target: deu, Predicted: yid
52
+ Key: ell_bw_mDLVdgtY__U__S18---0119.750-0127.200.wav, Target: ell, Predicted: bre
53
+ Key: eng_K977aQQpAVk__U__S106---0393.230-0397.100.wav, Target: eng, Predicted: cym
54
+ Key: eng_4y7p9R2No-4__U__S12---0266.390-0268.460.wav, Target: eng, Predicted: lat
55
+ Key: eng_eQXHc-tJMXM__U__S11---1066.230-1077.360.wav, Target: eng, Predicted: cym
56
+ Key: est_5gWpxiFOouQ__U__S2---1635.950-1646.620.wav, Target: est, Predicted: khm
57
+ Key: eng_xuM9TP8ETJI__U__S1---0063.150-0077.230.wav, Target: eng, Predicted: mar
58
+ Key: eng_yhU8sj0X-yM__U__S25---0146.220-0152.200.wav, Target: eng, Predicted: nno
59
+ Key: est_E05LlgvSMg0__U__S156---1171.030-1172.780.wav, Target: est, Predicted: fin
60
+ Key: est_7vZIuc9qumg__U__S21---0145.690-0153.320.wav, Target: est, Predicted: nep
61
+ Key: est_gTl2GSJBxNw__U__S0---0000.000-0008.420.wav, Target: est, Predicted: mlt
62
+ Key: fas_9k1oVW4Ynyw__U__S15---0097.430-0101.630.wav, Target: fas, Predicted: slv
63
+ Key: fas_EjSRRddYuc4__U__S58---0355.980-0359.590.wav, Target: fas, Predicted: lat
64
+ Key: fas_SMcjja_krx4__U__S2---0012.190-0021.730.wav, Target: fas, Predicted: tgk
65
+ Key: fas_gLoBPMrad3E__U__S14---0097.650-0102.010.wav, Target: fas, Predicted: yid
66
+ Key: fas_XUGZwtXgvRA__U__S154---0993.540-0997.340.wav, Target: fas, Predicted: san
67
+ Key: fas_x_Di4cq4ixM__U__S100---1353.580-1358.390.wav, Target: fas, Predicted: pus
68
+ Key: fas_nPts67VQKRQ__U__S250---1629.010-1632.750.wav, Target: fas, Predicted: hat
69
+ Key: fas_zZCjOs-WwKo__U__S195---1357.430-1377.010.wav, Target: fas, Predicted: aze
70
+ Key: fin_C4H2GlJRkNU__U__S100---1604.910-1610.210.wav, Target: fin, Predicted: est
71
+ Key: fin_S_VWbBtBey4__U__S0---0308.380-0310.650.wav, Target: fin, Predicted: khm
72
+ Key: fin_i6m8DKfYNUM__U__S145---0562.860-0573.500.wav, Target: fin, Predicted: est
73
+ Key: fra_Lo_JX-8KHEw__U__S151---0284.430-0299.020.wav, Target: fra, Predicted: lin
74
+ Key: fra_SLfpp704KI8__U__S57---0368.470-0372.910.wav, Target: fra, Predicted: afr
75
+ Key: fra_pLwARlYGwS0__U__S2---0046.320-0052.700.wav, Target: fra, Predicted: lin
76
+ Key: hye_DoR3ptr3ahw__U__S28---0216.960-0223.190.wav, Target: hye, Predicted: urd
77
+ Key: hrv_Jntmbw5_vOI__U__S291---0379.300-0383.970.wav, Target: hrv, Predicted: bos
78
+ Key: hrv_hUgTLHiQJ60__U__S3---0046.320-0060.040.wav, Target: hrv, Predicted: bos
79
+ Key: hye_Qmo3P38Ytek__U__S32---0245.460-0249.320.wav, Target: hye, Predicted: snd
80
+ Key: hye_XM7EQuJEG38__U__S267---1644.620-1648.650.wav, Target: hye, Predicted: amh
81
+ Key: hye_um6xT5Gjgus__U__S194---1224.460-1234.130.wav, Target: hye, Predicted: lat
82
+ Key: lit_3svAywrL0_I__U__S149---0461.370-0464.980.wav, Target: lit, Predicted: bre
83
+ Key: lit_cTaKSWT6ds0__U__S49---0492.750-0499.290.wav, Target: lit, Predicted: slv
84
+ Key: nld_2C5HehL-Fx0__U__S101---1125.890-1131.720.wav, Target: nld, Predicted: ltz
85
+ Key: nld_0LhAXOxz-JU__U__S32---0243.280-0247.880.wav, Target: nld, Predicted: afr
86
+ Key: nld_0LhAXOxz-JU__U__S396---2475.670-2488.950.wav, Target: nld, Predicted: afr
87
+ Key: nno_iLv9Mp7Z3SE__U__S50---0290.270-0300.430.wav, Target: nno, Predicted: nor
88
+ Key: nor_97e9pEtHAxg__U__S32---0201.830-0210.250.wav, Target: nor, Predicted: nno
89
+ Key: nor_HW_49WuFloM__U__S106---0621.590-0626.130.wav, Target: nor, Predicted: nno
90
+ Key: nor_I1vUI8va8Yc__U__S49---0294.940-0302.560.wav, Target: nor, Predicted: afr
91
+ Key: nor_hEA8NB6Gojk__U__S1---1704.010-1709.570.wav, Target: nor, Predicted: nno
92
+ Key: nor_UxHL_uql05E__U__S118---0587.340-0598.790.wav, Target: nor, Predicted: nno
93
+ Key: nor_tV3Le8SUz_0__U__S276---1831.870-1841.550.wav, Target: nor, Predicted: nno
94
+ Key: nor_xVNA15ifyIw__U__S494---0311.220-0317.160.wav, Target: nor, Predicted: nno
95
+ Key: nor_bOnuTgAOkl8__U__S1---0180.450-0187.220.wav, Target: nor, Predicted: nno
96
+ Key: nor_ySVkmT8SgNM__U__S345---2245.790-2255.930.wav, Target: nor, Predicted: nno
97
+ Key: slv_Hu-33c4xcwU__U__S100---0534.990-0540.460.wav, Target: slv, Predicted: hrv
98
+ Key: rus_iUdCazc2qEs__U__S170---0648.590-0665.280.wav, Target: rus, Predicted: bel
99
+ Key: spa_UYBcNrx8kvQ__U__S186---2292.670-2299.590.wav, Target: spa, Predicted: kor
100
+ Key: swe_0gbhN4C2JSg__U__S0---0310.630-0319.010.wav, Target: swe, Predicted: nno
101
+ Key: srp_8dvIaAOLlGA__U__S216---1326.410-1335.490.wav, Target: srp, Predicted: hrv
102
+ Key: srp_TrZPwrrrC8k__U__S172---1130.440-1138.910.wav, Target: srp, Predicted: hrv
103
+ Key: swe_0x4xb4AaTy0__U__S0---0301.450-0319.780.wav, Target: swe, Predicted: nno
104
+ Key: srp_rkQhxxO5Qt4__U__S109---0820.610-0826.190.wav, Target: srp, Predicted: bos
105
+ Key: swe_PjMuio7mLss__U__S193---0310.690-0316.160.wav, Target: swe, Predicted: nor
106
+ Key: swe_i7zSYkRMXas__U__S0---1020.080-1026.030.wav, Target: swe, Predicted: nno
107
+ Key: swe_wMAAiJhj0VA__U__S100---0564.840-0568.420.wav, Target: swe, Predicted: nno
108
+ Key: tur_-H4m-34Aeoc__U__S60---0434.240-0442.760.wav, Target: tur, Predicted: heb
109
+ Key: swe_ilhngbAuxvs__U__S14---2441.740-2445.720.wav, Target: swe, Predicted: ltz
110
+ Key: tur_4C-efpD-DlM__U__S7---0050.890-0055.080.wav, Target: tur, Predicted: ben
111
+ Key: tur_KfJTU69HRWI__U__S11---0048.380-0056.300.wav, Target: tur, Predicted: aze
112
+ Key: tur_5IW3HlTJdMc__U__S115---0705.150-0710.380.wav, Target: tur, Predicted: aze
113
+ Key: tur_a1MRbrMI8_I__U__S145---2439.720-2445.680.wav, Target: tur, Predicted: aze
114
+ Key: tur_kLouhYz_EQk__U__S13---0102.530-0106.300.wav, Target: tur, Predicted: kor
115
+ Key: tur_SjS8CCqZxTk__U__S106---0354.470-0358.660.wav, Target: tur, Predicted: nor
116
+ Key: urd_4tO6ayZxs5s__U__S1---0194.310-0211.150.wav, Target: urd, Predicted: hin
117
+ Key: ukr_Oa0IlRCP7w0__U__S138---1702.720-1708.290.wav, Target: ukr, Predicted: bos
118
+ Key: ukr_cSDxFl4xZ0M__U__S275---1824.900-1830.730.wav, Target: ukr, Predicted: rus
119
+ Key: urd_Ax5M8gcEdCg__U__S1---0105.190-0115.110.wav, Target: urd, Predicted: hin
120
+ Key: urd_N59t4A1mxfA__U__S101---0715.390-0720.460.wav, Target: urd, Predicted: snd
121
+ Key: urd_eTfyAm6CFB0__U__S25---0439.860-0446.680.wav, Target: urd, Predicted: hin
122
+ Key: urd_Tj2pngm_vuA__U__S1---0070.400-0089.660.wav, Target: urd, Predicted: hin
123
+ Key: urd_J7RizO2mvm4__U__S3---0042.600-0051.180.wav, Target: urd, Predicted: san
124
+ Key: urd_U_h8Bgywxrc__U__S0---0222.420-0227.610.wav, Target: urd, Predicted: hin
125
+ Key: urd_n3l7PavcOFk__U__S0---0379.380-0397.930.wav, Target: urd, Predicted: hin
126
+ Key: urd_o3awRytwrUY__U__S1---0122.040-0129.980.wav, Target: urd, Predicted: fas
127
+ Key: urd_ySjOb5uaA-U__U__S107---0336.690-0353.110.wav, Target: urd, Predicted: cym
128
+ Key: urd_o3awRytwrUY__U__S1---0290.850-0306.430.wav, Target: urd, Predicted: fas
129
+ Key: urd_o3awRytwrUY__U__S1---0632.460-0642.400.wav, Target: urd, Predicted: fas
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/lid_inference_test.log ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
2
+ # Started at Fri May 16 15:29:06 CDT 2025
3
+ #
4
+ /u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_fleurs_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
5
+ [gpue02] 2025-05-16 15:29:22,203 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
6
+ /work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
7
+ torchaudio.set_audio_backend("sox_io")
8
+ /work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
9
+ torch.load(model_file, map_location=device),
10
+ [gpue02] 2025-05-16 15:29:32,382 (lid_inference_dist:86) INFO: Model structure:
11
+ ESPnetLIDUpstreamLang2VecConditionModel(
12
+ (frontend): S3prlFrontendLang2VecCondition(
13
+ (upstream): S3PRLUpstreamLang2VecCondition(
14
+ (upstream): UpstreamExpertLang2VecCondition(
15
+ (model): Wav2Vec2ModelLang2VecCondition(
16
+ (feature_extractor): Wav2Vec2FeatureEncoder(
17
+ (conv_layers): ModuleList(
18
+ (0): Wav2Vec2LayerNormConvLayer(
19
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
20
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
21
+ (activation): GELUActivation()
22
+ )
23
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
24
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
25
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
26
+ (activation): GELUActivation()
27
+ )
28
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
29
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
30
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
31
+ (activation): GELUActivation()
32
+ )
33
+ )
34
+ )
35
+ (feature_projection): Wav2Vec2FeatureProjection(
36
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
37
+ (projection): Linear(in_features=512, out_features=1280, bias=True)
38
+ (dropout): Dropout(p=0.1, inplace=False)
39
+ )
40
+ (encoder): Wav2Vec2EncoderLang2VecCondition(
41
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
42
+ (conv): ParametrizedConv1d(
43
+ 1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
44
+ (parametrizations): ModuleDict(
45
+ (weight): ParametrizationList(
46
+ (0): _WeightNorm()
47
+ )
48
+ )
49
+ )
50
+ (padding): Wav2Vec2SamePadLayer()
51
+ (activation): GELUActivation()
52
+ )
53
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
54
+ (dropout): Dropout(p=0.1, inplace=False)
55
+ (layers): ModuleList(
56
+ (0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
57
+ (attention): Wav2Vec2SdpaAttention(
58
+ (k_proj): Linear(in_features=1280, out_features=1280, bias=True)
59
+ (v_proj): Linear(in_features=1280, out_features=1280, bias=True)
60
+ (q_proj): Linear(in_features=1280, out_features=1280, bias=True)
61
+ (out_proj): Linear(in_features=1280, out_features=1280, bias=True)
62
+ )
63
+ (dropout): Dropout(p=0.1, inplace=False)
64
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
65
+ (feed_forward): Wav2Vec2FeedForward(
66
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
67
+ (intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
68
+ (intermediate_act_fn): GELUActivation()
69
+ (output_dense): Linear(in_features=5120, out_features=1280, bias=True)
70
+ (output_dropout): Dropout(p=0.1, inplace=False)
71
+ )
72
+ (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
73
+ )
74
+ )
75
+ (conditioning_projs): ModuleDict(
76
+ (32): Linear(in_features=299, out_features=1280, bias=True)
77
+ (36): Linear(in_features=299, out_features=1280, bias=True)
78
+ (40): Linear(in_features=299, out_features=1280, bias=True)
79
+ (44): Linear(in_features=299, out_features=1280, bias=True)
80
+ )
81
+ (ecapa_encoder): ModuleDict(
82
+ (32): IdentityEncoder()
83
+ (36): IdentityEncoder()
84
+ (40): IdentityEncoder()
85
+ (44): IdentityEncoder()
86
+ )
87
+ (pooling): ModuleDict(
88
+ (32): ChnAttnStatPooling(
89
+ (attention): Sequential(
90
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
91
+ (1): ReLU()
92
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
93
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
94
+ )
95
+ (softmax): Softmax(dim=2)
96
+ )
97
+ (36): ChnAttnStatPooling(
98
+ (attention): Sequential(
99
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
100
+ (1): ReLU()
101
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
102
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
103
+ )
104
+ (softmax): Softmax(dim=2)
105
+ )
106
+ (40): ChnAttnStatPooling(
107
+ (attention): Sequential(
108
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
109
+ (1): ReLU()
110
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
111
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
112
+ )
113
+ (softmax): Softmax(dim=2)
114
+ )
115
+ (44): ChnAttnStatPooling(
116
+ (attention): Sequential(
117
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
118
+ (1): ReLU()
119
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
120
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
121
+ )
122
+ (softmax): Softmax(dim=2)
123
+ )
124
+ )
125
+ (projector): ModuleDict(
126
+ (32): RawNet3Projector(
127
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
128
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
129
+ )
130
+ (36): RawNet3Projector(
131
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
132
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
133
+ )
134
+ (40): RawNet3Projector(
135
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
136
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
137
+ )
138
+ (44): RawNet3Projector(
139
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
140
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
141
+ )
142
+ )
143
+ (lang2vec_head): ModuleDict(
144
+ (32): Sequential(
145
+ (0): Linear(in_features=192, out_features=299, bias=True)
146
+ )
147
+ (36): Sequential(
148
+ (0): Linear(in_features=192, out_features=299, bias=True)
149
+ )
150
+ (40): Sequential(
151
+ (0): Linear(in_features=192, out_features=299, bias=True)
152
+ )
153
+ (44): Sequential(
154
+ (0): Linear(in_features=192, out_features=299, bias=True)
155
+ )
156
+ )
157
+ )
158
+ )
159
+ )
160
+ )
161
+ (featurizer): Featurizer()
162
+ )
163
+ (normalize): UtteranceMVN(norm_means=True, norm_vars=False)
164
+ (encoder): EcapaTdnnEncoder(
165
+ (conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
166
+ (relu): ReLU()
167
+ (bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
168
+ (layer1): EcapaBlock(
169
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
170
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
171
+ (convs): ModuleList(
172
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
173
+ )
174
+ (bns): ModuleList(
175
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
176
+ )
177
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
178
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
179
+ (relu): ReLU()
180
+ (se): SEModule(
181
+ (se): Sequential(
182
+ (0): AdaptiveAvgPool1d(output_size=1)
183
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
184
+ (2): ReLU()
185
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
186
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
187
+ (5): Sigmoid()
188
+ )
189
+ )
190
+ )
191
+ (layer2): EcapaBlock(
192
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
193
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
194
+ (convs): ModuleList(
195
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
196
+ )
197
+ (bns): ModuleList(
198
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
199
+ )
200
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
201
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
202
+ (relu): ReLU()
203
+ (se): SEModule(
204
+ (se): Sequential(
205
+ (0): AdaptiveAvgPool1d(output_size=1)
206
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
207
+ (2): ReLU()
208
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
209
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
210
+ (5): Sigmoid()
211
+ )
212
+ )
213
+ )
214
+ (layer3): EcapaBlock(
215
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
216
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
217
+ (convs): ModuleList(
218
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
219
+ )
220
+ (bns): ModuleList(
221
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
222
+ )
223
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
224
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
225
+ (relu): ReLU()
226
+ (se): SEModule(
227
+ (se): Sequential(
228
+ (0): AdaptiveAvgPool1d(output_size=1)
229
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
230
+ (2): ReLU()
231
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
232
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
233
+ (5): Sigmoid()
234
+ )
235
+ )
236
+ )
237
+ (layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
238
+ (mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
239
+ )
240
+ (pooling): ChnAttnStatPooling(
241
+ (attention): Sequential(
242
+ (0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
243
+ (1): ReLU()
244
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
245
+ (3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
246
+ )
247
+ (softmax): Softmax(dim=2)
248
+ )
249
+ (projector): RawNet3Projector(
250
+ (bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
251
+ (fc): Linear(in_features=3072, out_features=192, bias=True)
252
+ )
253
+ (loss): AAMSoftmaxSCTopKLang2Vec(
254
+ (ce): CrossEntropyLoss()
255
+ (lang2vec_head): Sequential(
256
+ (0): Linear(in_features=192, out_features=299, bias=True)
257
+ )
258
+ (lang2vec_loss): MSELoss()
259
+ )
260
+ )
261
+
262
+ Model summary:
263
+ Class Name: ESPnetLIDUpstreamLang2VecConditionModel
264
+ Total Number of model parameters: 978.26 M
265
+ Number of trainable parameters: 978.26 M (100.0%)
266
+ Size: 3.91 GB
267
+ Type: torch.float32
268
+ /work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
269
+ warnings.warn(
270
+ [gpue02] 2025-05-16 15:29:32,731 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/lids0
271
+ [gpue02] 2025-05-16 15:30:28,250 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
272
+ [gpue02] 2025-05-16 15:31:29,388 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
273
+ [gpue02] 2025-05-16 15:32:30,025 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
274
+ [gpue02] 2025-05-16 15:33:41,554 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
275
+ [gpue02] 2025-05-16 15:34:45,848 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
276
+ [gpue02] 2025-05-16 15:35:40,662 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
277
+ [gpue02] 2025-05-16 15:36:31,911 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
278
+ [gpue02] 2025-05-16 15:37:35,086 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
279
+ [gpue02] 2025-05-16 15:38:34,369 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
280
+ [gpue02] 2025-05-16 15:39:35,470 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
281
+ [gpue02] 2025-05-16 15:40:45,143 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
282
+ [gpue02] 2025-05-16 15:41:44,725 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
283
+ [gpue02] 2025-05-16 15:42:45,976 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
284
+ [gpue02] 2025-05-16 15:43:35,253 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
285
+ [gpue02] 2025-05-16 15:44:35,428 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
286
+ [gpue02] 2025-05-16 15:45:41,733 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
287
+ [gpue02] 2025-05-16 15:46:37,468 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 16
288
+ [gpue02] 2025-05-16 15:47:25,258 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 17
289
+ [gpue02] 2025-05-16 15:48:14,261 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 18
290
+ [gpue02] 2025-05-16 15:49:37,718 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 19
291
+ [gpue02] 2025-05-16 15:50:28,832 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 20
292
+ [gpue02] 2025-05-16 15:51:17,795 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 21
293
+ [gpue02] 2025-05-16 15:52:13,077 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 22
294
+ [gpue02] 2025-05-16 15:53:09,422 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 23
295
+ [gpue02] 2025-05-16 15:54:14,113 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 24
296
+ [gpue02] 2025-05-16 15:55:23,133 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 25
297
+ [gpue02] 2025-05-16 15:56:25,007 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 26
298
+ [gpue02] 2025-05-16 15:57:22,498 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 27
299
+ [gpue02] 2025-05-16 15:58:28,784 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 28
300
+ [gpue02] 2025-05-16 15:59:41,942 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 29
301
+ [gpue02] 2025-05-16 16:00:45,243 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 30
302
+ [gpue02] 2025-05-16 16:01:50,443 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 31
303
+ [gpue02] 2025-05-16 16:02:57,175 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 32
304
+ [gpue02] 2025-05-16 16:03:49,857 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 33
305
+ [gpue02] 2025-05-16 16:04:58,821 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 34
306
+ [gpue02] 2025-05-16 16:06:05,739 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 35
307
+ [gpue02] 2025-05-16 16:07:04,501 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 36
308
+ [gpue02] 2025-05-16 16:08:06,650 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 37
309
+ [gpue02] 2025-05-16 16:08:56,869 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 38
310
+ [gpue02] 2025-05-16 16:10:42,668 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 39
311
+ [gpue02] 2025-05-16 16:11:39,638 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 40
312
+ [gpue02] 2025-05-16 16:12:44,805 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 41
313
+ [gpue02] 2025-05-16 16:13:44,970 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 42
314
+ [gpue02] 2025-05-16 16:14:59,216 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 43
315
+ [gpue02] 2025-05-16 16:15:47,866 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 44
316
+ [gpue02] 2025-05-16 16:16:46,568 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 45
317
+ [gpue02] 2025-05-16 16:17:40,642 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 46
318
+ [gpue02] 2025-05-16 16:18:33,323 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 47
319
+ [gpue02] 2025-05-16 16:19:25,947 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 48
320
+ [gpue02] 2025-05-16 16:20:18,394 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 49
321
+ [gpue02] 2025-05-16 16:21:23,138 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 50
322
+ [gpue02] 2025-05-16 16:22:24,219 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 51
323
+ [gpue02] 2025-05-16 16:23:28,259 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 52
324
+ [gpue02] 2025-05-16 16:24:22,109 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 53
325
+ [gpue02] 2025-05-16 16:25:19,894 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 54
326
+ [gpue02] 2025-05-16 16:26:20,392 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 55
327
+ [gpue02] 2025-05-16 16:27:20,976 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 56
328
+ [gpue02] 2025-05-16 16:28:22,402 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 57
329
+ [gpue02] 2025-05-16 16:29:23,094 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 58
330
+ [gpue02] 2025-05-16 16:30:12,825 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 59
331
+ [gpue02] 2025-05-16 16:31:12,064 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 60
332
+ [gpue02] 2025-05-16 16:32:16,256 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 61
333
+ [gpue02] 2025-05-16 16:33:01,500 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
334
+ [gpue02] 2025-05-16 16:33:01,500 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
335
+ # Accounting: time=3836 threads=1
336
+ # Ended (code 0) at Fri May 16 16:33:02 CDT 2025, elapsed time 3836 seconds
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_fleurs_lang_cross_train_voxlingua107_lang/results ADDED
The diff for this file is too large to render. See raw diff
 
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/lid_inference_test.log ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # python3 -m espnet2.bin.lid_inference_dist --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
2
+ # Started at Fri May 16 15:11:45 CDT 2025
3
+ #
4
+ /u/qwang20/miniconda3/envs/espnet2/bin/python3 /work/nvme/bbjs/qwang20/espnet/espnet2/bin/lid_inference_dist.py --output_dir exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang --dtype float32 --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/wav.scp,speech,sound --data_path_and_name_and_type dump/raw/test_voxpopuli_lang_cross_train_voxlingua107_lang/utt2spk,lid_labels,text --valid_batch_size 4 --lid_train_config exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml --lid_model_file exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/valid.accuracy.best.pth --use_preprocessor true --fix_duration false --num_workers 8 --extract_embd false --save_every 1000 --resume true --save_embd_per_utt false --save_embd_avg_lang true --save_tsne_plot false --ngpu 1 --multiprocessing_distributed True
5
+ [gpue02] 2025-05-16 15:12:01,248 (abs_task:2341) INFO: config file: exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/config.yaml
6
+ /work/nvme/bbjs/qwang20/s3prl/s3prl/upstream/byol_s/byol_a/common.py:20: UserWarning: torchaudio._backend.set_audio_backend has been deprecated. With dispatcher enabled, this function is no-op. You can remove the function call.
7
+ torchaudio.set_audio_backend("sox_io")
8
+ /work/nvme/bbjs/qwang20/espnet/espnet2/tasks/abs_task.py:2364: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
9
+ torch.load(model_file, map_location=device),
10
+ [gpue02] 2025-05-16 15:12:11,661 (lid_inference_dist:86) INFO: Model structure:
11
+ ESPnetLIDUpstreamLang2VecConditionModel(
12
+ (frontend): S3prlFrontendLang2VecCondition(
13
+ (upstream): S3PRLUpstreamLang2VecCondition(
14
+ (upstream): UpstreamExpertLang2VecCondition(
15
+ (model): Wav2Vec2ModelLang2VecCondition(
16
+ (feature_extractor): Wav2Vec2FeatureEncoder(
17
+ (conv_layers): ModuleList(
18
+ (0): Wav2Vec2LayerNormConvLayer(
19
+ (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
20
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
21
+ (activation): GELUActivation()
22
+ )
23
+ (1-4): 4 x Wav2Vec2LayerNormConvLayer(
24
+ (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
25
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
26
+ (activation): GELUActivation()
27
+ )
28
+ (5-6): 2 x Wav2Vec2LayerNormConvLayer(
29
+ (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
30
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
31
+ (activation): GELUActivation()
32
+ )
33
+ )
34
+ )
35
+ (feature_projection): Wav2Vec2FeatureProjection(
36
+ (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
37
+ (projection): Linear(in_features=512, out_features=1280, bias=True)
38
+ (dropout): Dropout(p=0.1, inplace=False)
39
+ )
40
+ (encoder): Wav2Vec2EncoderLang2VecCondition(
41
+ (pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
42
+ (conv): ParametrizedConv1d(
43
+ 1280, 1280, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
44
+ (parametrizations): ModuleDict(
45
+ (weight): ParametrizationList(
46
+ (0): _WeightNorm()
47
+ )
48
+ )
49
+ )
50
+ (padding): Wav2Vec2SamePadLayer()
51
+ (activation): GELUActivation()
52
+ )
53
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
54
+ (dropout): Dropout(p=0.1, inplace=False)
55
+ (layers): ModuleList(
56
+ (0-47): 48 x Wav2Vec2EncoderLayerStableLayerNorm(
57
+ (attention): Wav2Vec2SdpaAttention(
58
+ (k_proj): Linear(in_features=1280, out_features=1280, bias=True)
59
+ (v_proj): Linear(in_features=1280, out_features=1280, bias=True)
60
+ (q_proj): Linear(in_features=1280, out_features=1280, bias=True)
61
+ (out_proj): Linear(in_features=1280, out_features=1280, bias=True)
62
+ )
63
+ (dropout): Dropout(p=0.1, inplace=False)
64
+ (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
65
+ (feed_forward): Wav2Vec2FeedForward(
66
+ (intermediate_dropout): Dropout(p=0.0, inplace=False)
67
+ (intermediate_dense): Linear(in_features=1280, out_features=5120, bias=True)
68
+ (intermediate_act_fn): GELUActivation()
69
+ (output_dense): Linear(in_features=5120, out_features=1280, bias=True)
70
+ (output_dropout): Dropout(p=0.1, inplace=False)
71
+ )
72
+ (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
73
+ )
74
+ )
75
+ (conditioning_projs): ModuleDict(
76
+ (32): Linear(in_features=299, out_features=1280, bias=True)
77
+ (36): Linear(in_features=299, out_features=1280, bias=True)
78
+ (40): Linear(in_features=299, out_features=1280, bias=True)
79
+ (44): Linear(in_features=299, out_features=1280, bias=True)
80
+ )
81
+ (ecapa_encoder): ModuleDict(
82
+ (32): IdentityEncoder()
83
+ (36): IdentityEncoder()
84
+ (40): IdentityEncoder()
85
+ (44): IdentityEncoder()
86
+ )
87
+ (pooling): ModuleDict(
88
+ (32): ChnAttnStatPooling(
89
+ (attention): Sequential(
90
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
91
+ (1): ReLU()
92
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
93
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
94
+ )
95
+ (softmax): Softmax(dim=2)
96
+ )
97
+ (36): ChnAttnStatPooling(
98
+ (attention): Sequential(
99
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
100
+ (1): ReLU()
101
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
102
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
103
+ )
104
+ (softmax): Softmax(dim=2)
105
+ )
106
+ (40): ChnAttnStatPooling(
107
+ (attention): Sequential(
108
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
109
+ (1): ReLU()
110
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
111
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
112
+ )
113
+ (softmax): Softmax(dim=2)
114
+ )
115
+ (44): ChnAttnStatPooling(
116
+ (attention): Sequential(
117
+ (0): Conv1d(3840, 128, kernel_size=(1,), stride=(1,))
118
+ (1): ReLU()
119
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
120
+ (3): Conv1d(128, 1280, kernel_size=(1,), stride=(1,))
121
+ )
122
+ (softmax): Softmax(dim=2)
123
+ )
124
+ )
125
+ (projector): ModuleDict(
126
+ (32): RawNet3Projector(
127
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
128
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
129
+ )
130
+ (36): RawNet3Projector(
131
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
132
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
133
+ )
134
+ (40): RawNet3Projector(
135
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
136
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
137
+ )
138
+ (44): RawNet3Projector(
139
+ (bn): BatchNorm1d(2560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
140
+ (fc): Linear(in_features=2560, out_features=192, bias=True)
141
+ )
142
+ )
143
+ (lang2vec_head): ModuleDict(
144
+ (32): Sequential(
145
+ (0): Linear(in_features=192, out_features=299, bias=True)
146
+ )
147
+ (36): Sequential(
148
+ (0): Linear(in_features=192, out_features=299, bias=True)
149
+ )
150
+ (40): Sequential(
151
+ (0): Linear(in_features=192, out_features=299, bias=True)
152
+ )
153
+ (44): Sequential(
154
+ (0): Linear(in_features=192, out_features=299, bias=True)
155
+ )
156
+ )
157
+ )
158
+ )
159
+ )
160
+ )
161
+ (featurizer): Featurizer()
162
+ )
163
+ (normalize): UtteranceMVN(norm_means=True, norm_vars=False)
164
+ (encoder): EcapaTdnnEncoder(
165
+ (conv): Conv1d(1280, 512, kernel_size=(5,), stride=(1,), padding=(2,))
166
+ (relu): ReLU()
167
+ (bn): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
168
+ (layer1): EcapaBlock(
169
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
170
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
171
+ (convs): ModuleList(
172
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
173
+ )
174
+ (bns): ModuleList(
175
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
176
+ )
177
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
178
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
179
+ (relu): ReLU()
180
+ (se): SEModule(
181
+ (se): Sequential(
182
+ (0): AdaptiveAvgPool1d(output_size=1)
183
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
184
+ (2): ReLU()
185
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
186
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
187
+ (5): Sigmoid()
188
+ )
189
+ )
190
+ )
191
+ (layer2): EcapaBlock(
192
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
193
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
194
+ (convs): ModuleList(
195
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
196
+ )
197
+ (bns): ModuleList(
198
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
199
+ )
200
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
201
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
202
+ (relu): ReLU()
203
+ (se): SEModule(
204
+ (se): Sequential(
205
+ (0): AdaptiveAvgPool1d(output_size=1)
206
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
207
+ (2): ReLU()
208
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
209
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
210
+ (5): Sigmoid()
211
+ )
212
+ )
213
+ )
214
+ (layer3): EcapaBlock(
215
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
216
+ (bn1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
217
+ (convs): ModuleList(
218
+ (0-6): 7 x Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,))
219
+ )
220
+ (bns): ModuleList(
221
+ (0-6): 7 x BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
222
+ )
223
+ (conv3): Conv1d(512, 512, kernel_size=(1,), stride=(1,))
224
+ (bn3): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
225
+ (relu): ReLU()
226
+ (se): SEModule(
227
+ (se): Sequential(
228
+ (0): AdaptiveAvgPool1d(output_size=1)
229
+ (1): Conv1d(512, 128, kernel_size=(1,), stride=(1,))
230
+ (2): ReLU()
231
+ (3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
232
+ (4): Conv1d(128, 512, kernel_size=(1,), stride=(1,))
233
+ (5): Sigmoid()
234
+ )
235
+ )
236
+ )
237
+ (layer4): Conv1d(1536, 1536, kernel_size=(1,), stride=(1,))
238
+ (mp3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
239
+ )
240
+ (pooling): ChnAttnStatPooling(
241
+ (attention): Sequential(
242
+ (0): Conv1d(4608, 128, kernel_size=(1,), stride=(1,))
243
+ (1): ReLU()
244
+ (2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
245
+ (3): Conv1d(128, 1536, kernel_size=(1,), stride=(1,))
246
+ )
247
+ (softmax): Softmax(dim=2)
248
+ )
249
+ (projector): RawNet3Projector(
250
+ (bn): BatchNorm1d(3072, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
251
+ (fc): Linear(in_features=3072, out_features=192, bias=True)
252
+ )
253
+ (loss): AAMSoftmaxSCTopKLang2Vec(
254
+ (ce): CrossEntropyLoss()
255
+ (lang2vec_head): Sequential(
256
+ (0): Linear(in_features=192, out_features=299, bias=True)
257
+ )
258
+ (lang2vec_loss): MSELoss()
259
+ )
260
+ )
261
+
262
+ Model summary:
263
+ Class Name: ESPnetLIDUpstreamLang2VecConditionModel
264
+ Total Number of model parameters: 978.26 M
265
+ Number of trainable parameters: 978.26 M (100.0%)
266
+ Size: 3.91 GB
267
+ Type: torch.float32
268
+ /work/nvme/bbjs/qwang20/espnet/espnet2/train/reporter.py:321: UserWarning: The stats of the previous epoch=-1doesn't exist.
269
+ warnings.warn(
270
+ [gpue02] 2025-05-16 15:12:12,017 (lid_trainer:102) INFO: [Rank 0] Resume: 0 utterances found in exp_voxlingua107_raw/spk_mms_ecapa_upcon_32_44_it0.4_independent_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/lids0
271
+ [gpue02] 2025-05-16 15:13:09,809 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 0
272
+ [gpue02] 2025-05-16 15:14:05,884 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 1
273
+ [gpue02] 2025-05-16 15:14:58,617 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 2
274
+ [gpue02] 2025-05-16 15:15:55,618 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 3
275
+ [gpue02] 2025-05-16 15:16:53,845 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 4
276
+ [gpue02] 2025-05-16 15:17:51,064 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 5
277
+ [gpue02] 2025-05-16 15:18:50,990 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 6
278
+ [gpue02] 2025-05-16 15:19:55,904 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 7
279
+ [gpue02] 2025-05-16 15:20:53,867 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 8
280
+ [gpue02] 2025-05-16 15:22:09,543 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 9
281
+ [gpue02] 2025-05-16 15:23:04,788 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 10
282
+ [gpue02] 2025-05-16 15:23:58,362 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 11
283
+ [gpue02] 2025-05-16 15:24:57,466 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 12
284
+ [gpue02] 2025-05-16 15:25:59,579 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 13
285
+ [gpue02] 2025-05-16 15:26:57,875 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 14
286
+ [gpue02] 2025-05-16 15:28:01,852 (lid_trainer:207) INFO: [Rank 0] Saved 1000 utts at step 15
287
+ [gpue02] 2025-05-16 15:29:04,351 (lid_inference_dist:200) INFO: args.save_embd_per_utt: False
288
+ [gpue02] 2025-05-16 15:29:04,352 (lid_inference_dist:215) INFO: args.save_tsne_plot: False
289
+ # Accounting: time=1040 threads=1
290
+ # Ended (code 0) at Fri May 16 15:29:05 CDT 2025, elapsed time 1040 seconds
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference/valid.accuracy.best/test_voxpopuli_lang_cross_train_voxlingua107_lang/results ADDED
The diff for this file is too large to render. See raw diff
 
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e94aec9eafec16372ab32b8fa94f7820342abeaa4ee3e8bf76c0d2c41e0714c
3
+ size 333926
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f64f0249df23805707ffb386715a27500e7ada827cb65ff452d4efcb2ad91f8
3
+ size 88
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/train/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ded6556895974f83d53ca564bf7581a90cb3d709499aa60e53b605343ef00696
3
+ size 88
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1747382406.gpue02.delta.ncsa.illinois.edu.4061979.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ae69aabebb88e4d9c2df7c4454477e7d3dd775f13cce22977dee7d22179f641
3
+ size 18542
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588660.gpue01.delta.ncsa.illinois.edu.672803.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f0f68b28b509fbd3899c81e179eff342efe5486ea135701cc8765b4bbe5456d
3
+ size 88
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/tensorboard/valid/events.out.tfevents.1755588993.gpue01.delta.ncsa.illinois.edu.682794.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da635e135ca27fed48691df83327ebf27d61a169b18d7f370b1f2cd0e0284d71
3
+ size 88
exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/train.log ADDED
The diff for this file is too large to render. See raw diff