File size: 3,618 Bytes
49048e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9d650
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---

library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-32B-Instruct
tags:
- generated_from_trainer
datasets:
- Fizzarolli/inkmix-v2
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
model-index:
- name: ckpts
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml

base_model: Qwen/Qwen2.5-32B-Instruct



load_in_8bit: true

load_in_4bit: false



plugins:

  - axolotl.integrations.liger.LigerPlugin

liger_rope: true

liger_rms_norm: true

liger_glu_activation: true

liger_fused_linear_cross_entropy: true



#unsloth_lora_mlp: true

#unsloth_lora_qkv: true

#unsloth_lora_o: true



strict: false



adapter: lora

lora_r: 16

lora_alpha: 32

lora_dropout: 0.25

lora_target_linear: true

peft_layers_to_transform:

loraplus_lr_ratio: 16



chat_template: chatml

datasets:

  - path: Fizzarolli/inkmix-v2

    type: chat_template

    chat_template: tokenizer_default

    split: train

    field_messages: conversations

    message_field_role: from

    message_field_content: value



dataset_prepared_path: last_run_prepared

#val_set_size: 0.02

output_dir: ./ckpts



sequence_len: 8192

sample_packing: true

pad_to_sequence_len: true



#wandb_project: teleut-7b-rp

#wandb_entity:

#wandb_watch:

#wandb_name:

#wandb_log_model: checkpoint



# mlflow configuration if you're using it

mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud

mlflow_experiment_name: tq-32b-rp-inkmixv2

mlflow_run_name: v1

hf_mlflow_log_artifacts: true



gradient_accumulation_steps: 2

micro_batch_size: 8

num_epochs: 2

optimizer: paged_adamw_8bit

lr_scheduler: cosine

learning_rate: 6e-5



train_on_inputs: false

group_by_length: false

bf16: auto

fp16:

tf32: false



gradient_checkpointing: unsloth

gradient_checkpointing_kwargs:

  use_reentrant: false

early_stopping_patience:

resume_from_checkpoint:

logging_steps: 1

xformers_attention:

flash_attention: true



#deepspeed: deepspeed_configs/zero3_bf16.json



warmup_steps: 25

#evals_per_epoch: 4

eval_table_size:

saves_per_epoch: 10

debug:

weight_decay: 0.05



```

</details><br>

# ckpts

This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) on the Fizzarolli/inkmix-v2 dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: cosine

- lr_scheduler_warmup_steps: 25
- num_epochs: 2



### Training results







### Framework versions



- PEFT 0.14.0

- Transformers 4.47.1

- Pytorch 2.5.1+cu124

- Datasets 3.1.0

- Tokenizers 0.21.0