Create modernberg_model.py
Browse files- modernberg_model.py +1470 -0
modernberg_model.py
ADDED
@@ -0,0 +1,1470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from contextlib import nullcontext
|
18 |
+
from typing import Dict, Literal, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.configuration_utils import PretrainedConfig
|
28 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutput,
|
31 |
+
MaskedLMOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import (
|
37 |
+
add_code_sample_docstrings,
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
is_flash_attn_2_available,
|
41 |
+
logging,
|
42 |
+
)
|
43 |
+
from transformers.utils.import_utils import is_triton_available, is_torchdynamo_compiling
|
44 |
+
from transformers.models.gemma.modeling_gemma import GemmaRotaryEmbedding, apply_rotary_pos_emb
|
45 |
+
from transformers.models.modernbert.modular_modernbert import (_pad_modernbert_output, _unpad_modernbert_input, ModernBertEmbeddings, ModernBertMLP, ModernBertUnpaddedRotaryEmbedding, ModernBertEmbeddings)
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
|
50 |
+
from flash_attn.layers.rotary import RotaryEmbedding
|
51 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
52 |
+
else:
|
53 |
+
RotaryEmbedding = object
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "answerdotai/ModernBERT-base"
|
56 |
+
_CONFIG_FOR_DOC = "ModernBertConfig"
|
57 |
+
_MAX_SQRT_GRADIENT = 1000.0
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
class ModernBergConfig(PretrainedConfig):
|
63 |
+
r"""
|
64 |
+
This is the configuration class to store the configuration of a [`ModernBergModel`]. It is used to instantiate an ModernBerg
|
65 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
66 |
+
defaults will yield a similar configuration to that of the ModernBERT-base.
|
67 |
+
|
68 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
69 |
+
documentation from [`PretrainedConfig`] for more information.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
vocab_size (`int`, *optional*, defaults to 50368):
|
73 |
+
Vocabulary size of the ModernBert model. Defines the number of different tokens that can be represented by the
|
74 |
+
`inputs_ids` passed when calling [`ModernBertModel`]
|
75 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
76 |
+
Dimension of the hidden representations.
|
77 |
+
intermediate_size (`int`, *optional*, defaults to 1152):
|
78 |
+
Dimension of the MLP representations.
|
79 |
+
num_hidden_layers (`int`, *optional*, defaults to 22):
|
80 |
+
Number of hidden layers in the Transformer decoder.
|
81 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
82 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
83 |
+
lru_width (`int`, *optional*, defaults to 128):
|
84 |
+
The dimension of the RG-LRU -- if None, this will be set to `hidden_size`.
|
85 |
+
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu"`):
|
86 |
+
The non-linear activation function (function or string) in the decoder. Will default to `"gelu"`
|
87 |
+
if not specified.
|
88 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
89 |
+
The maximum sequence length that this model might ever be used with.
|
90 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
91 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
92 |
+
initializer_cutoff_factor (`float`, *optional*, defaults to 2.0):
|
93 |
+
The cutoff factor for the truncated_normal_initializer for initializing all weight matrices.
|
94 |
+
norm_eps (`float`, *optional*, defaults to 1e-05):
|
95 |
+
The epsilon used by the rms normalization layers.
|
96 |
+
norm_bias (`bool`, *optional*, defaults to `False`):
|
97 |
+
Whether to use bias in the normalization layers.
|
98 |
+
pad_token_id (`int`, *optional*, defaults to 50283):
|
99 |
+
Padding token id.
|
100 |
+
eos_token_id (`int`, *optional*, defaults to 50282):
|
101 |
+
End of stream token id.
|
102 |
+
bos_token_id (`int`, *optional*, defaults to 50281):
|
103 |
+
Beginning of stream token id.
|
104 |
+
cls_token_id (`int`, *optional*, defaults to 50281):
|
105 |
+
Classification token id.
|
106 |
+
sep_token_id (`int`, *optional*, defaults to 50282):
|
107 |
+
Separation token id.
|
108 |
+
global_rope_theta (`float`, *optional*, defaults to 160000.0):
|
109 |
+
The base period of the global RoPE embeddings.
|
110 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
111 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
112 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
113 |
+
The dropout ratio for the attention probabilities.
|
114 |
+
global_temporal_every_n_layers (`int`, *optional*, defaults to 3):
|
115 |
+
The number of layers between global temporal mixing layers.
|
116 |
+
local_attention (`int`, *optional*, defaults to 128):
|
117 |
+
The window size for local attention.
|
118 |
+
local_rope_theta (`float`, *optional*, defaults to 10000.0):
|
119 |
+
The base period of the local RoPE embeddings.
|
120 |
+
embedding_dropout (`float`, *optional*, defaults to 0.0):
|
121 |
+
The dropout ratio for the embeddings.
|
122 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
123 |
+
Whether to use bias in the MLP layers.
|
124 |
+
mlp_dropout (`float`, *optional*, defaults to 0.0):
|
125 |
+
The dropout ratio for the MLP layers.
|
126 |
+
decoder_bias (`bool`, *optional*, defaults to `True`):
|
127 |
+
Whether to use bias in the decoder layers.
|
128 |
+
classifier_pooling (`str`, *optional*, defaults to `"cls"`):
|
129 |
+
The pooling method for the classifier. Should be either `"cls"` or `"mean"`. In local attention layers, the
|
130 |
+
CLS token doesn't attend to all tokens on long sequences.
|
131 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
132 |
+
The dropout ratio for the classifier.
|
133 |
+
classifier_bias (`bool`, *optional*, defaults to `False`):
|
134 |
+
Whether to use bias in the classifier.
|
135 |
+
classifier_activation (`str`, *optional*, defaults to `"gelu"`):
|
136 |
+
The activation function for the classifier.
|
137 |
+
deterministic_flash_attn (`bool`, *optional*, defaults to `False`):
|
138 |
+
Whether to use deterministic flash attention. If `False`, inference will be faster but not deterministic.
|
139 |
+
sparse_prediction (`bool`, *optional*, defaults to `False`):
|
140 |
+
Whether to use sparse prediction for the masked language model instead of returning the full dense logits.
|
141 |
+
sparse_pred_ignore_index (`int`, *optional*, defaults to -100):
|
142 |
+
The index to ignore for the sparse prediction.
|
143 |
+
reference_compile (`bool`, *optional*):
|
144 |
+
Whether to compile the layers of the model which were compiled during pretraining. If `None`, then parts of
|
145 |
+
the model will be compiled if 1) `triton` is installed, 2) the model is not on MPS, 3) the model is not
|
146 |
+
shared between devices, and 4) the model is not resized after initialization. If `True`, then the model may
|
147 |
+
be faster in some scenarios.
|
148 |
+
repad_logits_with_grad (`bool`, *optional*, defaults to `False`):
|
149 |
+
When True, ModernBertForMaskedLM keeps track of the logits' gradient when repadding for output. This only
|
150 |
+
applies when using Flash Attention 2 with passed labels. Otherwise output logits always have a gradient.
|
151 |
+
|
152 |
+
Examples:
|
153 |
+
|
154 |
+
```python
|
155 |
+
>>> from transformers import ModernBertModel, ModernBertConfig
|
156 |
+
|
157 |
+
>>> # Initializing a ModernBert style configuration
|
158 |
+
>>> configuration = ModernBertConfig()
|
159 |
+
|
160 |
+
>>> # Initializing a model from the modernbert-base style configuration
|
161 |
+
>>> model = ModernBertModel(configuration)
|
162 |
+
|
163 |
+
>>> # Accessing the model configuration
|
164 |
+
>>> configuration = model.config
|
165 |
+
```"""
|
166 |
+
|
167 |
+
model_type = "modernbert"
|
168 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
169 |
+
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
vocab_size=50368,
|
173 |
+
hidden_size=768,
|
174 |
+
intermediate_size=1152,
|
175 |
+
num_hidden_layers=22,
|
176 |
+
num_attention_heads=12,
|
177 |
+
lru_width=1152,
|
178 |
+
conv1d_width=4,
|
179 |
+
hidden_activation="gelu",
|
180 |
+
max_position_embeddings=8192,
|
181 |
+
initializer_range=0.02,
|
182 |
+
initializer_cutoff_factor=2.0,
|
183 |
+
norm_eps=1e-5,
|
184 |
+
norm_bias=False,
|
185 |
+
pad_token_id=50283,
|
186 |
+
eos_token_id=50282,
|
187 |
+
bos_token_id=50281,
|
188 |
+
cls_token_id=50281,
|
189 |
+
sep_token_id=50282,
|
190 |
+
global_rope_theta=160000.0,
|
191 |
+
attention_bias=False,
|
192 |
+
attention_dropout=0.0,
|
193 |
+
global_temporal_every_n_layers=3,
|
194 |
+
local_attention=128,
|
195 |
+
local_rope_theta=10000.0,
|
196 |
+
embedding_dropout=0.0,
|
197 |
+
mlp_bias=False,
|
198 |
+
mlp_dropout=0.0,
|
199 |
+
decoder_bias=True,
|
200 |
+
classifier_pooling: Literal["cls", "mean"] = "cls",
|
201 |
+
classifier_dropout=0.0,
|
202 |
+
classifier_bias=False,
|
203 |
+
classifier_activation="gelu",
|
204 |
+
deterministic_flash_attn=False,
|
205 |
+
sparse_prediction=False,
|
206 |
+
sparse_pred_ignore_index=-100,
|
207 |
+
reference_compile=None,
|
208 |
+
repad_logits_with_grad=False,
|
209 |
+
**kwargs,
|
210 |
+
):
|
211 |
+
super().__init__(
|
212 |
+
pad_token_id=pad_token_id,
|
213 |
+
bos_token_id=bos_token_id,
|
214 |
+
eos_token_id=eos_token_id,
|
215 |
+
cls_token_id=cls_token_id,
|
216 |
+
sep_token_id=sep_token_id,
|
217 |
+
**kwargs,
|
218 |
+
)
|
219 |
+
self.vocab_size = vocab_size
|
220 |
+
self.max_position_embeddings = max_position_embeddings
|
221 |
+
self.hidden_size = hidden_size
|
222 |
+
self.intermediate_size = intermediate_size
|
223 |
+
self.num_hidden_layers = num_hidden_layers
|
224 |
+
self.num_attention_heads = num_attention_heads
|
225 |
+
self.lru_width = lru_width
|
226 |
+
self.conv1d_width = conv1d_width
|
227 |
+
self.initializer_range = initializer_range
|
228 |
+
self.initializer_cutoff_factor = initializer_cutoff_factor
|
229 |
+
self.norm_eps = norm_eps
|
230 |
+
self.norm_bias = norm_bias
|
231 |
+
self.global_rope_theta = global_rope_theta
|
232 |
+
self.attention_bias = attention_bias
|
233 |
+
self.attention_dropout = attention_dropout
|
234 |
+
self.hidden_activation = hidden_activation
|
235 |
+
self.global_temporal_every_n_layers = global_temporal_every_n_layers
|
236 |
+
self.local_attention = local_attention
|
237 |
+
self.local_rope_theta = local_rope_theta
|
238 |
+
self.embedding_dropout = embedding_dropout
|
239 |
+
self.mlp_bias = mlp_bias
|
240 |
+
self.mlp_dropout = mlp_dropout
|
241 |
+
self.decoder_bias = decoder_bias
|
242 |
+
self.classifier_pooling = classifier_pooling
|
243 |
+
self.classifier_dropout = classifier_dropout
|
244 |
+
self.classifier_bias = classifier_bias
|
245 |
+
self.classifier_activation = classifier_activation
|
246 |
+
self.deterministic_flash_attn = deterministic_flash_attn
|
247 |
+
self.sparse_prediction = sparse_prediction
|
248 |
+
self.sparse_pred_ignore_index = sparse_pred_ignore_index
|
249 |
+
self.reference_compile = reference_compile
|
250 |
+
self.repad_logits_with_grad = repad_logits_with_grad
|
251 |
+
|
252 |
+
if self.classifier_pooling not in ["cls", "mean"]:
|
253 |
+
raise ValueError(
|
254 |
+
f'Invalid value for `classifier_pooling`, should be either "cls" or "mean", but is {self.classifier_pooling}.'
|
255 |
+
)
|
256 |
+
|
257 |
+
class SqrtBoundDerivative(torch.autograd.Function):
|
258 |
+
"""Computes a square root with a gradient clipped at `_MAX_SQRT_GRADIENT`."""
|
259 |
+
|
260 |
+
@staticmethod
|
261 |
+
def forward(ctx, x: torch.Tensor) -> torch.Tensor:
|
262 |
+
"""The forward pass, which is a normal `sqrt`."""
|
263 |
+
ctx.save_for_backward(x)
|
264 |
+
return torch.sqrt(x)
|
265 |
+
|
266 |
+
@staticmethod
|
267 |
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
268 |
+
"""The backward pass, which clips the `sqrt` gradient."""
|
269 |
+
(x,) = ctx.saved_tensors
|
270 |
+
clipped_x_times_4 = torch.clip(4.0 * x, min=1 / (_MAX_SQRT_GRADIENT**2))
|
271 |
+
return grad_output / torch.sqrt(clipped_x_times_4)
|
272 |
+
|
273 |
+
class GriffinRglru(nn.Module):
|
274 |
+
"""A Real-Gated Linear Recurrent Unit (RG-LRU) layer."""
|
275 |
+
|
276 |
+
def __init__(self, config: ModernBergConfig):
|
277 |
+
super().__init__()
|
278 |
+
self.num_attention_heads = config.num_attention_heads
|
279 |
+
self.block_width = config.lru_width // self.num_attention_heads
|
280 |
+
|
281 |
+
self.recurrent_param = nn.Parameter(torch.empty([config.lru_width]))
|
282 |
+
self.input_gate_weight = nn.Parameter(
|
283 |
+
torch.empty([self.num_attention_heads, self.block_width, self.block_width])
|
284 |
+
)
|
285 |
+
self.input_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
|
286 |
+
|
287 |
+
self.recurrent_gate_weight = nn.Parameter(
|
288 |
+
torch.empty([self.num_attention_heads, self.block_width, self.block_width])
|
289 |
+
)
|
290 |
+
self.recurrent_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
|
291 |
+
self.recurrent_states = None
|
292 |
+
|
293 |
+
def forward(
|
294 |
+
self,
|
295 |
+
activations: torch.Tensor,
|
296 |
+
position_ids: torch.Tensor,
|
297 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
298 |
+
batch_size, seq_len, lru_width = activations.shape
|
299 |
+
reset = position_ids[:, :, None] == 0
|
300 |
+
|
301 |
+
reshape_act = activations.reshape(batch_size * seq_len, self.num_attention_heads, self.block_width)
|
302 |
+
reshape_act = reshape_act.permute(1, 0, 2)
|
303 |
+
|
304 |
+
res = torch.baddbmm(self.input_gate_bias[:, None, :], reshape_act, self.input_gate_weight)
|
305 |
+
input_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
|
306 |
+
|
307 |
+
res = torch.baddbmm(self.recurrent_gate_bias[:, None, :], reshape_act, self.recurrent_gate_weight)
|
308 |
+
recurrent_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
|
309 |
+
|
310 |
+
# Compute the parameter `A` of the recurrence.
|
311 |
+
log_recurrent_gate = -8.0 * recurrent_gate * nn.functional.softplus(self.recurrent_param)
|
312 |
+
recurrent_gate = torch.exp(log_recurrent_gate)
|
313 |
+
a_square = torch.exp(2 * log_recurrent_gate)
|
314 |
+
|
315 |
+
# Gate the input.
|
316 |
+
gated_inputs = activations * input_gate
|
317 |
+
|
318 |
+
# Apply gamma normalization to the input. We need to clip the derivatives of
|
319 |
+
# `sqrt` in order to prevent NaNs during training in bfloat16. TODO a bit annoying
|
320 |
+
multiplier = 1
|
321 |
+
tracing = isinstance(activations, torch.fx.Proxy) or is_torchdynamo_compiling()
|
322 |
+
if not torch.jit.is_tracing() and not tracing:
|
323 |
+
multiplier = SqrtBoundDerivative.apply(1 - a_square)
|
324 |
+
multiplier = reset + ~reset * multiplier
|
325 |
+
normalized_x = gated_inputs * multiplier.type(activations.dtype)
|
326 |
+
|
327 |
+
hidden_states, recurrent_states = self._rnn_scan(
|
328 |
+
hidden_states=normalized_x,
|
329 |
+
recurrent_gate=recurrent_gate,
|
330 |
+
reset=reset,
|
331 |
+
recurrent_states=self.recurrent_states,
|
332 |
+
)
|
333 |
+
self.recurrent_states = recurrent_states
|
334 |
+
return hidden_states
|
335 |
+
|
336 |
+
# TODO refactor
|
337 |
+
def _rnn_scan(
|
338 |
+
self,
|
339 |
+
hidden_states: torch.Tensor,
|
340 |
+
recurrent_gate: torch.Tensor,
|
341 |
+
reset: torch.Tensor,
|
342 |
+
recurrent_states: Union[torch.Tensor, None],
|
343 |
+
acc_dtype: torch.dtype = torch.float32,
|
344 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
345 |
+
"""Runs the recurrence of a linear RNN.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
hidden_states: The input sequence.
|
349 |
+
recurrent_gate: The diagonal of the recurrence matrix `A`.
|
350 |
+
reset: Indicator of document boundaries, e.g. when to reset the hidden state
|
351 |
+
of the RNN.
|
352 |
+
recurrent_states: The initial hidden state.
|
353 |
+
acc_dtype: The data type for the accumulation.
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
The output of the linear recurrence.
|
357 |
+
"""
|
358 |
+
# Multiply `a` by the reset.
|
359 |
+
recurrent_gate = recurrent_gate * ~reset
|
360 |
+
|
361 |
+
if hidden_states.shape[1] == 1:
|
362 |
+
# Using scan in sampling mode.
|
363 |
+
if recurrent_states is None: # same here, when decoding you always have cache
|
364 |
+
return hidden_states, hidden_states[:, 0].type(acc_dtype)
|
365 |
+
|
366 |
+
else:
|
367 |
+
contextualized_states = recurrent_gate.type(acc_dtype) * recurrent_states[:, None].to(
|
368 |
+
recurrent_gate.device
|
369 |
+
)
|
370 |
+
contextualized_states += hidden_states.type(acc_dtype)
|
371 |
+
return contextualized_states.type(hidden_states.dtype), contextualized_states[:, -1]
|
372 |
+
|
373 |
+
else:
|
374 |
+
# Using scan in linear mode.
|
375 |
+
if recurrent_states is None:
|
376 |
+
recurrent_states = torch.zeros(hidden_states[:, 0].shape, dtype=acc_dtype, device=hidden_states.device)
|
377 |
+
|
378 |
+
contextualized_states = torch.zeros_like(hidden_states)
|
379 |
+
for t in range(hidden_states.shape[1]):
|
380 |
+
recurrent_states = recurrent_gate[:, t].type(acc_dtype) * recurrent_states.to(recurrent_gate.device)
|
381 |
+
recurrent_states = recurrent_states + hidden_states[:, t].type(acc_dtype)
|
382 |
+
contextualized_states[:, t] = recurrent_states.type(hidden_states.dtype)
|
383 |
+
|
384 |
+
return contextualized_states, recurrent_states
|
385 |
+
|
386 |
+
class GriffinRecurrentblock(nn.Module):
|
387 |
+
"""Griffin and Hawk's recurrent block."""
|
388 |
+
|
389 |
+
def __init__(self, config: ModernBergConfig, layer_id: Optional[int] = None):
|
390 |
+
super().__init__()
|
391 |
+
self.lru_width = config.lru_width
|
392 |
+
self.hidden_size = config.hidden_size
|
393 |
+
self.linear_y = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
|
394 |
+
self.linear_x = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
|
395 |
+
self.linear_out = nn.Linear(in_features=config.lru_width, out_features=config.hidden_size)
|
396 |
+
self.conv1d_width = config.conv1d_width
|
397 |
+
self.conv_1d = nn.Conv1d(
|
398 |
+
config.lru_width,
|
399 |
+
config.lru_width,
|
400 |
+
kernel_size=config.conv1d_width,
|
401 |
+
groups=config.lru_width,
|
402 |
+
padding=config.conv1d_width - 1,
|
403 |
+
)
|
404 |
+
self.rg_lru = GriffinRglru(config)
|
405 |
+
self.act_fn = ACT2FN[config.hidden_activation]
|
406 |
+
|
407 |
+
self.conv1d_state = None
|
408 |
+
|
409 |
+
def forward(
|
410 |
+
self,
|
411 |
+
input_states: torch.Tensor,
|
412 |
+
position_ids: torch.Tensor,
|
413 |
+
attention_mask: torch.Tensor,
|
414 |
+
cache_position: torch.Tensor,
|
415 |
+
use_cache: bool = True,
|
416 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
417 |
+
_, seq_len, _ = input_states.shape
|
418 |
+
|
419 |
+
y_branch = self.linear_y(input_states)
|
420 |
+
y_branch = self.act_fn(y_branch)
|
421 |
+
|
422 |
+
x_branch = self.linear_x(input_states)
|
423 |
+
x_branch = x_branch.transpose(1, 2)
|
424 |
+
|
425 |
+
if use_cache:
|
426 |
+
if cache_position.shape[0] != 1: # prefill
|
427 |
+
self.conv1d_state = nn.functional.pad(x_branch, (self.conv1d_width - x_branch.shape[-1] - 1, 0))
|
428 |
+
x_branch = self.conv_1d(x_branch)[..., :seq_len]
|
429 |
+
else: # decoding
|
430 |
+
conv_state = torch.cat((self.conv1d_state, x_branch), -1)
|
431 |
+
x_branch = torch.sum(conv_state * self.conv_1d.weight[:, 0, :], dim=-1) + self.conv_1d.bias
|
432 |
+
x_branch = x_branch.unsqueeze(-1)
|
433 |
+
self.conv1d_state = conv_state[:, :, 1:]
|
434 |
+
else:
|
435 |
+
x_branch = self.conv_1d(x_branch)[..., :seq_len]
|
436 |
+
|
437 |
+
x_branch = self.rg_lru(x_branch.transpose(1, 2), position_ids)
|
438 |
+
|
439 |
+
hidden_states = x_branch * y_branch
|
440 |
+
hidden_states = self.linear_out(hidden_states)
|
441 |
+
return hidden_states
|
442 |
+
|
443 |
+
def _setup_cache(self, batch, device, dtype):
|
444 |
+
# recurrent_states always computed in full precision
|
445 |
+
self.rg_lru.recurrent_states = torch.zeros((batch, self.lru_width), device=device, dtype=torch.float32)
|
446 |
+
self.conv1d_state = torch.zeros((batch, self.hidden_size, self.conv1d_width - 1), device=device, dtype=dtype)
|
447 |
+
|
448 |
+
def eager_attention_forward(
|
449 |
+
module: "ModernBergAttention",
|
450 |
+
qkv: torch.Tensor,
|
451 |
+
attention_mask: torch.Tensor,
|
452 |
+
sliding_window_mask: torch.Tensor,
|
453 |
+
position_ids: Optional[torch.LongTensor],
|
454 |
+
local_attention: Tuple[int, int],
|
455 |
+
bs: int,
|
456 |
+
dim: int,
|
457 |
+
output_attentions: Optional[bool] = False,
|
458 |
+
**_kwargs,
|
459 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
460 |
+
# qkv: [batch_size, seqlen, 3, nheads, headdim]
|
461 |
+
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
|
462 |
+
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
|
463 |
+
# query, key, value: [batch_size, heads, seq_len, head_dim]
|
464 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin)
|
465 |
+
|
466 |
+
scale = module.head_dim**-0.5
|
467 |
+
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale
|
468 |
+
|
469 |
+
if local_attention != (-1, -1):
|
470 |
+
attention_mask = sliding_window_mask
|
471 |
+
|
472 |
+
attn_weights = attn_weights + attention_mask
|
473 |
+
|
474 |
+
# upcast attention to fp32
|
475 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
476 |
+
attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training)
|
477 |
+
attn_output = torch.matmul(attn_weights, value)
|
478 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
479 |
+
attn_output = attn_output.view(bs, -1, dim)
|
480 |
+
if output_attentions:
|
481 |
+
return (attn_output, attn_weights)
|
482 |
+
return (attn_output,)
|
483 |
+
|
484 |
+
def flash_attention_forward(
|
485 |
+
module: "ModernBergAttention",
|
486 |
+
qkv: torch.Tensor,
|
487 |
+
rotary_emb: ModernBertUnpaddedRotaryEmbedding,
|
488 |
+
cu_seqlens: torch.Tensor,
|
489 |
+
max_seqlen: int,
|
490 |
+
local_attention: Tuple[int, int],
|
491 |
+
bs: int,
|
492 |
+
dim: int,
|
493 |
+
target_dtype: torch.dtype = torch.bfloat16,
|
494 |
+
**_kwargs,
|
495 |
+
) -> Tuple[torch.Tensor]:
|
496 |
+
# (total_seqlen, 3, nheads, headdim)
|
497 |
+
qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
498 |
+
|
499 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
500 |
+
if convert_dtype:
|
501 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
502 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
503 |
+
orig_dtype = qkv.dtype
|
504 |
+
qkv = qkv.to(target_dtype)
|
505 |
+
|
506 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
507 |
+
qkv,
|
508 |
+
cu_seqlens=cu_seqlens,
|
509 |
+
max_seqlen=max_seqlen,
|
510 |
+
dropout_p=module.attention_dropout if module.training else 0.0,
|
511 |
+
deterministic=module.deterministic_flash_attn,
|
512 |
+
window_size=local_attention,
|
513 |
+
)
|
514 |
+
attn = attn.to(orig_dtype) # type: ignore
|
515 |
+
else:
|
516 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
517 |
+
qkv,
|
518 |
+
cu_seqlens=cu_seqlens,
|
519 |
+
max_seqlen=max_seqlen,
|
520 |
+
dropout_p=module.attention_dropout if module.training else 0.0,
|
521 |
+
deterministic=module.deterministic_flash_attn,
|
522 |
+
window_size=local_attention,
|
523 |
+
)
|
524 |
+
return (attn.view(bs, dim),)
|
525 |
+
|
526 |
+
def sdpa_attention_forward(
|
527 |
+
module: "ModernBergAttention",
|
528 |
+
qkv: torch.Tensor,
|
529 |
+
attention_mask: torch.Tensor,
|
530 |
+
sliding_window_mask: torch.Tensor,
|
531 |
+
position_ids: Optional[torch.LongTensor],
|
532 |
+
local_attention: Tuple[int, int],
|
533 |
+
bs: int,
|
534 |
+
dim: int,
|
535 |
+
**_kwargs,
|
536 |
+
) -> Tuple[torch.Tensor]:
|
537 |
+
# qkv: [batch_size, seqlen, 3, nheads, headdim]
|
538 |
+
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
|
539 |
+
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
|
540 |
+
# query, key, value: [batch_size, heads, seq_len, head_dim]
|
541 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin)
|
542 |
+
|
543 |
+
if local_attention != (-1, -1):
|
544 |
+
attention_mask = sliding_window_mask
|
545 |
+
|
546 |
+
attn_output = (
|
547 |
+
F.scaled_dot_product_attention(
|
548 |
+
query,
|
549 |
+
key,
|
550 |
+
value,
|
551 |
+
dropout_p=module.attention_dropout if module.training else 0.0,
|
552 |
+
attn_mask=attention_mask,
|
553 |
+
)
|
554 |
+
.transpose(1, 2)
|
555 |
+
.contiguous()
|
556 |
+
)
|
557 |
+
attn_output = attn_output.view(bs, -1, dim)
|
558 |
+
return (attn_output,)
|
559 |
+
|
560 |
+
MODERNBERT_ATTENTION_FUNCTION = {
|
561 |
+
"flash_attention_2": flash_attention_forward,
|
562 |
+
"eager": eager_attention_forward,
|
563 |
+
"sdpa": sdpa_attention_forward,
|
564 |
+
}
|
565 |
+
|
566 |
+
class ModernBergRotaryEmbedding(GemmaRotaryEmbedding):
|
567 |
+
def __init__(self, config: ModernBergConfig, dim: int, base: float, device: Optional[torch.device] = None):
|
568 |
+
# JANK!!! JANK!!! JANK!!!
|
569 |
+
config.rope_theta = base
|
570 |
+
super().__init__(config=config, device=device)
|
571 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(None, device, dim=dim, base=base)
|
572 |
+
|
573 |
+
class ModernBergAttention(nn.Module):
|
574 |
+
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
575 |
+
|
576 |
+
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
|
577 |
+
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
|
578 |
+
which requires padding and unpadding inputs, adding some overhead.
|
579 |
+
|
580 |
+
See `forward` method for additional details.
|
581 |
+
"""
|
582 |
+
|
583 |
+
def __init__(self, config: ModernBergConfig, layer_id: Optional[int] = None):
|
584 |
+
super().__init__()
|
585 |
+
self.config = config
|
586 |
+
self.layer_id = layer_id
|
587 |
+
|
588 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
589 |
+
raise ValueError(
|
590 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
|
591 |
+
)
|
592 |
+
|
593 |
+
self.attention_dropout = config.attention_dropout
|
594 |
+
self.deterministic_flash_attn = config.deterministic_flash_attn
|
595 |
+
self.num_heads = config.num_attention_heads
|
596 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
597 |
+
self.all_head_size = self.head_dim * self.num_heads
|
598 |
+
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attention_bias)
|
599 |
+
|
600 |
+
assert layer_id % config.global_temporal_every_n_layers != 0, "ModernBerg does not support global self-attention"
|
601 |
+
self.local_attention = (config.local_attention // 2, config.local_attention // 2)
|
602 |
+
|
603 |
+
rope_theta = config.global_rope_theta
|
604 |
+
max_position_embeddings = config.max_position_embeddings
|
605 |
+
if self.local_attention != (-1, -1):
|
606 |
+
if config.local_rope_theta is not None:
|
607 |
+
rope_theta = config.local_rope_theta
|
608 |
+
max_position_embeddings = config.local_attention
|
609 |
+
|
610 |
+
if config._attn_implementation == "flash_attention_2":
|
611 |
+
self.rotary_emb = ModernBertUnpaddedRotaryEmbedding(
|
612 |
+
dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta
|
613 |
+
)
|
614 |
+
else:
|
615 |
+
self.rotary_emb = ModernBergRotaryEmbedding(config=config, dim=self.head_dim, base=rope_theta)
|
616 |
+
|
617 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
618 |
+
self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
|
619 |
+
self.pruned_heads = set()
|
620 |
+
|
621 |
+
def forward(
|
622 |
+
self,
|
623 |
+
hidden_states: torch.Tensor,
|
624 |
+
output_attentions: Optional[bool] = False,
|
625 |
+
**kwargs,
|
626 |
+
) -> torch.Tensor:
|
627 |
+
qkv = self.Wqkv(hidden_states)
|
628 |
+
|
629 |
+
bs = hidden_states.shape[0]
|
630 |
+
if self.config._attn_implementation == "flash_attention_2":
|
631 |
+
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
|
632 |
+
else:
|
633 |
+
qkv = qkv.view(bs, -1, 3, self.num_heads, self.head_dim)
|
634 |
+
|
635 |
+
attn_outputs = MODERNBERT_ATTENTION_FUNCTION[self.config._attn_implementation](
|
636 |
+
self,
|
637 |
+
qkv=qkv,
|
638 |
+
rotary_emb=self.rotary_emb,
|
639 |
+
local_attention=self.local_attention,
|
640 |
+
bs=bs,
|
641 |
+
dim=self.all_head_size,
|
642 |
+
output_attentions=output_attentions,
|
643 |
+
**kwargs,
|
644 |
+
)
|
645 |
+
hidden_states = attn_outputs[0]
|
646 |
+
hidden_states = self.out_drop(self.Wo(hidden_states))
|
647 |
+
|
648 |
+
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
|
649 |
+
|
650 |
+
class ModernBergTemporalLayer(nn.Module):
|
651 |
+
def __init__(self, config: ModernBergConfig, layer_id: Optional[int] = None):
|
652 |
+
super().__init__()
|
653 |
+
self.config = config
|
654 |
+
if layer_id % config.global_temporal_every_n_layers == 0:
|
655 |
+
self.temporal = GriffinRecurrentblock(config=config, layer_id=layer_id)
|
656 |
+
else:
|
657 |
+
self.temporal = ModernBergAttention(config=config, layer_id=layer_id)
|
658 |
+
|
659 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
660 |
+
return self.temporal(hidden_states, **kwargs)
|
661 |
+
|
662 |
+
class ModernBergEncoderLayer(nn.Module):
|
663 |
+
def __init__(self, config: ModernBergConfig, layer_id: Optional[int] = None):
|
664 |
+
super().__init__()
|
665 |
+
self.config = config
|
666 |
+
if layer_id == 0:
|
667 |
+
self.temporal_norm = nn.Identity()
|
668 |
+
else:
|
669 |
+
self.temporal_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
670 |
+
self.temporal = ModernBergTemporalLayer(config=config, layer_id=layer_id)
|
671 |
+
self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
672 |
+
self.mlp = ModernBertMLP(config)
|
673 |
+
|
674 |
+
@torch.compile(dynamic=True)
|
675 |
+
def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
676 |
+
return self.mlp(self.mlp_norm(hidden_states))
|
677 |
+
|
678 |
+
def forward(
|
679 |
+
self,
|
680 |
+
hidden_states: torch.Tensor,
|
681 |
+
attention_mask: Optional[torch.Tensor] = None,
|
682 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
683 |
+
position_ids: Optional[torch.LongTensor] = None,
|
684 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
685 |
+
max_seqlen: Optional[int] = None,
|
686 |
+
output_attentions: Optional[bool] = False,
|
687 |
+
) -> torch.Tensor:
|
688 |
+
attn_outputs = self.temporal(
|
689 |
+
self.temporal_norm(hidden_states),
|
690 |
+
attention_mask=attention_mask,
|
691 |
+
sliding_window_mask=sliding_window_mask,
|
692 |
+
position_ids=position_ids,
|
693 |
+
cu_seqlens=cu_seqlens,
|
694 |
+
max_seqlen=max_seqlen,
|
695 |
+
output_attentions=output_attentions,
|
696 |
+
)
|
697 |
+
hidden_states = hidden_states + attn_outputs[0]
|
698 |
+
mlp_output = (
|
699 |
+
self.compiled_mlp(hidden_states)
|
700 |
+
if self.config.reference_compile
|
701 |
+
else self.mlp(self.mlp_norm(hidden_states))
|
702 |
+
)
|
703 |
+
hidden_states = hidden_states + mlp_output
|
704 |
+
|
705 |
+
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
|
706 |
+
|
707 |
+
MODERNBERG_START_DOCSTRING = r"""
|
708 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
709 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
710 |
+
etc.)
|
711 |
+
|
712 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
713 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
714 |
+
and behavior.
|
715 |
+
|
716 |
+
Parameters:
|
717 |
+
config ([`ModernBergConfig`]):
|
718 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
719 |
+
load the weights associated with the model, only the configuration. Check out the
|
720 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
721 |
+
"""
|
722 |
+
|
723 |
+
|
724 |
+
@add_start_docstrings(
|
725 |
+
"The bare ModernBerg Model outputting raw hidden-states without any specific head on top.",
|
726 |
+
MODERNBERG_START_DOCSTRING,
|
727 |
+
)
|
728 |
+
class ModernBergPreTrainedModel(PreTrainedModel):
|
729 |
+
config_class = ModernBergConfig
|
730 |
+
base_model_prefix = "model"
|
731 |
+
supports_gradient_checkpointing = True
|
732 |
+
_no_split_modules = ["ModernBergEmbeddings", "ModernBergEncoderLayer"]
|
733 |
+
_supports_flash_attn_2 = True
|
734 |
+
_supports_sdpa = True
|
735 |
+
_supports_flex_attn = False
|
736 |
+
|
737 |
+
def _init_weights(self, module: nn.Module):
|
738 |
+
cutoff_factor = self.config.initializer_cutoff_factor
|
739 |
+
if cutoff_factor is None:
|
740 |
+
cutoff_factor = 3
|
741 |
+
|
742 |
+
def init_weight(module: nn.Module, std: float):
|
743 |
+
nn.init.trunc_normal_(
|
744 |
+
module.weight,
|
745 |
+
mean=0.0,
|
746 |
+
std=std,
|
747 |
+
a=-cutoff_factor * std,
|
748 |
+
b=cutoff_factor * std,
|
749 |
+
)
|
750 |
+
|
751 |
+
if isinstance(module, nn.Linear):
|
752 |
+
if module.bias is not None:
|
753 |
+
nn.init.zeros_(module.bias)
|
754 |
+
|
755 |
+
stds = {
|
756 |
+
"in": self.config.initializer_range,
|
757 |
+
"out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers),
|
758 |
+
"embedding": self.config.initializer_range,
|
759 |
+
"final_out": self.config.hidden_size**-0.5,
|
760 |
+
}
|
761 |
+
|
762 |
+
std = math.sqrt(self.config.initializer_range / self.config.conv1d_width)
|
763 |
+
if isinstance(module, ModernBertEmbeddings):
|
764 |
+
init_weight(module.tok_embeddings, stds["embedding"])
|
765 |
+
elif isinstance(module, ModernBertMLP):
|
766 |
+
init_weight(module.Wi, stds["in"])
|
767 |
+
init_weight(module.Wo, stds["out"])
|
768 |
+
elif isinstance(module, ModernBergAttention):
|
769 |
+
init_weight(module.Wqkv, stds["in"])
|
770 |
+
init_weight(module.Wo, stds["out"])
|
771 |
+
elif isinstance(module, GriffinRecurrentblock):
|
772 |
+
torch.nn.init.zeros_(module.linear_x.bias)
|
773 |
+
torch.nn.init.normal_(module.linear_x.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
|
774 |
+
|
775 |
+
torch.nn.init.zeros_(module.linear_y.bias)
|
776 |
+
torch.nn.init.normal_(module.linear_y.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
|
777 |
+
|
778 |
+
std = math.sqrt(self.config.initializer_range / self.config.lru_width)
|
779 |
+
torch.nn.init.normal_(module.linear_out.weight, mean=0.0, std=std)
|
780 |
+
torch.nn.init.zeros_(module.linear_out.bias)
|
781 |
+
elif isinstance(module, GriffinRglru):
|
782 |
+
std = math.sqrt(
|
783 |
+
self.config.initializer_range / (self.config.lru_width // self.config.num_attention_heads)
|
784 |
+
)
|
785 |
+
torch.nn.init.normal_(module.input_gate_weight, mean=0.0, std=std)
|
786 |
+
torch.nn.init.normal_(module.recurrent_gate_weight, mean=0.0, std=std)
|
787 |
+
torch.nn.init.zeros_(module.input_gate_bias)
|
788 |
+
torch.nn.init.zeros_(module.recurrent_gate_bias)
|
789 |
+
|
790 |
+
module.recurrent_param.data.uniform_(0.9**2 + 1e-8, 0.999**2 + 1e-8)
|
791 |
+
module.recurrent_param.data.log_().mul_(0.5)
|
792 |
+
module.recurrent_param.data.neg_().exp_().sub_(1.0).log_()
|
793 |
+
elif isinstance(module, ModernBergPredictionHead):
|
794 |
+
init_weight(module.dense, stds["out"])
|
795 |
+
elif isinstance(module, ModernBergForMaskedLM):
|
796 |
+
init_weight(module.decoder, stds["out"])
|
797 |
+
elif isinstance(module, (ModernBergForSequenceClassification, ModernBergForTokenClassification)):
|
798 |
+
init_weight(module.classifier, stds["final_out"])
|
799 |
+
elif isinstance(module, nn.Linear):
|
800 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
801 |
+
if getattr(module, "bias", None) is not None:
|
802 |
+
torch.nn.init.zeros_(module.bias)
|
803 |
+
|
804 |
+
@classmethod
|
805 |
+
def _autoset_attn_implementation(
|
806 |
+
cls,
|
807 |
+
config,
|
808 |
+
use_flash_attention_2: bool = False,
|
809 |
+
torch_dtype: Optional[torch.dtype] = None,
|
810 |
+
device_map: Optional[Union[str, Dict[str, int]]] = None,
|
811 |
+
check_device_map: bool = True,
|
812 |
+
):
|
813 |
+
# If the user didn't specify anything, try to use flash_attention_2 if available.
|
814 |
+
# Otherwise we fall back to the default SDPA -> Eager from the super() method.
|
815 |
+
# ModernBert's FA2 implementation correctly handles non-fp16/bf16 dtypes, we don't
|
816 |
+
# need the FA2 warning for non-fp16/bf16 dtypes so we set fp16 for the FA2 check.
|
817 |
+
if config._attn_implementation_internal is None:
|
818 |
+
config._attn_implementation_internal = "flash_attention_2"
|
819 |
+
try:
|
820 |
+
return cls._check_and_enable_flash_attn_2(
|
821 |
+
config,
|
822 |
+
torch_dtype=torch.float16,
|
823 |
+
device_map=device_map,
|
824 |
+
hard_check_only=False,
|
825 |
+
check_device_map=check_device_map,
|
826 |
+
)
|
827 |
+
except (ValueError, ImportError):
|
828 |
+
config._attn_implementation_internal = None
|
829 |
+
return super()._autoset_attn_implementation(
|
830 |
+
config,
|
831 |
+
use_flash_attention_2=use_flash_attention_2,
|
832 |
+
torch_dtype=torch.float16,
|
833 |
+
device_map=device_map,
|
834 |
+
check_device_map=check_device_map,
|
835 |
+
)
|
836 |
+
|
837 |
+
def _maybe_set_compile(self):
|
838 |
+
if self.config.reference_compile is False:
|
839 |
+
return
|
840 |
+
|
841 |
+
if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1:
|
842 |
+
if self.config.reference_compile:
|
843 |
+
logger.warning_once(
|
844 |
+
"If `accelerate` split the model across devices, `torch.compile` will not work. "
|
845 |
+
"Falling back to non-compiled mode."
|
846 |
+
)
|
847 |
+
self.config.reference_compile = False
|
848 |
+
|
849 |
+
if self.device.type == "mps":
|
850 |
+
if self.config.reference_compile:
|
851 |
+
logger.warning_once(
|
852 |
+
"Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. "
|
853 |
+
"Falling back to non-compiled mode."
|
854 |
+
)
|
855 |
+
self.config.reference_compile = False
|
856 |
+
|
857 |
+
if self.device.type == "cpu":
|
858 |
+
if self.config.reference_compile:
|
859 |
+
logger.warning_once(
|
860 |
+
"Compiling the model with `torch.compile` and using a `torch.cpu` device is not supported. "
|
861 |
+
"Falling back to non-compiled mode."
|
862 |
+
)
|
863 |
+
self.config.reference_compile = False
|
864 |
+
|
865 |
+
if self.config.reference_compile is None:
|
866 |
+
self.config.reference_compile = is_triton_available()
|
867 |
+
|
868 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
869 |
+
model_embeds = super().resize_token_embeddings(*args, **kwargs)
|
870 |
+
|
871 |
+
if self.config.reference_compile in {True, None}:
|
872 |
+
if self.config.reference_compile:
|
873 |
+
logger.warning_once(
|
874 |
+
"Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode."
|
875 |
+
)
|
876 |
+
self.config.reference_compile = False
|
877 |
+
|
878 |
+
return model_embeds
|
879 |
+
|
880 |
+
|
881 |
+
MODERNBERG_INPUTS_DOCSTRING = r"""
|
882 |
+
Args:
|
883 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
884 |
+
Indices of input sequence tokens in the vocabulary. With Flash Attention 2.0, padding will be ignored
|
885 |
+
by default should you provide it.
|
886 |
+
|
887 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
888 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
889 |
+
|
890 |
+
[What are input IDs?](../glossary#input-ids)
|
891 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
892 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
893 |
+
|
894 |
+
- 1 for tokens that are **not masked**,
|
895 |
+
- 0 for tokens that are **masked**.
|
896 |
+
|
897 |
+
[What are attention masks?](../glossary#attention-mask)
|
898 |
+
|
899 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
900 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
901 |
+
|
902 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
903 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
904 |
+
information on the default strategy.
|
905 |
+
|
906 |
+
- 1 indicates the head is **not masked**,
|
907 |
+
- 0 indicates the head is **masked**.
|
908 |
+
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
909 |
+
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
910 |
+
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
911 |
+
far-away tokens in the local attention layers when not using Flash Attention.
|
912 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
913 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
914 |
+
config.n_positions - 1]`.
|
915 |
+
|
916 |
+
[What are position IDs?](../glossary#position-ids)
|
917 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
918 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
919 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
920 |
+
model's internal embedding lookup matrix.
|
921 |
+
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
922 |
+
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
923 |
+
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
924 |
+
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
925 |
+
max_seqlen (`int`, *optional*):
|
926 |
+
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
927 |
+
batch_size (`int`, *optional*):
|
928 |
+
Batch size of the input sequences. Used to pad the output tensors.
|
929 |
+
seq_len (`int`, *optional*):
|
930 |
+
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
931 |
+
output_attentions (`bool`, *optional*):
|
932 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
933 |
+
tensors for more detail.
|
934 |
+
output_hidden_states (`bool`, *optional*):
|
935 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
936 |
+
more detail.
|
937 |
+
return_dict (`bool`, *optional*):
|
938 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
939 |
+
"""
|
940 |
+
|
941 |
+
|
942 |
+
@add_start_docstrings(
|
943 |
+
"The bare ModernBerg Model outputting raw hidden-states without any specific head on top.",
|
944 |
+
MODERNBERG_START_DOCSTRING,
|
945 |
+
)
|
946 |
+
class ModernBergModel(ModernBergPreTrainedModel):
|
947 |
+
def __init__(self, config: ModernBergConfig):
|
948 |
+
super().__init__(config)
|
949 |
+
self.config = config
|
950 |
+
self.embeddings = ModernBertEmbeddings(config)
|
951 |
+
self.layers = nn.ModuleList(
|
952 |
+
[ModernBergEncoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)]
|
953 |
+
)
|
954 |
+
self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
955 |
+
self.gradient_checkpointing = False
|
956 |
+
self.post_init()
|
957 |
+
|
958 |
+
def get_input_embeddings(self):
|
959 |
+
return self.embeddings.tok_embeddings
|
960 |
+
|
961 |
+
def set_input_embeddings(self, value):
|
962 |
+
self.embeddings.tok_embeddings = value
|
963 |
+
|
964 |
+
@add_start_docstrings_to_model_forward(MODERNBERG_INPUTS_DOCSTRING)
|
965 |
+
@add_code_sample_docstrings(
|
966 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
967 |
+
output_type=BaseModelOutput,
|
968 |
+
config_class=_CONFIG_FOR_DOC,
|
969 |
+
)
|
970 |
+
def forward(
|
971 |
+
self,
|
972 |
+
input_ids: Optional[torch.LongTensor] = None,
|
973 |
+
attention_mask: Optional[torch.Tensor] = None,
|
974 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
975 |
+
position_ids: Optional[torch.LongTensor] = None,
|
976 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
977 |
+
indices: Optional[torch.Tensor] = None,
|
978 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
979 |
+
max_seqlen: Optional[int] = None,
|
980 |
+
batch_size: Optional[int] = None,
|
981 |
+
seq_len: Optional[int] = None,
|
982 |
+
output_attentions: Optional[bool] = None,
|
983 |
+
output_hidden_states: Optional[bool] = None,
|
984 |
+
return_dict: Optional[bool] = None,
|
985 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutput]:
|
986 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
987 |
+
output_hidden_states = (
|
988 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
989 |
+
)
|
990 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
991 |
+
|
992 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
993 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
994 |
+
|
995 |
+
all_hidden_states = () if output_hidden_states else None
|
996 |
+
all_self_attentions = () if output_attentions else None
|
997 |
+
|
998 |
+
self._maybe_set_compile()
|
999 |
+
|
1000 |
+
if input_ids is not None:
|
1001 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1002 |
+
|
1003 |
+
if batch_size is None and seq_len is None:
|
1004 |
+
if inputs_embeds is not None:
|
1005 |
+
batch_size, seq_len = inputs_embeds.shape[:2]
|
1006 |
+
else:
|
1007 |
+
batch_size, seq_len = input_ids.shape[:2]
|
1008 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1009 |
+
|
1010 |
+
if attention_mask is None:
|
1011 |
+
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
|
1012 |
+
|
1013 |
+
repad = False
|
1014 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1015 |
+
if indices is None and cu_seqlens is None and max_seqlen is None:
|
1016 |
+
repad = True
|
1017 |
+
if inputs_embeds is None:
|
1018 |
+
with torch.no_grad():
|
1019 |
+
input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
|
1020 |
+
inputs=input_ids, attention_mask=attention_mask
|
1021 |
+
)
|
1022 |
+
else:
|
1023 |
+
inputs_embeds, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
|
1024 |
+
inputs=inputs_embeds, attention_mask=attention_mask
|
1025 |
+
)
|
1026 |
+
else:
|
1027 |
+
if position_ids is None:
|
1028 |
+
position_ids = torch.arange(seq_len, device=device).unsqueeze(0)
|
1029 |
+
|
1030 |
+
attention_mask, sliding_window_mask = self._update_attention_mask(
|
1031 |
+
attention_mask, output_attentions=output_attentions
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
hidden_states = self.embeddings(input_ids=input_ids, inputs_embeds=inputs_embeds)
|
1035 |
+
|
1036 |
+
for encoder_layer in self.layers:
|
1037 |
+
if output_hidden_states:
|
1038 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1039 |
+
|
1040 |
+
if self.gradient_checkpointing and self.training:
|
1041 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1042 |
+
encoder_layer.__call__,
|
1043 |
+
hidden_states,
|
1044 |
+
attention_mask,
|
1045 |
+
sliding_window_mask,
|
1046 |
+
position_ids,
|
1047 |
+
cu_seqlens,
|
1048 |
+
max_seqlen,
|
1049 |
+
output_attentions,
|
1050 |
+
)
|
1051 |
+
else:
|
1052 |
+
layer_outputs = encoder_layer(
|
1053 |
+
hidden_states,
|
1054 |
+
attention_mask=attention_mask,
|
1055 |
+
sliding_window_mask=sliding_window_mask,
|
1056 |
+
position_ids=position_ids,
|
1057 |
+
cu_seqlens=cu_seqlens,
|
1058 |
+
max_seqlen=max_seqlen,
|
1059 |
+
output_attentions=output_attentions,
|
1060 |
+
)
|
1061 |
+
hidden_states = layer_outputs[0]
|
1062 |
+
if output_attentions and len(layer_outputs) > 1:
|
1063 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
1064 |
+
|
1065 |
+
if output_hidden_states:
|
1066 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1067 |
+
|
1068 |
+
hidden_states = self.final_norm(hidden_states)
|
1069 |
+
|
1070 |
+
if repad:
|
1071 |
+
hidden_states = _pad_modernbert_output(
|
1072 |
+
inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len
|
1073 |
+
)
|
1074 |
+
if all_hidden_states is not None:
|
1075 |
+
all_hidden_states = tuple(
|
1076 |
+
_pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
|
1077 |
+
for hs in all_hidden_states
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
if not return_dict:
|
1081 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
1082 |
+
return BaseModelOutput(
|
1083 |
+
last_hidden_state=hidden_states,
|
1084 |
+
hidden_states=all_hidden_states,
|
1085 |
+
attentions=all_self_attentions,
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor:
|
1089 |
+
if output_attentions:
|
1090 |
+
if self.config._attn_implementation == "sdpa":
|
1091 |
+
logger.warning_once(
|
1092 |
+
"Outputting attentions is only supported with the 'eager' attention implementation, "
|
1093 |
+
'not with "sdpa". Falling back to `attn_implementation="eager"`.'
|
1094 |
+
)
|
1095 |
+
self.config._attn_implementation = "eager"
|
1096 |
+
elif self.config._attn_implementation != "eager":
|
1097 |
+
logger.warning_once(
|
1098 |
+
"Outputting attentions is only supported with the eager attention implementation, "
|
1099 |
+
f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.'
|
1100 |
+
" Setting `output_attentions=False`."
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype)
|
1104 |
+
|
1105 |
+
# Create position indices
|
1106 |
+
rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0)
|
1107 |
+
# Calculate distance between positions
|
1108 |
+
distance = torch.abs(rows - rows.T)
|
1109 |
+
|
1110 |
+
# Create sliding window mask (1 for positions within window, 0 outside)
|
1111 |
+
window_mask = (
|
1112 |
+
(distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device)
|
1113 |
+
)
|
1114 |
+
# Combine with existing mask
|
1115 |
+
sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min)
|
1116 |
+
|
1117 |
+
return global_attention_mask, sliding_window_mask
|
1118 |
+
|
1119 |
+
|
1120 |
+
class ModernBergPredictionHead(nn.Module):
|
1121 |
+
def __init__(self, config: ModernBergConfig):
|
1122 |
+
super().__init__()
|
1123 |
+
self.config = config
|
1124 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias)
|
1125 |
+
self.act = ACT2FN[config.classifier_activation]
|
1126 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
1127 |
+
|
1128 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1129 |
+
return self.norm(self.act(self.dense(hidden_states)))
|
1130 |
+
|
1131 |
+
|
1132 |
+
@add_start_docstrings(
|
1133 |
+
"The ModernBerg Model with a decoder head on top that is used for masked language modeling.",
|
1134 |
+
MODERNBERG_START_DOCSTRING,
|
1135 |
+
)
|
1136 |
+
class ModernBergForMaskedLM(ModernBergPreTrainedModel):
|
1137 |
+
_tied_weights_keys = ["decoder.weight"]
|
1138 |
+
|
1139 |
+
def __init__(self, config: ModernBergConfig):
|
1140 |
+
super().__init__(config)
|
1141 |
+
self.config = config
|
1142 |
+
self.model = ModernBergModel(config)
|
1143 |
+
self.head = ModernBergPredictionHead(config)
|
1144 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)
|
1145 |
+
|
1146 |
+
self.sparse_prediction = self.config.sparse_prediction
|
1147 |
+
self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index
|
1148 |
+
|
1149 |
+
# Initialize weights and apply final processing
|
1150 |
+
self.post_init()
|
1151 |
+
|
1152 |
+
def get_output_embeddings(self):
|
1153 |
+
return self.decoder
|
1154 |
+
|
1155 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear):
|
1156 |
+
self.decoder = new_embeddings
|
1157 |
+
|
1158 |
+
@torch.compile(dynamic=True)
|
1159 |
+
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
|
1160 |
+
return self.decoder(self.head(output))
|
1161 |
+
|
1162 |
+
@add_start_docstrings_to_model_forward(MODERNBERG_INPUTS_DOCSTRING)
|
1163 |
+
@add_code_sample_docstrings(
|
1164 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1165 |
+
output_type=MaskedLMOutput,
|
1166 |
+
config_class=_CONFIG_FOR_DOC,
|
1167 |
+
)
|
1168 |
+
def forward(
|
1169 |
+
self,
|
1170 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1172 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
1173 |
+
position_ids: Optional[torch.Tensor] = None,
|
1174 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1175 |
+
labels: Optional[torch.Tensor] = None,
|
1176 |
+
indices: Optional[torch.Tensor] = None,
|
1177 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1178 |
+
max_seqlen: Optional[int] = None,
|
1179 |
+
batch_size: Optional[int] = None,
|
1180 |
+
seq_len: Optional[int] = None,
|
1181 |
+
output_attentions: Optional[bool] = None,
|
1182 |
+
output_hidden_states: Optional[bool] = None,
|
1183 |
+
return_dict: Optional[bool] = None,
|
1184 |
+
**kwargs,
|
1185 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1186 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1187 |
+
self._maybe_set_compile()
|
1188 |
+
|
1189 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1190 |
+
if indices is None and cu_seqlens is None and max_seqlen is None:
|
1191 |
+
if batch_size is None and seq_len is None:
|
1192 |
+
if inputs_embeds is not None:
|
1193 |
+
batch_size, seq_len = inputs_embeds.shape[:2]
|
1194 |
+
else:
|
1195 |
+
batch_size, seq_len = input_ids.shape[:2]
|
1196 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1197 |
+
|
1198 |
+
if attention_mask is None:
|
1199 |
+
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
|
1200 |
+
|
1201 |
+
if inputs_embeds is None:
|
1202 |
+
with torch.no_grad():
|
1203 |
+
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
|
1204 |
+
inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels
|
1205 |
+
)
|
1206 |
+
else:
|
1207 |
+
inputs_embeds, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
|
1208 |
+
inputs=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, labels=labels
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
outputs = self.model(
|
1212 |
+
input_ids=input_ids,
|
1213 |
+
attention_mask=attention_mask,
|
1214 |
+
sliding_window_mask=sliding_window_mask,
|
1215 |
+
position_ids=position_ids,
|
1216 |
+
inputs_embeds=inputs_embeds,
|
1217 |
+
indices=indices,
|
1218 |
+
cu_seqlens=cu_seqlens,
|
1219 |
+
max_seqlen=max_seqlen,
|
1220 |
+
batch_size=batch_size,
|
1221 |
+
seq_len=seq_len,
|
1222 |
+
output_attentions=output_attentions,
|
1223 |
+
output_hidden_states=output_hidden_states,
|
1224 |
+
return_dict=return_dict,
|
1225 |
+
)
|
1226 |
+
last_hidden_state = outputs[0]
|
1227 |
+
|
1228 |
+
if self.sparse_prediction and labels is not None:
|
1229 |
+
# flatten labels and output first
|
1230 |
+
labels = labels.view(-1)
|
1231 |
+
last_hidden_state = last_hidden_state.view(labels.shape[0], -1)
|
1232 |
+
|
1233 |
+
# then filter out the non-masked tokens
|
1234 |
+
mask_tokens = labels != self.sparse_pred_ignore_index
|
1235 |
+
last_hidden_state = last_hidden_state[mask_tokens]
|
1236 |
+
labels = labels[mask_tokens]
|
1237 |
+
|
1238 |
+
logits = (
|
1239 |
+
self.compiled_head(last_hidden_state)
|
1240 |
+
if self.config.reference_compile
|
1241 |
+
else self.decoder(self.head(last_hidden_state))
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
loss = None
|
1245 |
+
if labels is not None:
|
1246 |
+
loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size)
|
1247 |
+
|
1248 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1249 |
+
with nullcontext() if self.config.repad_logits_with_grad or labels is None else torch.no_grad():
|
1250 |
+
logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len)
|
1251 |
+
|
1252 |
+
if not return_dict:
|
1253 |
+
output = (logits,)
|
1254 |
+
return ((loss,) + output) if loss is not None else output
|
1255 |
+
|
1256 |
+
return MaskedLMOutput(
|
1257 |
+
loss=loss,
|
1258 |
+
logits=logits,
|
1259 |
+
hidden_states=outputs.hidden_states,
|
1260 |
+
attentions=outputs.attentions,
|
1261 |
+
)
|
1262 |
+
|
1263 |
+
|
1264 |
+
@add_start_docstrings(
|
1265 |
+
"The ModernBerg Model with a sequence classification head on top that performs pooling.",
|
1266 |
+
MODERNBERG_START_DOCSTRING,
|
1267 |
+
)
|
1268 |
+
class ModernBergForSequenceClassification(ModernBergPreTrainedModel):
|
1269 |
+
def __init__(self, config: ModernBergConfig):
|
1270 |
+
super().__init__(config)
|
1271 |
+
self.num_labels = config.num_labels
|
1272 |
+
self.config = config
|
1273 |
+
|
1274 |
+
self.model = ModernBergModel(config)
|
1275 |
+
self.head = ModernBergPredictionHead(config)
|
1276 |
+
self.drop = torch.nn.Dropout(config.classifier_dropout)
|
1277 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1278 |
+
|
1279 |
+
# Initialize weights and apply final processing
|
1280 |
+
self.post_init()
|
1281 |
+
|
1282 |
+
@add_start_docstrings_to_model_forward(MODERNBERG_INPUTS_DOCSTRING)
|
1283 |
+
@add_code_sample_docstrings(
|
1284 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1285 |
+
output_type=SequenceClassifierOutput,
|
1286 |
+
config_class=_CONFIG_FOR_DOC,
|
1287 |
+
)
|
1288 |
+
def forward(
|
1289 |
+
self,
|
1290 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1291 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1292 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
1293 |
+
position_ids: Optional[torch.Tensor] = None,
|
1294 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1295 |
+
labels: Optional[torch.Tensor] = None,
|
1296 |
+
indices: Optional[torch.Tensor] = None,
|
1297 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1298 |
+
max_seqlen: Optional[int] = None,
|
1299 |
+
batch_size: Optional[int] = None,
|
1300 |
+
seq_len: Optional[int] = None,
|
1301 |
+
output_attentions: Optional[bool] = None,
|
1302 |
+
output_hidden_states: Optional[bool] = None,
|
1303 |
+
return_dict: Optional[bool] = None,
|
1304 |
+
**kwargs,
|
1305 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1306 |
+
r"""
|
1307 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1308 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1309 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1310 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1311 |
+
"""
|
1312 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1313 |
+
self._maybe_set_compile()
|
1314 |
+
|
1315 |
+
outputs = self.model(
|
1316 |
+
input_ids=input_ids,
|
1317 |
+
attention_mask=attention_mask,
|
1318 |
+
sliding_window_mask=sliding_window_mask,
|
1319 |
+
position_ids=position_ids,
|
1320 |
+
inputs_embeds=inputs_embeds,
|
1321 |
+
indices=indices,
|
1322 |
+
cu_seqlens=cu_seqlens,
|
1323 |
+
max_seqlen=max_seqlen,
|
1324 |
+
batch_size=batch_size,
|
1325 |
+
seq_len=seq_len,
|
1326 |
+
output_attentions=output_attentions,
|
1327 |
+
output_hidden_states=output_hidden_states,
|
1328 |
+
return_dict=return_dict,
|
1329 |
+
)
|
1330 |
+
last_hidden_state = outputs[0]
|
1331 |
+
|
1332 |
+
if self.config.classifier_pooling == "cls":
|
1333 |
+
last_hidden_state = last_hidden_state[:, 0]
|
1334 |
+
elif self.config.classifier_pooling == "mean":
|
1335 |
+
last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
|
1336 |
+
dim=1, keepdim=True
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
pooled_output = self.head(last_hidden_state)
|
1340 |
+
pooled_output = self.drop(pooled_output)
|
1341 |
+
logits = self.classifier(pooled_output)
|
1342 |
+
|
1343 |
+
loss = None
|
1344 |
+
if labels is not None:
|
1345 |
+
if self.config.problem_type is None:
|
1346 |
+
if self.num_labels == 1:
|
1347 |
+
self.config.problem_type = "regression"
|
1348 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1349 |
+
self.config.problem_type = "single_label_classification"
|
1350 |
+
else:
|
1351 |
+
self.config.problem_type = "multi_label_classification"
|
1352 |
+
|
1353 |
+
if self.config.problem_type == "regression":
|
1354 |
+
loss_fct = MSELoss()
|
1355 |
+
if self.num_labels == 1:
|
1356 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1357 |
+
else:
|
1358 |
+
loss = loss_fct(logits, labels)
|
1359 |
+
elif self.config.problem_type == "single_label_classification":
|
1360 |
+
loss_fct = CrossEntropyLoss()
|
1361 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1362 |
+
elif self.config.problem_type == "multi_label_classification":
|
1363 |
+
loss_fct = BCEWithLogitsLoss()
|
1364 |
+
loss = loss_fct(logits, labels)
|
1365 |
+
|
1366 |
+
if not return_dict:
|
1367 |
+
output = (logits,)
|
1368 |
+
return ((loss,) + output) if loss is not None else output
|
1369 |
+
|
1370 |
+
return SequenceClassifierOutput(
|
1371 |
+
loss=loss,
|
1372 |
+
logits=logits,
|
1373 |
+
hidden_states=outputs.hidden_states,
|
1374 |
+
attentions=outputs.attentions,
|
1375 |
+
)
|
1376 |
+
|
1377 |
+
|
1378 |
+
@add_start_docstrings(
|
1379 |
+
"The ModernBerg Model with a token classification head on top, e.g. for Named Entity Recognition (NER) tasks.",
|
1380 |
+
MODERNBERG_START_DOCSTRING,
|
1381 |
+
)
|
1382 |
+
class ModernBergForTokenClassification(ModernBergPreTrainedModel):
|
1383 |
+
def __init__(self, config: ModernBergConfig):
|
1384 |
+
super().__init__(config)
|
1385 |
+
self.num_labels = config.num_labels
|
1386 |
+
|
1387 |
+
self.model = ModernBergModel(config)
|
1388 |
+
self.head = ModernBergPredictionHead(config)
|
1389 |
+
self.drop = torch.nn.Dropout(config.classifier_dropout)
|
1390 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1391 |
+
|
1392 |
+
# Initialize weights and apply final processing
|
1393 |
+
self.post_init()
|
1394 |
+
|
1395 |
+
@add_start_docstrings_to_model_forward(MODERNBERG_INPUTS_DOCSTRING)
|
1396 |
+
@add_code_sample_docstrings(
|
1397 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1398 |
+
output_type=TokenClassifierOutput,
|
1399 |
+
config_class=_CONFIG_FOR_DOC,
|
1400 |
+
)
|
1401 |
+
def forward(
|
1402 |
+
self,
|
1403 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1405 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
1406 |
+
position_ids: Optional[torch.Tensor] = None,
|
1407 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1408 |
+
labels: Optional[torch.Tensor] = None,
|
1409 |
+
indices: Optional[torch.Tensor] = None,
|
1410 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1411 |
+
max_seqlen: Optional[int] = None,
|
1412 |
+
batch_size: Optional[int] = None,
|
1413 |
+
seq_len: Optional[int] = None,
|
1414 |
+
output_attentions: Optional[bool] = None,
|
1415 |
+
output_hidden_states: Optional[bool] = None,
|
1416 |
+
return_dict: Optional[bool] = None,
|
1417 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1418 |
+
r"""
|
1419 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1420 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1421 |
+
"""
|
1422 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1423 |
+
self._maybe_set_compile()
|
1424 |
+
|
1425 |
+
outputs = self.model(
|
1426 |
+
input_ids=input_ids,
|
1427 |
+
attention_mask=attention_mask,
|
1428 |
+
sliding_window_mask=sliding_window_mask,
|
1429 |
+
position_ids=position_ids,
|
1430 |
+
inputs_embeds=inputs_embeds,
|
1431 |
+
indices=indices,
|
1432 |
+
cu_seqlens=cu_seqlens,
|
1433 |
+
max_seqlen=max_seqlen,
|
1434 |
+
batch_size=batch_size,
|
1435 |
+
seq_len=seq_len,
|
1436 |
+
output_attentions=output_attentions,
|
1437 |
+
output_hidden_states=output_hidden_states,
|
1438 |
+
return_dict=return_dict,
|
1439 |
+
)
|
1440 |
+
last_hidden_state = outputs[0]
|
1441 |
+
|
1442 |
+
last_hidden_state = self.head(last_hidden_state)
|
1443 |
+
last_hidden_state = self.drop(last_hidden_state)
|
1444 |
+
logits = self.classifier(last_hidden_state)
|
1445 |
+
|
1446 |
+
loss = None
|
1447 |
+
if labels is not None:
|
1448 |
+
loss_fct = CrossEntropyLoss()
|
1449 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1450 |
+
|
1451 |
+
if not return_dict:
|
1452 |
+
output = (logits,) + outputs[1:]
|
1453 |
+
return ((loss,) + output) if loss is not None else output
|
1454 |
+
|
1455 |
+
return TokenClassifierOutput(
|
1456 |
+
loss=loss,
|
1457 |
+
logits=logits,
|
1458 |
+
hidden_states=outputs.hidden_states,
|
1459 |
+
attentions=outputs.attentions,
|
1460 |
+
)
|
1461 |
+
|
1462 |
+
|
1463 |
+
__all__ = [
|
1464 |
+
"ModernBergConfig",
|
1465 |
+
"ModernBergModel",
|
1466 |
+
"ModernBergPreTrainedModel",
|
1467 |
+
"ModernBergForMaskedLM",
|
1468 |
+
"ModernBergForSequenceClassification",
|
1469 |
+
"ModernBergForTokenClassification",
|
1470 |
+
]
|