Fizzarolli commited on
Commit
ee13c4b
·
verified ·
1 Parent(s): fa27073

Upload folder using huggingface_hub

Browse files
Files changed (36) hide show
  1. .gitattributes +1 -0
  2. README.md +202 -0
  3. adapter_config.json +38 -0
  4. adapter_model.safetensors +3 -0
  5. global_step468/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. global_step468/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. global_step468/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. global_step468/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. global_step468/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. global_step468/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. global_step468/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. global_step468/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. global_step468/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. global_step468/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. global_step468/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. global_step468/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. global_step468/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. global_step468/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. global_step468/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. global_step468/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  21. latest +1 -0
  22. rng_state_0.pth +3 -0
  23. rng_state_1.pth +3 -0
  24. rng_state_2.pth +3 -0
  25. rng_state_3.pth +3 -0
  26. rng_state_4.pth +3 -0
  27. rng_state_5.pth +3 -0
  28. rng_state_6.pth +3 -0
  29. rng_state_7.pth +3 -0
  30. scheduler.pt +3 -0
  31. special_tokens_map.json +32 -0
  32. tokenizer.json +3 -0
  33. tokenizer_config.json +146 -0
  34. trainer_state.json +3310 -0
  35. training_args.bin +3 -0
  36. zero_to_fp32.py +674 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: THUDM/GLM-4-32B-0414
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "THUDM/GLM-4-32B-0414",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.25,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "v_proj",
29
+ "down_proj",
30
+ "k_proj",
31
+ "o_proj",
32
+ "gate_up_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "trainable_token_indices": null,
36
+ "use_dora": false,
37
+ "use_rslora": false
38
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d75fe4bb3fa25b393887cd2c587586e6f3c749e6a8403e1c32e6d0d0b7c39d4
3
+ size 231966248
global_step468/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed38079166248d0310efc2c1a242644621df5ff89de15cd54cb5540fbc804623
3
+ size 88915560
global_step468/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92857ea017068615b662b0f1f98c3ff128dd764149b926cb585f567404f304e5
3
+ size 88915560
global_step468/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9844097153b81beef73a256f8e6b32c77b728796bc8abfc8963a3e9a2232051c
3
+ size 88915560
global_step468/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dc8afd9eb16322de91bd3e69a66517bd08e02944f32650c84a1b9467da9f610
3
+ size 88915560
global_step468/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d5f88f76f03cd9861ddaf9daac7b7e9fa0a383e862f33f41c48018264b3c20a
3
+ size 88915560
global_step468/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:749c01fdd0f9352fe201ff9a06d3c45f16427e33f0e2eedf7a196793085130dd
3
+ size 88915560
global_step468/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbae5b7d26140ece9ae562f5fbe79fc79d8bacaf844b7a8503bf699b87cc3912
3
+ size 88915560
global_step468/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d042a9d2157a83b74de0f988a7593fbc06241a48aa4da0cda860d933ac17999f
3
+ size 88915560
global_step468/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf3ec33b522be25973920c68249a1b975596ff4756489a0079bab6e79db6ab5f
3
+ size 489169474
global_step468/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04557168c909936295a6f6b331fca0b13bcea252dccef18d4303f25e39b31b10
3
+ size 489169474
global_step468/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5a8f95e320a1eed01df24f7a6146141169a0b6cd4e15d27560553d90230bdb9
3
+ size 489169474
global_step468/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89989033171cf71d3436960f87d3de6a3c8348f2c76993e27816f4035e4cbb81
3
+ size 489169474
global_step468/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6df15ce92d4b29ac02f950bd12e13a0e2bf7cb7c0c5d8bf0a25eb51e34b3d1f7
3
+ size 489169474
global_step468/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d758c3278cbd673ee550903e63eb867d90f1077ba56088a2b65f1ced1cb1b703
3
+ size 489169474
global_step468/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f116a3d032822c3e862a1243274b41a9e0cf4384e5b4d354283758a8561d70e0
3
+ size 489169474
global_step468/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b12272789068eb2500c6dbd646320f42515f1e35ca8ff39a390dff274e065750
3
+ size 489169474
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step468
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc64b408da4f8c559c35c409923e394f4a7977cbc762651abf99d46b7084b982
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e314bda318014a74205de3842e71c4a10a9d3b84793883a67a220113b7f9f7
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943124b2528590a47654d52819621dcb463433cb3d3c8933a0c176fb126c6a43
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9175feb38e77a12fe62809bfea253ca91f837eecd61bd00037cc5ed4140c3af6
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1f36a31701184818cb920a0a0e24f13bebed551683d3d399296dd997f500762
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d1c2d845078dbdfebc7922410718ed5993ac72778bd91ffc823852d269691c9
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bda2fad69036d5a69510770ddfc0a5951a90286d6cf8495af3d8756be8b6106a
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d2a50fc34b49cd1d88e811b1a1a7266bd79872ce6f7cf29d95ac978d7539a1f
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a11b2b11819ea1201e976a4e9e83a257be0b6930063c975e94c18d9889b70d
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "[MASK]",
5
+ "[gMASK]",
6
+ "[sMASK]",
7
+ "<sop>",
8
+ "<eop>",
9
+ "<|system|>",
10
+ "<|user|>",
11
+ "<|assistant|>",
12
+ "<|observation|>",
13
+ "<|begin_of_image|>",
14
+ "<|end_of_image|>",
15
+ "<|begin_of_video|>",
16
+ "<|end_of_video|>"
17
+ ],
18
+ "eos_token": {
19
+ "content": "<|user|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76ebeac0d8bd7879ead7b43c16b44981f277e47225de2bd7de9ae1a6cc664a8c
3
+ size 19966496
tokenizer_config.json ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "151330": {
12
+ "content": "[MASK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "151331": {
20
+ "content": "[gMASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "151332": {
28
+ "content": "[sMASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "151333": {
36
+ "content": "<sop>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "151334": {
44
+ "content": "<eop>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "151335": {
52
+ "content": "<|system|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "151336": {
60
+ "content": "<|user|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "151337": {
68
+ "content": "<|assistant|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "151338": {
76
+ "content": "<|observation|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "151339": {
84
+ "content": "<|begin_of_image|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "151340": {
92
+ "content": "<|end_of_image|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "151341": {
100
+ "content": "<|begin_of_video|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "151342": {
108
+ "content": "<|end_of_video|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ }
115
+ },
116
+ "additional_special_tokens": [
117
+ "<|endoftext|>",
118
+ "[MASK]",
119
+ "[gMASK]",
120
+ "[sMASK]",
121
+ "<sop>",
122
+ "<eop>",
123
+ "<|system|>",
124
+ "<|user|>",
125
+ "<|assistant|>",
126
+ "<|observation|>",
127
+ "<|begin_of_image|>",
128
+ "<|end_of_image|>",
129
+ "<|begin_of_video|>",
130
+ "<|end_of_video|>"
131
+ ],
132
+ "chat_template": "[gMASK]<sop>{%- for msg in messages %}{%- if msg.role == 'system' %}<|system|>\n{{ msg.content }}{%- elif msg.role == 'user' %}<|user|>\n{{ msg.content }}{%- elif msg.role == 'assistant' %}<|assistant|>\n{{ msg.content }}{%- endif %}{%- endfor %}{% if add_generation_prompt %}<|assistant|>{% else %}<|user|>{% endif %}\n",
133
+ "clean_up_tokenization_spaces": false,
134
+ "do_lower_case": false,
135
+ "eos_token": "<|user|>",
136
+ "extra_special_tokens": {},
137
+ "model_input_names": [
138
+ "input_ids",
139
+ "attention_mask"
140
+ ],
141
+ "model_max_length": 128000,
142
+ "pad_token": "<|endoftext|>",
143
+ "padding_side": "left",
144
+ "remove_space": false,
145
+ "tokenizer_class": "PreTrainedTokenizer"
146
+ }
trainer_state.json ADDED
@@ -0,0 +1,3310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.504823151125402,
6
+ "eval_steps": 500,
7
+ "global_step": 468,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.003215434083601286,
14
+ "grad_norm": 1.8139427901504777,
15
+ "learning_rate": 3.2258064516129035e-07,
16
+ "loss": 1.8795,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.006430868167202572,
21
+ "grad_norm": 1.4827057247111375,
22
+ "learning_rate": 6.451612903225807e-07,
23
+ "loss": 1.9012,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.00964630225080386,
28
+ "grad_norm": 2.246892281108816,
29
+ "learning_rate": 9.67741935483871e-07,
30
+ "loss": 2.051,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.012861736334405145,
35
+ "grad_norm": 2.1678014328927557,
36
+ "learning_rate": 1.2903225806451614e-06,
37
+ "loss": 1.9149,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.01607717041800643,
42
+ "grad_norm": 1.5486796271797767,
43
+ "learning_rate": 1.6129032258064516e-06,
44
+ "loss": 1.9074,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.01929260450160772,
49
+ "grad_norm": 2.070045324451304,
50
+ "learning_rate": 1.935483870967742e-06,
51
+ "loss": 1.8017,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.022508038585209004,
56
+ "grad_norm": 1.0691565532221945,
57
+ "learning_rate": 2.2580645161290324e-06,
58
+ "loss": 1.8634,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.02572347266881029,
63
+ "grad_norm": 1.2700085661670921,
64
+ "learning_rate": 2.580645161290323e-06,
65
+ "loss": 1.8937,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.028938906752411574,
70
+ "grad_norm": 1.4648464524181335,
71
+ "learning_rate": 2.903225806451613e-06,
72
+ "loss": 1.8333,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.03215434083601286,
77
+ "grad_norm": 1.9789558033563477,
78
+ "learning_rate": 3.225806451612903e-06,
79
+ "loss": 1.9324,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.03536977491961415,
84
+ "grad_norm": 1.3084400687826616,
85
+ "learning_rate": 3.5483870967741936e-06,
86
+ "loss": 1.9304,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.03858520900321544,
91
+ "grad_norm": 1.4314638080369735,
92
+ "learning_rate": 3.870967741935484e-06,
93
+ "loss": 1.8559,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.04180064308681672,
98
+ "grad_norm": 1.8675934280306556,
99
+ "learning_rate": 4.193548387096774e-06,
100
+ "loss": 1.8142,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.04501607717041801,
105
+ "grad_norm": 2.2721373779660885,
106
+ "learning_rate": 4.516129032258065e-06,
107
+ "loss": 1.9085,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.04823151125401929,
112
+ "grad_norm": 2.1557786439995144,
113
+ "learning_rate": 4.838709677419355e-06,
114
+ "loss": 1.9455,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.05144694533762058,
119
+ "grad_norm": 1.581014411505333,
120
+ "learning_rate": 5.161290322580646e-06,
121
+ "loss": 1.8905,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.05466237942122187,
126
+ "grad_norm": 1.1620382151650777,
127
+ "learning_rate": 5.483870967741936e-06,
128
+ "loss": 1.9314,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.05787781350482315,
133
+ "grad_norm": 1.54505591125172,
134
+ "learning_rate": 5.806451612903226e-06,
135
+ "loss": 1.9688,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.06109324758842444,
140
+ "grad_norm": 1.4057721389474997,
141
+ "learning_rate": 6.129032258064517e-06,
142
+ "loss": 1.9826,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.06430868167202572,
147
+ "grad_norm": 1.9706307878507736,
148
+ "learning_rate": 6.451612903225806e-06,
149
+ "loss": 2.0072,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.06752411575562701,
154
+ "grad_norm": 1.7236343733533435,
155
+ "learning_rate": 6.774193548387097e-06,
156
+ "loss": 1.9905,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.0707395498392283,
161
+ "grad_norm": 2.0533016397870476,
162
+ "learning_rate": 7.096774193548387e-06,
163
+ "loss": 1.9434,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.07395498392282958,
168
+ "grad_norm": 1.481031731548318,
169
+ "learning_rate": 7.419354838709678e-06,
170
+ "loss": 1.8396,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.07717041800643087,
175
+ "grad_norm": 1.170446737350014,
176
+ "learning_rate": 7.741935483870968e-06,
177
+ "loss": 1.8728,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.08038585209003216,
182
+ "grad_norm": 1.311786758926783,
183
+ "learning_rate": 8.064516129032258e-06,
184
+ "loss": 1.8793,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.08360128617363344,
189
+ "grad_norm": 1.164142868037603,
190
+ "learning_rate": 8.387096774193549e-06,
191
+ "loss": 1.8844,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.08681672025723473,
196
+ "grad_norm": 1.4646144613768468,
197
+ "learning_rate": 8.70967741935484e-06,
198
+ "loss": 2.0018,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.09003215434083602,
203
+ "grad_norm": 2.754370389076398,
204
+ "learning_rate": 9.03225806451613e-06,
205
+ "loss": 1.934,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.0932475884244373,
210
+ "grad_norm": 0.9737813594884901,
211
+ "learning_rate": 9.35483870967742e-06,
212
+ "loss": 1.7937,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.09646302250803858,
217
+ "grad_norm": 0.8062538970359915,
218
+ "learning_rate": 9.67741935483871e-06,
219
+ "loss": 1.948,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.09967845659163987,
224
+ "grad_norm": 0.9350863955119307,
225
+ "learning_rate": 1e-05,
226
+ "loss": 1.9635,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.10289389067524116,
231
+ "grad_norm": 0.8234637750282952,
232
+ "learning_rate": 9.998305371970854e-06,
233
+ "loss": 1.7344,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.10610932475884244,
238
+ "grad_norm": 1.0156697352772721,
239
+ "learning_rate": 9.996605566870334e-06,
240
+ "loss": 1.8349,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.10932475884244373,
245
+ "grad_norm": 0.8584344086710765,
246
+ "learning_rate": 9.994900560938297e-06,
247
+ "loss": 1.8419,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.11254019292604502,
252
+ "grad_norm": 0.7548443656059388,
253
+ "learning_rate": 9.993190330268982e-06,
254
+ "loss": 1.79,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.1157556270096463,
259
+ "grad_norm": 0.9117562153771265,
260
+ "learning_rate": 9.99147485080989e-06,
261
+ "loss": 1.7731,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.1189710610932476,
266
+ "grad_norm": 0.7857198552918699,
267
+ "learning_rate": 9.989754098360657e-06,
268
+ "loss": 1.8349,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.12218649517684887,
273
+ "grad_norm": 0.4842461872351954,
274
+ "learning_rate": 9.988028048571917e-06,
275
+ "loss": 1.8621,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.12540192926045016,
280
+ "grad_norm": 0.5546706406169316,
281
+ "learning_rate": 9.98629667694416e-06,
282
+ "loss": 1.872,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.12861736334405144,
287
+ "grad_norm": 0.4743331575347531,
288
+ "learning_rate": 9.984559958826557e-06,
289
+ "loss": 1.8474,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.13183279742765272,
294
+ "grad_norm": 0.6191091199067691,
295
+ "learning_rate": 9.982817869415808e-06,
296
+ "loss": 1.9006,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.13504823151125403,
301
+ "grad_norm": 0.7350082816564365,
302
+ "learning_rate": 9.98107038375495e-06,
303
+ "loss": 1.9712,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.1382636655948553,
308
+ "grad_norm": 1.84774696273094,
309
+ "learning_rate": 9.979317476732161e-06,
310
+ "loss": 1.7948,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.1414790996784566,
315
+ "grad_norm": 1.6542501458240009,
316
+ "learning_rate": 9.97755912307958e-06,
317
+ "loss": 1.8911,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.14469453376205788,
322
+ "grad_norm": 0.42138602432759076,
323
+ "learning_rate": 9.975795297372061e-06,
324
+ "loss": 1.7762,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.14790996784565916,
329
+ "grad_norm": 0.6398366473724499,
330
+ "learning_rate": 9.974025974025974e-06,
331
+ "loss": 1.7533,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.15112540192926044,
336
+ "grad_norm": 0.4090060859208197,
337
+ "learning_rate": 9.972251127297954e-06,
338
+ "loss": 1.7385,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.15434083601286175,
343
+ "grad_norm": 0.5850115421043386,
344
+ "learning_rate": 9.970470731283656e-06,
345
+ "loss": 1.8072,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.15755627009646303,
350
+ "grad_norm": 0.7238316463106957,
351
+ "learning_rate": 9.968684759916494e-06,
352
+ "loss": 1.8023,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.1607717041800643,
357
+ "grad_norm": 0.46218123288707824,
358
+ "learning_rate": 9.966893186966372e-06,
359
+ "loss": 1.8054,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.1639871382636656,
364
+ "grad_norm": 0.616105183333845,
365
+ "learning_rate": 9.965095986038394e-06,
366
+ "loss": 1.6704,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.16720257234726688,
371
+ "grad_norm": 0.4516417429014012,
372
+ "learning_rate": 9.963293130571578e-06,
373
+ "loss": 1.8424,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.17041800643086816,
378
+ "grad_norm": 0.77318360969182,
379
+ "learning_rate": 9.961484593837536e-06,
380
+ "loss": 1.757,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.17363344051446947,
385
+ "grad_norm": 0.42668808439045164,
386
+ "learning_rate": 9.959670348939155e-06,
387
+ "loss": 1.7232,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.17684887459807075,
392
+ "grad_norm": 0.461318262919585,
393
+ "learning_rate": 9.957850368809273e-06,
394
+ "loss": 1.7933,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.18006430868167203,
399
+ "grad_norm": 0.7315165303506296,
400
+ "learning_rate": 9.956024626209323e-06,
401
+ "loss": 1.7174,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.1832797427652733,
406
+ "grad_norm": 0.5547095768027991,
407
+ "learning_rate": 9.954193093727978e-06,
408
+ "loss": 1.6926,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.1864951768488746,
413
+ "grad_norm": 0.5584801951510784,
414
+ "learning_rate": 9.952355743779778e-06,
415
+ "loss": 1.8614,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.18971061093247588,
420
+ "grad_norm": 0.4283225621008119,
421
+ "learning_rate": 9.950512548603748e-06,
422
+ "loss": 1.7414,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.19292604501607716,
427
+ "grad_norm": 0.6611404688540005,
428
+ "learning_rate": 9.948663480261995e-06,
429
+ "loss": 1.7605,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.19614147909967847,
434
+ "grad_norm": 0.48587548617769466,
435
+ "learning_rate": 9.946808510638298e-06,
436
+ "loss": 1.724,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.19935691318327975,
441
+ "grad_norm": 0.39342564370484284,
442
+ "learning_rate": 9.94494761143669e-06,
443
+ "loss": 1.8336,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.20257234726688103,
448
+ "grad_norm": 0.4173189236198402,
449
+ "learning_rate": 9.943080754180008e-06,
450
+ "loss": 1.7816,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.2057877813504823,
455
+ "grad_norm": 0.4658148025943206,
456
+ "learning_rate": 9.941207910208445e-06,
457
+ "loss": 1.6283,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.2090032154340836,
462
+ "grad_norm": 0.517548892373079,
463
+ "learning_rate": 9.939329050678089e-06,
464
+ "loss": 1.8234,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.21221864951768488,
469
+ "grad_norm": 0.46275765989156126,
470
+ "learning_rate": 9.937444146559429e-06,
471
+ "loss": 1.7447,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.21543408360128619,
476
+ "grad_norm": 1.1081478758742653,
477
+ "learning_rate": 9.935553168635876e-06,
478
+ "loss": 1.7269,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.21864951768488747,
483
+ "grad_norm": 0.3685207965444784,
484
+ "learning_rate": 9.933656087502243e-06,
485
+ "loss": 1.6526,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.22186495176848875,
490
+ "grad_norm": 0.4915041140865339,
491
+ "learning_rate": 9.93175287356322e-06,
492
+ "loss": 1.7168,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.22508038585209003,
497
+ "grad_norm": 0.5376826838504105,
498
+ "learning_rate": 9.92984349703184e-06,
499
+ "loss": 1.717,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.2282958199356913,
504
+ "grad_norm": 0.5138524626951391,
505
+ "learning_rate": 9.927927927927928e-06,
506
+ "loss": 1.8743,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.2315112540192926,
511
+ "grad_norm": 0.45983175614227173,
512
+ "learning_rate": 9.926006136076522e-06,
513
+ "loss": 1.5821,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.2347266881028939,
518
+ "grad_norm": 0.43682547338676814,
519
+ "learning_rate": 9.924078091106291e-06,
520
+ "loss": 1.6565,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.2379421221864952,
525
+ "grad_norm": 0.48445488077665566,
526
+ "learning_rate": 9.922143762447946e-06,
527
+ "loss": 1.8203,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.24115755627009647,
532
+ "grad_norm": 0.43776824297139105,
533
+ "learning_rate": 9.920203119332609e-06,
534
+ "loss": 1.6981,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.24437299035369775,
539
+ "grad_norm": 0.8119898531586365,
540
+ "learning_rate": 9.918256130790192e-06,
541
+ "loss": 1.7794,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.24758842443729903,
546
+ "grad_norm": 0.3901084260561504,
547
+ "learning_rate": 9.916302765647746e-06,
548
+ "loss": 1.8199,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.2508038585209003,
553
+ "grad_norm": 0.4594634220443229,
554
+ "learning_rate": 9.914342992527794e-06,
555
+ "loss": 1.7681,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.2540192926045016,
560
+ "grad_norm": 0.4588533669296292,
561
+ "learning_rate": 9.91237677984666e-06,
562
+ "loss": 1.6955,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.2572347266881029,
567
+ "grad_norm": 0.4616453710837963,
568
+ "learning_rate": 9.910404095812764e-06,
569
+ "loss": 1.5667,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.2604501607717042,
574
+ "grad_norm": 0.6020248390199695,
575
+ "learning_rate": 9.90842490842491e-06,
576
+ "loss": 1.9007,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.26366559485530544,
581
+ "grad_norm": 0.4110162307135801,
582
+ "learning_rate": 9.906439185470556e-06,
583
+ "loss": 1.8028,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.26688102893890675,
588
+ "grad_norm": 0.5124129858836964,
589
+ "learning_rate": 9.904446894524072e-06,
590
+ "loss": 1.7442,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.27009646302250806,
595
+ "grad_norm": 0.5964949481206979,
596
+ "learning_rate": 9.902448002944966e-06,
597
+ "loss": 1.5914,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.2733118971061093,
602
+ "grad_norm": 0.42395305200907873,
603
+ "learning_rate": 9.900442477876108e-06,
604
+ "loss": 1.7459,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.2765273311897106,
609
+ "grad_norm": 0.5072002009865632,
610
+ "learning_rate": 9.898430286241922e-06,
611
+ "loss": 1.8099,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.2797427652733119,
616
+ "grad_norm": 0.45165823004316974,
617
+ "learning_rate": 9.896411394746579e-06,
618
+ "loss": 1.6525,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.2829581993569132,
623
+ "grad_norm": 0.6306765126972796,
624
+ "learning_rate": 9.894385769872153e-06,
625
+ "loss": 1.732,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.2861736334405145,
630
+ "grad_norm": 0.5739555807551489,
631
+ "learning_rate": 9.892353377876765e-06,
632
+ "loss": 1.6367,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.28938906752411575,
637
+ "grad_norm": 0.42492816633261454,
638
+ "learning_rate": 9.890314184792715e-06,
639
+ "loss": 1.9578,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.29260450160771706,
644
+ "grad_norm": 0.3618619515123821,
645
+ "learning_rate": 9.888268156424582e-06,
646
+ "loss": 1.7637,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.2958199356913183,
651
+ "grad_norm": 0.39652453599536036,
652
+ "learning_rate": 9.886215258347324e-06,
653
+ "loss": 1.7515,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.2990353697749196,
658
+ "grad_norm": 0.6725210809375401,
659
+ "learning_rate": 9.884155455904336e-06,
660
+ "loss": 1.8649,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.3022508038585209,
665
+ "grad_norm": 0.36922904709086996,
666
+ "learning_rate": 9.882088714205503e-06,
667
+ "loss": 1.8891,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.3054662379421222,
672
+ "grad_norm": 0.546943119320176,
673
+ "learning_rate": 9.880014998125235e-06,
674
+ "loss": 1.7453,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.3086816720257235,
679
+ "grad_norm": 0.33061581393958167,
680
+ "learning_rate": 9.87793427230047e-06,
681
+ "loss": 1.7088,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.31189710610932475,
686
+ "grad_norm": 0.532292966712963,
687
+ "learning_rate": 9.875846501128668e-06,
688
+ "loss": 1.7597,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.31511254019292606,
693
+ "grad_norm": 0.3627002665021866,
694
+ "learning_rate": 9.873751648765783e-06,
695
+ "loss": 1.8064,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.3183279742765273,
700
+ "grad_norm": 0.3579021058819948,
701
+ "learning_rate": 9.871649679124198e-06,
702
+ "loss": 1.7573,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.3215434083601286,
707
+ "grad_norm": 0.3611562992520892,
708
+ "learning_rate": 9.869540555870676e-06,
709
+ "loss": 1.814,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.3247588424437299,
714
+ "grad_norm": 0.37816481014727843,
715
+ "learning_rate": 9.867424242424243e-06,
716
+ "loss": 1.8183,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.3279742765273312,
721
+ "grad_norm": 0.38027583942322074,
722
+ "learning_rate": 9.86530070195409e-06,
723
+ "loss": 1.6795,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.3311897106109325,
728
+ "grad_norm": 0.4653778897269012,
729
+ "learning_rate": 9.863169897377425e-06,
730
+ "loss": 1.6914,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.33440514469453375,
735
+ "grad_norm": 0.3581142302428615,
736
+ "learning_rate": 9.86103179135732e-06,
737
+ "loss": 1.7623,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.33762057877813506,
742
+ "grad_norm": 0.4345920198663122,
743
+ "learning_rate": 9.858886346300535e-06,
744
+ "loss": 1.6939,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.3408360128617363,
749
+ "grad_norm": 0.42325366386457053,
750
+ "learning_rate": 9.856733524355302e-06,
751
+ "loss": 1.7802,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.3440514469453376,
756
+ "grad_norm": 0.3886379815457078,
757
+ "learning_rate": 9.854573287409109e-06,
758
+ "loss": 1.6567,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.34726688102893893,
763
+ "grad_norm": 0.30485293356067333,
764
+ "learning_rate": 9.852405597086448e-06,
765
+ "loss": 1.636,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.3504823151125402,
770
+ "grad_norm": 0.3748853682253275,
771
+ "learning_rate": 9.850230414746545e-06,
772
+ "loss": 1.588,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.3536977491961415,
777
+ "grad_norm": 0.41688250438538,
778
+ "learning_rate": 9.848047701481055e-06,
779
+ "loss": 1.6259,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.35691318327974275,
784
+ "grad_norm": 0.5047715300641117,
785
+ "learning_rate": 9.845857418111755e-06,
786
+ "loss": 1.7629,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.36012861736334406,
791
+ "grad_norm": 1.3947369892065562,
792
+ "learning_rate": 9.84365952518819e-06,
793
+ "loss": 1.755,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.3633440514469453,
798
+ "grad_norm": 0.37395913731060204,
799
+ "learning_rate": 9.841453982985307e-06,
800
+ "loss": 1.7715,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.3665594855305466,
805
+ "grad_norm": 0.6498894393940923,
806
+ "learning_rate": 9.839240751501066e-06,
807
+ "loss": 1.76,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.36977491961414793,
812
+ "grad_norm": 0.32729381393912355,
813
+ "learning_rate": 9.837019790454017e-06,
814
+ "loss": 1.7168,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.3729903536977492,
819
+ "grad_norm": 0.2880709453917275,
820
+ "learning_rate": 9.834791059280858e-06,
821
+ "loss": 1.8346,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.3762057877813505,
826
+ "grad_norm": 0.3753012936624105,
827
+ "learning_rate": 9.832554517133957e-06,
828
+ "loss": 1.8204,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.37942122186495175,
833
+ "grad_norm": 0.6853756846541161,
834
+ "learning_rate": 9.830310122878877e-06,
835
+ "loss": 1.7079,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.38263665594855306,
840
+ "grad_norm": 0.37176959545385335,
841
+ "learning_rate": 9.828057835091833e-06,
842
+ "loss": 1.7688,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.3858520900321543,
847
+ "grad_norm": 0.5291903456941895,
848
+ "learning_rate": 9.825797612057155e-06,
849
+ "loss": 1.7607,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.3890675241157556,
854
+ "grad_norm": 0.6727781531506605,
855
+ "learning_rate": 9.823529411764706e-06,
856
+ "loss": 1.7175,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.39228295819935693,
861
+ "grad_norm": 0.5075163995225351,
862
+ "learning_rate": 9.821253191907288e-06,
863
+ "loss": 1.7723,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.3954983922829582,
868
+ "grad_norm": 0.4112992781424648,
869
+ "learning_rate": 9.818968909878002e-06,
870
+ "loss": 1.7529,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.3987138263665595,
875
+ "grad_norm": 0.4775602103181259,
876
+ "learning_rate": 9.816676522767595e-06,
877
+ "loss": 1.6441,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.40192926045016075,
882
+ "grad_norm": 0.7408080969119749,
883
+ "learning_rate": 9.81437598736177e-06,
884
+ "loss": 1.7677,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.40514469453376206,
889
+ "grad_norm": 0.39439516285136644,
890
+ "learning_rate": 9.812067260138477e-06,
891
+ "loss": 1.6723,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.40836012861736337,
896
+ "grad_norm": 0.35591432736328665,
897
+ "learning_rate": 9.809750297265161e-06,
898
+ "loss": 1.7665,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.4115755627009646,
903
+ "grad_norm": 0.7717654585178413,
904
+ "learning_rate": 9.80742505459599e-06,
905
+ "loss": 1.7471,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.41479099678456594,
910
+ "grad_norm": 0.38084935961821687,
911
+ "learning_rate": 9.805091487669056e-06,
912
+ "loss": 1.7191,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.4180064308681672,
917
+ "grad_norm": 0.38431094171283037,
918
+ "learning_rate": 9.802749551703527e-06,
919
+ "loss": 1.753,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.4212218649517685,
924
+ "grad_norm": 0.6945337606296567,
925
+ "learning_rate": 9.800399201596807e-06,
926
+ "loss": 1.8477,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.42443729903536975,
931
+ "grad_norm": 0.28845445836156125,
932
+ "learning_rate": 9.798040391921617e-06,
933
+ "loss": 1.6586,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.42765273311897106,
938
+ "grad_norm": 0.4385562306030188,
939
+ "learning_rate": 9.795673076923078e-06,
940
+ "loss": 1.7007,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.43086816720257237,
945
+ "grad_norm": 0.35319986130974196,
946
+ "learning_rate": 9.793297210515755e-06,
947
+ "loss": 1.7712,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.4340836012861736,
952
+ "grad_norm": 0.3341550532314632,
953
+ "learning_rate": 9.79091274628066e-06,
954
+ "loss": 1.6172,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.43729903536977494,
959
+ "grad_norm": 0.44462279316358466,
960
+ "learning_rate": 9.788519637462236e-06,
961
+ "loss": 1.807,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.4405144694533762,
966
+ "grad_norm": 0.3697826824798809,
967
+ "learning_rate": 9.786117836965296e-06,
968
+ "loss": 1.5715,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.4437299035369775,
973
+ "grad_norm": 0.5000401238827548,
974
+ "learning_rate": 9.783707297351933e-06,
975
+ "loss": 1.6492,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.44694533762057875,
980
+ "grad_norm": 0.32757243363816857,
981
+ "learning_rate": 9.781287970838397e-06,
982
+ "loss": 1.648,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.45016077170418006,
987
+ "grad_norm": 1.3370622416951148,
988
+ "learning_rate": 9.778859809291946e-06,
989
+ "loss": 1.6093,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.4533762057877814,
994
+ "grad_norm": 0.37062914068055847,
995
+ "learning_rate": 9.776422764227644e-06,
996
+ "loss": 1.7923,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.4565916398713826,
1001
+ "grad_norm": 0.47471068802805677,
1002
+ "learning_rate": 9.773976786805133e-06,
1003
+ "loss": 1.7107,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.45980707395498394,
1008
+ "grad_norm": 0.34897821399457957,
1009
+ "learning_rate": 9.771521827825378e-06,
1010
+ "loss": 1.7544,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.4630225080385852,
1015
+ "grad_norm": 0.5391221592013379,
1016
+ "learning_rate": 9.769057837727365e-06,
1017
+ "loss": 1.8124,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.4662379421221865,
1022
+ "grad_norm": 0.5422480089938636,
1023
+ "learning_rate": 9.766584766584768e-06,
1024
+ "loss": 1.6946,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.4694533762057878,
1029
+ "grad_norm": 0.3916809216288247,
1030
+ "learning_rate": 9.764102564102566e-06,
1031
+ "loss": 1.7273,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.47266881028938906,
1036
+ "grad_norm": 0.41161799735171617,
1037
+ "learning_rate": 9.761611179613646e-06,
1038
+ "loss": 1.6448,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.4758842443729904,
1043
+ "grad_norm": 0.36292020284907417,
1044
+ "learning_rate": 9.759110562075355e-06,
1045
+ "loss": 1.895,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.4790996784565916,
1050
+ "grad_norm": 0.301095836637533,
1051
+ "learning_rate": 9.756600660066009e-06,
1052
+ "loss": 1.6524,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.48231511254019294,
1057
+ "grad_norm": 0.39210820948008196,
1058
+ "learning_rate": 9.75408142178136e-06,
1059
+ "loss": 1.7231,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.4855305466237942,
1064
+ "grad_norm": 0.3866944738105665,
1065
+ "learning_rate": 9.751552795031057e-06,
1066
+ "loss": 1.6906,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.4887459807073955,
1071
+ "grad_norm": 0.49765003846519,
1072
+ "learning_rate": 9.749014727235013e-06,
1073
+ "loss": 1.5538,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.4919614147909968,
1078
+ "grad_norm": 0.6646611871216477,
1079
+ "learning_rate": 9.746467165419785e-06,
1080
+ "loss": 1.7296,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.49517684887459806,
1085
+ "grad_norm": 0.5269792497712498,
1086
+ "learning_rate": 9.743910056214867e-06,
1087
+ "loss": 1.7508,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.4983922829581994,
1092
+ "grad_norm": 0.6358378390742749,
1093
+ "learning_rate": 9.741343345848979e-06,
1094
+ "loss": 1.788,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.5016077170418006,
1099
+ "grad_norm": 0.8033471060172549,
1100
+ "learning_rate": 9.73876698014629e-06,
1101
+ "loss": 1.6622,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.5048231511254019,
1106
+ "grad_norm": 0.4300110838337297,
1107
+ "learning_rate": 9.736180904522614e-06,
1108
+ "loss": 1.6958,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.5080385852090032,
1113
+ "grad_norm": 0.44075312332289185,
1114
+ "learning_rate": 9.733585063981542e-06,
1115
+ "loss": 1.7791,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.5112540192926045,
1120
+ "grad_norm": 0.5552324541921604,
1121
+ "learning_rate": 9.730979403110552e-06,
1122
+ "loss": 1.7309,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.5144694533762058,
1127
+ "grad_norm": 0.5760086447839781,
1128
+ "learning_rate": 9.72836386607707e-06,
1129
+ "loss": 1.7043,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.5176848874598071,
1134
+ "grad_norm": 0.6120385835619392,
1135
+ "learning_rate": 9.725738396624473e-06,
1136
+ "loss": 1.7058,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.5209003215434084,
1141
+ "grad_norm": 0.3247721035171554,
1142
+ "learning_rate": 9.723102938068061e-06,
1143
+ "loss": 1.7192,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.5241157556270096,
1148
+ "grad_norm": 0.5504225309819054,
1149
+ "learning_rate": 9.72045743329098e-06,
1150
+ "loss": 1.6469,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.5273311897106109,
1155
+ "grad_norm": 0.6909293644017759,
1156
+ "learning_rate": 9.717801824740082e-06,
1157
+ "loss": 1.7844,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.5305466237942122,
1162
+ "grad_norm": 0.41329021494056956,
1163
+ "learning_rate": 9.715136054421768e-06,
1164
+ "loss": 1.7064,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.5337620578778135,
1169
+ "grad_norm": 0.4124736887649105,
1170
+ "learning_rate": 9.712460063897765e-06,
1171
+ "loss": 1.701,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.5369774919614148,
1176
+ "grad_norm": 0.44751507511817246,
1177
+ "learning_rate": 9.709773794280837e-06,
1178
+ "loss": 1.727,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.5401929260450161,
1183
+ "grad_norm": 0.4570947974943733,
1184
+ "learning_rate": 9.707077186230491e-06,
1185
+ "loss": 1.7531,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.5434083601286174,
1190
+ "grad_norm": 0.456791576642582,
1191
+ "learning_rate": 9.704370179948586e-06,
1192
+ "loss": 1.7289,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.5466237942122186,
1197
+ "grad_norm": 0.4897609545957888,
1198
+ "learning_rate": 9.701652715174931e-06,
1199
+ "loss": 1.7474,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.5498392282958199,
1204
+ "grad_norm": 0.3329368691084365,
1205
+ "learning_rate": 9.698924731182796e-06,
1206
+ "loss": 1.736,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.5530546623794212,
1211
+ "grad_norm": 0.3585759438897442,
1212
+ "learning_rate": 9.696186166774403e-06,
1213
+ "loss": 1.6931,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.5562700964630225,
1218
+ "grad_norm": 0.3628593026322015,
1219
+ "learning_rate": 9.69343696027634e-06,
1220
+ "loss": 1.6662,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.5594855305466238,
1225
+ "grad_norm": 0.455211826907985,
1226
+ "learning_rate": 9.690677049534935e-06,
1227
+ "loss": 1.736,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.5627009646302251,
1232
+ "grad_norm": 0.45923586331559213,
1233
+ "learning_rate": 9.687906371911575e-06,
1234
+ "loss": 1.7457,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.5659163987138264,
1239
+ "grad_norm": 0.521091953112185,
1240
+ "learning_rate": 9.68512486427796e-06,
1241
+ "loss": 1.6473,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.5691318327974276,
1246
+ "grad_norm": 0.37370844400034475,
1247
+ "learning_rate": 9.682332463011316e-06,
1248
+ "loss": 1.7925,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.572347266881029,
1253
+ "grad_norm": 0.33252276561485655,
1254
+ "learning_rate": 9.679529103989536e-06,
1255
+ "loss": 1.6674,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.5755627009646302,
1260
+ "grad_norm": 0.4194621576600804,
1261
+ "learning_rate": 9.676714722586282e-06,
1262
+ "loss": 1.6637,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.5787781350482315,
1267
+ "grad_norm": 0.36101868848046603,
1268
+ "learning_rate": 9.67388925366601e-06,
1269
+ "loss": 1.7907,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.5819935691318328,
1274
+ "grad_norm": 0.5995838884168876,
1275
+ "learning_rate": 9.671052631578948e-06,
1276
+ "loss": 1.6472,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.5852090032154341,
1281
+ "grad_norm": 0.31639066572509666,
1282
+ "learning_rate": 9.668204790156012e-06,
1283
+ "loss": 1.6797,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.5884244372990354,
1288
+ "grad_norm": 0.3286228611937227,
1289
+ "learning_rate": 9.665345662703655e-06,
1290
+ "loss": 1.729,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.5916398713826366,
1295
+ "grad_norm": 0.4145896260724765,
1296
+ "learning_rate": 9.662475181998677e-06,
1297
+ "loss": 1.6494,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.594855305466238,
1302
+ "grad_norm": 0.3841298222071092,
1303
+ "learning_rate": 9.659593280282937e-06,
1304
+ "loss": 1.8569,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.5980707395498392,
1309
+ "grad_norm": 0.3600521829909006,
1310
+ "learning_rate": 9.65669988925803e-06,
1311
+ "loss": 1.6805,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.6012861736334405,
1316
+ "grad_norm": 0.4282854580776211,
1317
+ "learning_rate": 9.653794940079893e-06,
1318
+ "loss": 1.8267,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.6045016077170418,
1323
+ "grad_norm": 0.6247529464498389,
1324
+ "learning_rate": 9.650878363353347e-06,
1325
+ "loss": 1.7073,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.6077170418006431,
1330
+ "grad_norm": 0.9115210250050622,
1331
+ "learning_rate": 9.647950089126561e-06,
1332
+ "loss": 1.7859,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.6109324758842444,
1337
+ "grad_norm": 0.4755718564603684,
1338
+ "learning_rate": 9.645010046885466e-06,
1339
+ "loss": 1.7883,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.6141479099678456,
1344
+ "grad_norm": 0.4523639938975236,
1345
+ "learning_rate": 9.642058165548099e-06,
1346
+ "loss": 1.6162,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.617363344051447,
1351
+ "grad_norm": 0.467081135964763,
1352
+ "learning_rate": 9.639094373458865e-06,
1353
+ "loss": 1.5402,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.6205787781350482,
1358
+ "grad_norm": 0.3670253791248765,
1359
+ "learning_rate": 9.63611859838275e-06,
1360
+ "loss": 1.7617,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.6237942122186495,
1365
+ "grad_norm": 1.1166686525871807,
1366
+ "learning_rate": 9.633130767499438e-06,
1367
+ "loss": 1.5991,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.6270096463022508,
1372
+ "grad_norm": 0.34857847452000734,
1373
+ "learning_rate": 9.630130807397385e-06,
1374
+ "loss": 1.7124,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.6302250803858521,
1379
+ "grad_norm": 0.3433159356058392,
1380
+ "learning_rate": 9.627118644067797e-06,
1381
+ "loss": 1.6253,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.6334405144694534,
1386
+ "grad_norm": 0.3810201491490459,
1387
+ "learning_rate": 9.624094202898552e-06,
1388
+ "loss": 1.7483,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.6366559485530546,
1393
+ "grad_norm": 0.3968780260221282,
1394
+ "learning_rate": 9.62105740866803e-06,
1395
+ "loss": 1.6065,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.639871382636656,
1400
+ "grad_norm": 0.5280487842852907,
1401
+ "learning_rate": 9.618008185538883e-06,
1402
+ "loss": 1.7588,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.6430868167202572,
1407
+ "grad_norm": 0.33732179856044275,
1408
+ "learning_rate": 9.61494645705172e-06,
1409
+ "loss": 1.6858,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.6463022508038585,
1414
+ "grad_norm": 0.4502107673996015,
1415
+ "learning_rate": 9.611872146118723e-06,
1416
+ "loss": 1.6584,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.6495176848874598,
1421
+ "grad_norm": 0.34373667243464945,
1422
+ "learning_rate": 9.608785175017159e-06,
1423
+ "loss": 1.7167,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.6527331189710611,
1428
+ "grad_norm": 0.46241506664930326,
1429
+ "learning_rate": 9.605685465382853e-06,
1430
+ "loss": 1.5874,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.6559485530546624,
1435
+ "grad_norm": 0.4457300415234676,
1436
+ "learning_rate": 9.602572938203539e-06,
1437
+ "loss": 1.5274,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.6591639871382636,
1442
+ "grad_norm": 0.3277148970485814,
1443
+ "learning_rate": 9.599447513812156e-06,
1444
+ "loss": 1.6461,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.662379421221865,
1449
+ "grad_norm": 0.4340323200722544,
1450
+ "learning_rate": 9.596309111880047e-06,
1451
+ "loss": 1.6812,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.6655948553054662,
1456
+ "grad_norm": 0.7144218287537519,
1457
+ "learning_rate": 9.59315765141008e-06,
1458
+ "loss": 1.7375,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.6688102893890675,
1463
+ "grad_norm": 0.6873856761013734,
1464
+ "learning_rate": 9.589993050729674e-06,
1465
+ "loss": 1.5441,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.6720257234726688,
1470
+ "grad_norm": 0.34753669260660897,
1471
+ "learning_rate": 9.586815227483751e-06,
1472
+ "loss": 1.7679,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.6752411575562701,
1477
+ "grad_norm": 0.46276953757117595,
1478
+ "learning_rate": 9.583624098627588e-06,
1479
+ "loss": 1.7122,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.6784565916398714,
1484
+ "grad_norm": 0.5296020589067518,
1485
+ "learning_rate": 9.58041958041958e-06,
1486
+ "loss": 1.7018,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.6816720257234726,
1491
+ "grad_norm": 0.4589413825352081,
1492
+ "learning_rate": 9.577201588413924e-06,
1493
+ "loss": 1.5787,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.684887459807074,
1498
+ "grad_norm": 0.6458129947828045,
1499
+ "learning_rate": 9.573970037453184e-06,
1500
+ "loss": 1.7081,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.6881028938906752,
1505
+ "grad_norm": 0.3837501853542465,
1506
+ "learning_rate": 9.570724841660802e-06,
1507
+ "loss": 1.7253,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.6913183279742765,
1512
+ "grad_norm": 2.684251622776636,
1513
+ "learning_rate": 9.567465914433475e-06,
1514
+ "loss": 1.6053,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.6945337620578779,
1519
+ "grad_norm": 0.3424217529372007,
1520
+ "learning_rate": 9.564193168433452e-06,
1521
+ "loss": 1.6773,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.6977491961414791,
1526
+ "grad_norm": 0.4204093374494449,
1527
+ "learning_rate": 9.560906515580737e-06,
1528
+ "loss": 1.6485,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.7009646302250804,
1533
+ "grad_norm": 0.9274816452954984,
1534
+ "learning_rate": 9.557605867045187e-06,
1535
+ "loss": 1.7436,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.7041800643086816,
1540
+ "grad_norm": 0.48902637197532123,
1541
+ "learning_rate": 9.554291133238503e-06,
1542
+ "loss": 1.7407,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.707395498392283,
1547
+ "grad_norm": 0.42302486731986544,
1548
+ "learning_rate": 9.55096222380613e-06,
1549
+ "loss": 1.7201,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.7106109324758842,
1554
+ "grad_norm": 0.6816522904850881,
1555
+ "learning_rate": 9.547619047619049e-06,
1556
+ "loss": 1.7592,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.7138263665594855,
1561
+ "grad_norm": 0.8034229829352186,
1562
+ "learning_rate": 9.54426151276545e-06,
1563
+ "loss": 1.6816,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.7170418006430869,
1568
+ "grad_norm": 0.5603448935112179,
1569
+ "learning_rate": 9.540889526542325e-06,
1570
+ "loss": 1.6417,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.7202572347266881,
1575
+ "grad_norm": 0.4187234758855297,
1576
+ "learning_rate": 9.537502995446921e-06,
1577
+ "loss": 1.7746,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.7234726688102894,
1582
+ "grad_norm": 0.36227230998153437,
1583
+ "learning_rate": 9.53410182516811e-06,
1584
+ "loss": 1.6367,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.7266881028938906,
1589
+ "grad_norm": 0.5106622344593317,
1590
+ "learning_rate": 9.530685920577617e-06,
1591
+ "loss": 1.7035,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.729903536977492,
1596
+ "grad_norm": 0.4027558733746282,
1597
+ "learning_rate": 9.527255185721179e-06,
1598
+ "loss": 1.6249,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.7331189710610932,
1603
+ "grad_norm": 0.5110606055911895,
1604
+ "learning_rate": 9.523809523809525e-06,
1605
+ "loss": 1.5942,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.7363344051446945,
1610
+ "grad_norm": 0.6758839413871981,
1611
+ "learning_rate": 9.520348837209304e-06,
1612
+ "loss": 1.7247,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.7395498392282959,
1617
+ "grad_norm": 1.1906021750644638,
1618
+ "learning_rate": 9.516873027433845e-06,
1619
+ "loss": 1.6526,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.7427652733118971,
1624
+ "grad_norm": 0.38273734006160703,
1625
+ "learning_rate": 9.51338199513382e-06,
1626
+ "loss": 1.6519,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.7459807073954984,
1631
+ "grad_norm": 0.40341824248617164,
1632
+ "learning_rate": 9.509875640087784e-06,
1633
+ "loss": 1.6969,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.7491961414790996,
1638
+ "grad_norm": 0.815911593005578,
1639
+ "learning_rate": 9.506353861192572e-06,
1640
+ "loss": 1.7442,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.752411575562701,
1645
+ "grad_norm": 2.2094840582917437,
1646
+ "learning_rate": 9.502816556453589e-06,
1647
+ "loss": 1.7439,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.7556270096463023,
1652
+ "grad_norm": 0.7519003593570723,
1653
+ "learning_rate": 9.499263622974963e-06,
1654
+ "loss": 1.7495,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.7588424437299035,
1659
+ "grad_norm": 0.37514672367476304,
1660
+ "learning_rate": 9.49569495694957e-06,
1661
+ "loss": 1.5284,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.7620578778135049,
1666
+ "grad_norm": 0.6226506367026134,
1667
+ "learning_rate": 9.492110453648916e-06,
1668
+ "loss": 1.6313,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.7652733118971061,
1673
+ "grad_norm": 0.447336191003546,
1674
+ "learning_rate": 9.4885100074129e-06,
1675
+ "loss": 1.6154,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.7684887459807074,
1680
+ "grad_norm": 0.36714620010490284,
1681
+ "learning_rate": 9.484893511639425e-06,
1682
+ "loss": 1.6554,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.7717041800643086,
1687
+ "grad_norm": 0.36304191332375657,
1688
+ "learning_rate": 9.48126085877389e-06,
1689
+ "loss": 1.5677,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.77491961414791,
1694
+ "grad_norm": 0.3145137130101893,
1695
+ "learning_rate": 9.477611940298507e-06,
1696
+ "loss": 1.7632,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.7781350482315113,
1701
+ "grad_norm": 0.4324951978035683,
1702
+ "learning_rate": 9.473946646721517e-06,
1703
+ "loss": 1.8002,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.7813504823151125,
1708
+ "grad_norm": 0.4831266498517749,
1709
+ "learning_rate": 9.470264867566218e-06,
1710
+ "loss": 1.7129,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.7845659163987139,
1715
+ "grad_norm": 0.6026850921759767,
1716
+ "learning_rate": 9.46656649135988e-06,
1717
+ "loss": 1.7952,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.7877813504823151,
1722
+ "grad_norm": 0.34281770743037326,
1723
+ "learning_rate": 9.46285140562249e-06,
1724
+ "loss": 1.7296,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.7909967845659164,
1729
+ "grad_norm": 0.4317358788821195,
1730
+ "learning_rate": 9.459119496855347e-06,
1731
+ "loss": 1.6606,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.7942122186495176,
1736
+ "grad_norm": 0.5439289773575391,
1737
+ "learning_rate": 9.455370650529502e-06,
1738
+ "loss": 1.7122,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.797427652733119,
1743
+ "grad_norm": 0.6700615541858532,
1744
+ "learning_rate": 9.451604751074045e-06,
1745
+ "loss": 1.6289,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.8006430868167203,
1750
+ "grad_norm": 0.31265590919433695,
1751
+ "learning_rate": 9.447821681864235e-06,
1752
+ "loss": 1.6228,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.8038585209003215,
1757
+ "grad_norm": 0.5328314957245512,
1758
+ "learning_rate": 9.444021325209444e-06,
1759
+ "loss": 1.8026,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.8070739549839229,
1764
+ "grad_norm": 0.43702581760266385,
1765
+ "learning_rate": 9.440203562340969e-06,
1766
+ "loss": 1.6136,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.8102893890675241,
1771
+ "grad_norm": 1.0070017597669874,
1772
+ "learning_rate": 9.436368273399642e-06,
1773
+ "loss": 1.6565,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.8135048231511254,
1778
+ "grad_norm": 0.5960613625871756,
1779
+ "learning_rate": 9.432515337423314e-06,
1780
+ "loss": 1.6371,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.8167202572347267,
1785
+ "grad_norm": 0.7616016258050006,
1786
+ "learning_rate": 9.428644632334104e-06,
1787
+ "loss": 1.6788,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.819935691318328,
1792
+ "grad_norm": 0.4218802074142177,
1793
+ "learning_rate": 9.424756034925528e-06,
1794
+ "loss": 1.81,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.8231511254019293,
1799
+ "grad_norm": 0.414457316699709,
1800
+ "learning_rate": 9.420849420849423e-06,
1801
+ "loss": 1.5819,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.8263665594855305,
1806
+ "grad_norm": 0.6347364275878894,
1807
+ "learning_rate": 9.416924664602683e-06,
1808
+ "loss": 1.7309,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.8295819935691319,
1813
+ "grad_norm": 0.4134627156259147,
1814
+ "learning_rate": 9.412981639513837e-06,
1815
+ "loss": 1.7553,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.8327974276527331,
1820
+ "grad_norm": 0.45271039800234564,
1821
+ "learning_rate": 9.409020217729394e-06,
1822
+ "loss": 1.606,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.8360128617363344,
1827
+ "grad_norm": 0.5653328484002546,
1828
+ "learning_rate": 9.405040270200053e-06,
1829
+ "loss": 1.6987,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.8392282958199357,
1834
+ "grad_norm": 0.4474839885592963,
1835
+ "learning_rate": 9.401041666666667e-06,
1836
+ "loss": 1.6809,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.842443729903537,
1841
+ "grad_norm": 0.46052107266954306,
1842
+ "learning_rate": 9.397024275646046e-06,
1843
+ "loss": 1.7181,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.8456591639871383,
1848
+ "grad_norm": 0.34499847597431416,
1849
+ "learning_rate": 9.392987964416537e-06,
1850
+ "loss": 1.7356,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.8488745980707395,
1855
+ "grad_norm": 0.5932683349504281,
1856
+ "learning_rate": 9.388932599003411e-06,
1857
+ "loss": 1.6987,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.8520900321543409,
1862
+ "grad_norm": 0.3989077412640957,
1863
+ "learning_rate": 9.38485804416404e-06,
1864
+ "loss": 1.6705,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.8553054662379421,
1869
+ "grad_norm": 0.4019284799432194,
1870
+ "learning_rate": 9.38076416337286e-06,
1871
+ "loss": 1.6986,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.8585209003215434,
1876
+ "grad_norm": 0.4142993445208996,
1877
+ "learning_rate": 9.37665081880613e-06,
1878
+ "loss": 1.6694,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.8617363344051447,
1883
+ "grad_norm": 0.6988031516188687,
1884
+ "learning_rate": 9.37251787132645e-06,
1885
+ "loss": 1.6771,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.864951768488746,
1890
+ "grad_norm": 0.40592122849069995,
1891
+ "learning_rate": 9.368365180467092e-06,
1892
+ "loss": 1.6458,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.8681672025723473,
1897
+ "grad_norm": 0.4902266091891843,
1898
+ "learning_rate": 9.364192604416068e-06,
1899
+ "loss": 1.716,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.8713826366559485,
1904
+ "grad_norm": 0.6296846798064156,
1905
+ "learning_rate": 9.36e-06,
1906
+ "loss": 1.6063,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.8745980707395499,
1911
+ "grad_norm": 0.5174782113353117,
1912
+ "learning_rate": 9.355787222667737e-06,
1913
+ "loss": 1.7948,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.8778135048231511,
1918
+ "grad_norm": 0.3730293067600126,
1919
+ "learning_rate": 9.351554126473742e-06,
1920
+ "loss": 1.7841,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.8810289389067524,
1925
+ "grad_norm": 0.647732251841464,
1926
+ "learning_rate": 9.347300564061242e-06,
1927
+ "loss": 1.5601,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.8842443729903537,
1932
+ "grad_norm": 0.7875287738906409,
1933
+ "learning_rate": 9.343026386645127e-06,
1934
+ "loss": 1.56,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.887459807073955,
1939
+ "grad_norm": 0.3720534077091662,
1940
+ "learning_rate": 9.338731443994604e-06,
1941
+ "loss": 1.5762,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.8906752411575563,
1946
+ "grad_norm": 0.801553893175062,
1947
+ "learning_rate": 9.334415584415585e-06,
1948
+ "loss": 1.5802,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.8938906752411575,
1953
+ "grad_norm": 0.49810159757057776,
1954
+ "learning_rate": 9.330078654732847e-06,
1955
+ "loss": 1.691,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.8971061093247589,
1960
+ "grad_norm": 0.33154338296209374,
1961
+ "learning_rate": 9.325720500271888e-06,
1962
+ "loss": 1.5735,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.9003215434083601,
1967
+ "grad_norm": 0.3793613901994727,
1968
+ "learning_rate": 9.321340964840556e-06,
1969
+ "loss": 1.7236,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.9035369774919614,
1974
+ "grad_norm": 0.4801354458812132,
1975
+ "learning_rate": 9.316939890710383e-06,
1976
+ "loss": 1.5809,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.9067524115755627,
1981
+ "grad_norm": 0.44437107250799746,
1982
+ "learning_rate": 9.312517118597646e-06,
1983
+ "loss": 1.7521,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.909967845659164,
1988
+ "grad_norm": 0.45242065176072754,
1989
+ "learning_rate": 9.308072487644152e-06,
1990
+ "loss": 1.6321,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.9131832797427653,
1995
+ "grad_norm": 0.4109067424412524,
1996
+ "learning_rate": 9.303605835397742e-06,
1997
+ "loss": 1.6303,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.9163987138263665,
2002
+ "grad_norm": 0.41773466853125474,
2003
+ "learning_rate": 9.299116997792495e-06,
2004
+ "loss": 1.7004,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.9196141479099679,
2009
+ "grad_norm": 0.39787310083891125,
2010
+ "learning_rate": 9.294605809128632e-06,
2011
+ "loss": 1.6362,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.9228295819935691,
2016
+ "grad_norm": 0.9588254824242197,
2017
+ "learning_rate": 9.290072102052135e-06,
2018
+ "loss": 1.586,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.9260450160771704,
2023
+ "grad_norm": 0.565145734756142,
2024
+ "learning_rate": 9.285515707534057e-06,
2025
+ "loss": 1.7777,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.9292604501607717,
2030
+ "grad_norm": 0.4506680876469492,
2031
+ "learning_rate": 9.2809364548495e-06,
2032
+ "loss": 1.6013,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.932475884244373,
2037
+ "grad_norm": 0.4501165211988009,
2038
+ "learning_rate": 9.2763341715563e-06,
2039
+ "loss": 1.6312,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.9356913183279743,
2044
+ "grad_norm": 0.3543433812557552,
2045
+ "learning_rate": 9.27170868347339e-06,
2046
+ "loss": 1.6267,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.9389067524115756,
2051
+ "grad_norm": 0.377909128143483,
2052
+ "learning_rate": 9.267059814658803e-06,
2053
+ "loss": 1.688,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.9421221864951769,
2058
+ "grad_norm": 0.392041296511637,
2059
+ "learning_rate": 9.262387387387389e-06,
2060
+ "loss": 1.6751,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.9453376205787781,
2065
+ "grad_norm": 0.4629012501293565,
2066
+ "learning_rate": 9.257691222128141e-06,
2067
+ "loss": 1.7538,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.9485530546623794,
2072
+ "grad_norm": 0.3520264198695876,
2073
+ "learning_rate": 9.252971137521222e-06,
2074
+ "loss": 1.5865,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.9517684887459807,
2079
+ "grad_norm": 0.8994489642586122,
2080
+ "learning_rate": 9.248226950354609e-06,
2081
+ "loss": 1.598,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.954983922829582,
2086
+ "grad_norm": 0.5378656826194321,
2087
+ "learning_rate": 9.243458475540387e-06,
2088
+ "loss": 1.663,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.9581993569131833,
2093
+ "grad_norm": 0.6360011252456891,
2094
+ "learning_rate": 9.238665526090677e-06,
2095
+ "loss": 1.6476,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.9614147909967846,
2100
+ "grad_norm": 0.4475516604413354,
2101
+ "learning_rate": 9.233847913093197e-06,
2102
+ "loss": 1.7376,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.9646302250803859,
2107
+ "grad_norm": 0.36689815703760215,
2108
+ "learning_rate": 9.229005445686443e-06,
2109
+ "loss": 1.7903,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.9678456591639871,
2114
+ "grad_norm": 0.6497688600569227,
2115
+ "learning_rate": 9.224137931034482e-06,
2116
+ "loss": 1.7326,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.9710610932475884,
2121
+ "grad_norm": 0.5278755924846331,
2122
+ "learning_rate": 9.219245174301355e-06,
2123
+ "loss": 1.5999,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.9742765273311897,
2128
+ "grad_norm": 0.7408394306218721,
2129
+ "learning_rate": 9.214326978625072e-06,
2130
+ "loss": 1.716,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.977491961414791,
2135
+ "grad_norm": 0.49833419873915763,
2136
+ "learning_rate": 9.209383145091225e-06,
2137
+ "loss": 1.645,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.9807073954983923,
2142
+ "grad_norm": 0.48566788490986423,
2143
+ "learning_rate": 9.204413472706157e-06,
2144
+ "loss": 1.7228,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.9839228295819936,
2149
+ "grad_norm": 0.33255489425334983,
2150
+ "learning_rate": 9.199417758369725e-06,
2151
+ "loss": 1.6768,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.9871382636655949,
2156
+ "grad_norm": 0.37814223485208215,
2157
+ "learning_rate": 9.194395796847637e-06,
2158
+ "loss": 1.7724,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.9903536977491961,
2163
+ "grad_norm": 0.477011074691142,
2164
+ "learning_rate": 9.189347380743341e-06,
2165
+ "loss": 1.4795,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.9935691318327974,
2170
+ "grad_norm": 0.4895940006411262,
2171
+ "learning_rate": 9.184272300469483e-06,
2172
+ "loss": 1.6117,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.9967845659163987,
2177
+ "grad_norm": 1.4139407357066591,
2178
+ "learning_rate": 9.179170344218889e-06,
2179
+ "loss": 1.6346,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 1.0,
2184
+ "grad_norm": 0.6013595587806265,
2185
+ "learning_rate": 9.174041297935104e-06,
2186
+ "loss": 1.7778,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 1.0032154340836013,
2191
+ "grad_norm": 0.3247241569415427,
2192
+ "learning_rate": 9.168884945282463e-06,
2193
+ "loss": 1.6117,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 1.0064308681672025,
2198
+ "grad_norm": 0.4134569918286294,
2199
+ "learning_rate": 9.163701067615658e-06,
2200
+ "loss": 1.6031,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 1.0096463022508038,
2205
+ "grad_norm": 0.35906074261193893,
2206
+ "learning_rate": 9.158489443948855e-06,
2207
+ "loss": 1.6898,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 1.0128617363344052,
2212
+ "grad_norm": 0.3200371761779238,
2213
+ "learning_rate": 9.15324985092427e-06,
2214
+ "loss": 1.5302,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 1.0160771704180065,
2219
+ "grad_norm": 2.687902950840855,
2220
+ "learning_rate": 9.147982062780271e-06,
2221
+ "loss": 1.6216,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 1.0192926045016077,
2226
+ "grad_norm": 0.3884366277890246,
2227
+ "learning_rate": 9.142685851318945e-06,
2228
+ "loss": 1.5919,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 1.022508038585209,
2233
+ "grad_norm": 0.5992984151297521,
2234
+ "learning_rate": 9.137360985873159e-06,
2235
+ "loss": 1.7046,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 1.0257234726688103,
2240
+ "grad_norm": 0.9231033246198187,
2241
+ "learning_rate": 9.132007233273057e-06,
2242
+ "loss": 1.5955,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 1.0289389067524115,
2247
+ "grad_norm": 0.6011589166427741,
2248
+ "learning_rate": 9.126624357812029e-06,
2249
+ "loss": 1.6585,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 1.0321543408360128,
2254
+ "grad_norm": 0.4449266184028303,
2255
+ "learning_rate": 9.121212121212124e-06,
2256
+ "loss": 1.6662,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 1.0353697749196142,
2261
+ "grad_norm": 0.3792587689355056,
2262
+ "learning_rate": 9.115770282588878e-06,
2263
+ "loss": 1.725,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 1.0385852090032155,
2268
+ "grad_norm": 0.6352367505908573,
2269
+ "learning_rate": 9.110298598415602e-06,
2270
+ "loss": 1.719,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 1.0418006430868167,
2275
+ "grad_norm": 0.4941310259709336,
2276
+ "learning_rate": 9.104796822487015e-06,
2277
+ "loss": 1.7285,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 1.045016077170418,
2282
+ "grad_norm": 0.3988174469434485,
2283
+ "learning_rate": 9.099264705882353e-06,
2284
+ "loss": 1.6026,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 1.0482315112540193,
2289
+ "grad_norm": 0.37465191631335226,
2290
+ "learning_rate": 9.093701996927803e-06,
2291
+ "loss": 1.7684,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 1.0514469453376205,
2296
+ "grad_norm": 0.35360546929948017,
2297
+ "learning_rate": 9.08810844115835e-06,
2298
+ "loss": 1.861,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 1.0546623794212218,
2303
+ "grad_norm": 0.3687758841597626,
2304
+ "learning_rate": 9.082483781278962e-06,
2305
+ "loss": 1.6025,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 1.0578778135048232,
2310
+ "grad_norm": 0.4030524533633393,
2311
+ "learning_rate": 9.076827757125155e-06,
2312
+ "loss": 1.6729,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 1.0610932475884245,
2317
+ "grad_norm": 0.40031179933253463,
2318
+ "learning_rate": 9.071140105622864e-06,
2319
+ "loss": 1.7872,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 1.0643086816720257,
2324
+ "grad_norm": 0.3869462069975008,
2325
+ "learning_rate": 9.065420560747664e-06,
2326
+ "loss": 1.5474,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 1.067524115755627,
2331
+ "grad_norm": 0.37677780233171493,
2332
+ "learning_rate": 9.059668853483288e-06,
2333
+ "loss": 1.6805,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 1.0707395498392283,
2338
+ "grad_norm": 0.6628520504842822,
2339
+ "learning_rate": 9.053884711779449e-06,
2340
+ "loss": 1.7545,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 1.0739549839228295,
2345
+ "grad_norm": 0.33892446270593685,
2346
+ "learning_rate": 9.048067860508956e-06,
2347
+ "loss": 1.4833,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 1.077170418006431,
2352
+ "grad_norm": 0.38980433283323407,
2353
+ "learning_rate": 9.042218021424073e-06,
2354
+ "loss": 1.7001,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 1.0803858520900322,
2359
+ "grad_norm": 0.3460248454198814,
2360
+ "learning_rate": 9.036334913112166e-06,
2361
+ "loss": 1.7802,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 1.0836012861736335,
2366
+ "grad_norm": 0.8595770845976156,
2367
+ "learning_rate": 9.030418250950572e-06,
2368
+ "loss": 1.59,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 1.0868167202572347,
2373
+ "grad_norm": 0.3993362492113389,
2374
+ "learning_rate": 9.024467747060694e-06,
2375
+ "loss": 1.5678,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 1.090032154340836,
2380
+ "grad_norm": 0.4055047973666988,
2381
+ "learning_rate": 9.018483110261313e-06,
2382
+ "loss": 1.6281,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 1.0932475884244373,
2387
+ "grad_norm": 0.3431967651327368,
2388
+ "learning_rate": 9.012464046021093e-06,
2389
+ "loss": 1.7847,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 1.0964630225080385,
2394
+ "grad_norm": 0.6667661624149999,
2395
+ "learning_rate": 9.006410256410258e-06,
2396
+ "loss": 1.616,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 1.09967845659164,
2401
+ "grad_norm": 0.44360815958355554,
2402
+ "learning_rate": 9.000321440051431e-06,
2403
+ "loss": 1.6944,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 1.1028938906752412,
2408
+ "grad_norm": 0.5789231882394865,
2409
+ "learning_rate": 8.994197292069633e-06,
2410
+ "loss": 1.6589,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 1.1061093247588425,
2415
+ "grad_norm": 0.3696163005381853,
2416
+ "learning_rate": 8.988037504041384e-06,
2417
+ "loss": 1.6103,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 1.1093247588424437,
2422
+ "grad_norm": 0.48191850907372585,
2423
+ "learning_rate": 8.981841763942932e-06,
2424
+ "loss": 1.65,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 1.112540192926045,
2429
+ "grad_norm": 0.4363830053964839,
2430
+ "learning_rate": 8.97560975609756e-06,
2431
+ "loss": 1.6127,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 1.1157556270096463,
2436
+ "grad_norm": 0.6573325426179556,
2437
+ "learning_rate": 8.969341161121983e-06,
2438
+ "loss": 1.6575,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 1.1189710610932475,
2443
+ "grad_norm": 0.32836452628847956,
2444
+ "learning_rate": 8.96303565587177e-06,
2445
+ "loss": 1.6591,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 1.122186495176849,
2450
+ "grad_norm": 0.3950745313773845,
2451
+ "learning_rate": 8.956692913385829e-06,
2452
+ "loss": 1.7586,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 1.1254019292604502,
2457
+ "grad_norm": 0.44881182769164957,
2458
+ "learning_rate": 8.95031260282988e-06,
2459
+ "loss": 1.6586,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 1.1286173633440515,
2464
+ "grad_norm": 0.41574637746746984,
2465
+ "learning_rate": 8.943894389438945e-06,
2466
+ "loss": 1.5619,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 1.1318327974276527,
2471
+ "grad_norm": 0.5027726156090061,
2472
+ "learning_rate": 8.937437934458789e-06,
2473
+ "loss": 1.6758,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 1.135048231511254,
2478
+ "grad_norm": 0.47656134851226883,
2479
+ "learning_rate": 8.930942895086322e-06,
2480
+ "loss": 1.7921,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 1.1382636655948553,
2485
+ "grad_norm": 0.4935315407019529,
2486
+ "learning_rate": 8.924408924408925e-06,
2487
+ "loss": 1.7119,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 1.1414790996784565,
2492
+ "grad_norm": 0.40970084732835305,
2493
+ "learning_rate": 8.917835671342687e-06,
2494
+ "loss": 1.7594,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 1.144694533762058,
2499
+ "grad_norm": 0.4989653507775804,
2500
+ "learning_rate": 8.911222780569515e-06,
2501
+ "loss": 1.7095,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 1.1479099678456592,
2506
+ "grad_norm": 0.3357044002665187,
2507
+ "learning_rate": 8.904569892473119e-06,
2508
+ "loss": 1.5999,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 1.1511254019292605,
2513
+ "grad_norm": 0.521670365854549,
2514
+ "learning_rate": 8.897876643073813e-06,
2515
+ "loss": 1.6787,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 1.1543408360128617,
2520
+ "grad_norm": 0.6290404037058941,
2521
+ "learning_rate": 8.891142663962136e-06,
2522
+ "loss": 1.6908,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 1.157556270096463,
2527
+ "grad_norm": 0.57998281113531,
2528
+ "learning_rate": 8.884367582231265e-06,
2529
+ "loss": 1.7031,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 1.1607717041800643,
2534
+ "grad_norm": 0.45392621186353943,
2535
+ "learning_rate": 8.877551020408163e-06,
2536
+ "loss": 1.6294,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 1.1639871382636655,
2541
+ "grad_norm": 0.5309768238185915,
2542
+ "learning_rate": 8.870692596383487e-06,
2543
+ "loss": 1.7666,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 1.167202572347267,
2548
+ "grad_norm": 0.37321760200459936,
2549
+ "learning_rate": 8.863791923340179e-06,
2550
+ "loss": 1.6406,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 1.1704180064308682,
2555
+ "grad_norm": 0.36510942582873324,
2556
+ "learning_rate": 8.856848609680742e-06,
2557
+ "loss": 1.6532,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 1.1736334405144695,
2562
+ "grad_norm": 0.4563118581507281,
2563
+ "learning_rate": 8.849862258953169e-06,
2564
+ "loss": 1.5005,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 1.1768488745980707,
2569
+ "grad_norm": 0.4652354499783872,
2570
+ "learning_rate": 8.842832469775476e-06,
2571
+ "loss": 1.6991,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 1.180064308681672,
2576
+ "grad_norm": 0.4576168976717978,
2577
+ "learning_rate": 8.835758835758838e-06,
2578
+ "loss": 1.4367,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 1.1832797427652733,
2583
+ "grad_norm": 0.4513490696938803,
2584
+ "learning_rate": 8.828640945429268e-06,
2585
+ "loss": 1.7007,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 1.1864951768488745,
2590
+ "grad_norm": 0.4875941359520122,
2591
+ "learning_rate": 8.82147838214784e-06,
2592
+ "loss": 1.704,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 1.189710610932476,
2597
+ "grad_norm": 0.5119607567186321,
2598
+ "learning_rate": 8.814270724029382e-06,
2599
+ "loss": 1.8265,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 1.1929260450160772,
2604
+ "grad_norm": 0.4266982458686031,
2605
+ "learning_rate": 8.807017543859649e-06,
2606
+ "loss": 1.6714,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 1.1961414790996785,
2611
+ "grad_norm": 1.014493936774352,
2612
+ "learning_rate": 8.799718409010911e-06,
2613
+ "loss": 1.5943,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 1.1993569131832797,
2618
+ "grad_norm": 0.5718393100363165,
2619
+ "learning_rate": 8.792372881355933e-06,
2620
+ "loss": 1.7018,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 1.202572347266881,
2625
+ "grad_norm": 0.5138041344477277,
2626
+ "learning_rate": 8.784980517180305e-06,
2627
+ "loss": 1.6492,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 1.2057877813504823,
2632
+ "grad_norm": 0.3717081444541438,
2633
+ "learning_rate": 8.777540867093106e-06,
2634
+ "loss": 1.6968,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 1.2090032154340835,
2639
+ "grad_norm": 0.8842083310577157,
2640
+ "learning_rate": 8.77005347593583e-06,
2641
+ "loss": 1.5702,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 1.212218649517685,
2646
+ "grad_norm": 0.6554473379838456,
2647
+ "learning_rate": 8.762517882689556e-06,
2648
+ "loss": 1.5817,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 1.2154340836012862,
2653
+ "grad_norm": 0.5187574325471235,
2654
+ "learning_rate": 8.754933620380337e-06,
2655
+ "loss": 1.5754,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 1.2186495176848875,
2660
+ "grad_norm": 0.9386480775254568,
2661
+ "learning_rate": 8.74730021598272e-06,
2662
+ "loss": 1.6499,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 1.2218649517684887,
2667
+ "grad_norm": 0.42547480233916785,
2668
+ "learning_rate": 8.739617190321417e-06,
2669
+ "loss": 1.6008,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 1.22508038585209,
2674
+ "grad_norm": 0.7977120556800337,
2675
+ "learning_rate": 8.731884057971014e-06,
2676
+ "loss": 1.7798,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 1.2282958199356913,
2681
+ "grad_norm": 0.3566707305409597,
2682
+ "learning_rate": 8.724100327153764e-06,
2683
+ "loss": 1.6463,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 1.2315112540192925,
2688
+ "grad_norm": 0.6391377987077815,
2689
+ "learning_rate": 8.716265499635304e-06,
2690
+ "loss": 1.5919,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 1.234726688102894,
2695
+ "grad_norm": 0.3889680511222192,
2696
+ "learning_rate": 8.708379070618369e-06,
2697
+ "loss": 1.7207,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 1.2379421221864952,
2702
+ "grad_norm": 0.4540928202776,
2703
+ "learning_rate": 8.700440528634362e-06,
2704
+ "loss": 1.7255,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 1.2411575562700965,
2709
+ "grad_norm": 0.40457708530753206,
2710
+ "learning_rate": 8.692449355432781e-06,
2711
+ "loss": 1.5159,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 1.2443729903536977,
2716
+ "grad_norm": 0.5512339669704394,
2717
+ "learning_rate": 8.68440502586844e-06,
2718
+ "loss": 1.6499,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 1.247588424437299,
2723
+ "grad_norm": 2.776005983432967,
2724
+ "learning_rate": 8.676307007786431e-06,
2725
+ "loss": 1.6102,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 1.2508038585209003,
2730
+ "grad_norm": 0.364952370477986,
2731
+ "learning_rate": 8.668154761904762e-06,
2732
+ "loss": 1.639,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 1.2540192926045015,
2737
+ "grad_norm": 0.3811434890957348,
2738
+ "learning_rate": 8.659947741694661e-06,
2739
+ "loss": 1.8283,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 1.257234726688103,
2744
+ "grad_norm": 0.43050657428200295,
2745
+ "learning_rate": 8.651685393258428e-06,
2746
+ "loss": 1.5902,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 1.2604501607717042,
2751
+ "grad_norm": 0.5117898550286608,
2752
+ "learning_rate": 8.64336715520481e-06,
2753
+ "loss": 1.7092,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 1.2636655948553055,
2758
+ "grad_norm": 0.6470526145584239,
2759
+ "learning_rate": 8.63499245852187e-06,
2760
+ "loss": 1.7055,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 1.2668810289389068,
2765
+ "grad_norm": 0.40636513274929337,
2766
+ "learning_rate": 8.626560726447218e-06,
2767
+ "loss": 1.5638,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 1.270096463022508,
2772
+ "grad_norm": 5.812656682454248,
2773
+ "learning_rate": 8.618071374335612e-06,
2774
+ "loss": 1.692,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 1.2733118971061093,
2779
+ "grad_norm": 0.44580256068577884,
2780
+ "learning_rate": 8.609523809523808e-06,
2781
+ "loss": 1.5292,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 1.2765273311897105,
2786
+ "grad_norm": 0.4246595984926517,
2787
+ "learning_rate": 8.600917431192661e-06,
2788
+ "loss": 1.7548,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 1.279742765273312,
2793
+ "grad_norm": 0.5152992435939208,
2794
+ "learning_rate": 8.592251630226314e-06,
2795
+ "loss": 1.7866,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 1.2829581993569132,
2800
+ "grad_norm": 0.4963075673414894,
2801
+ "learning_rate": 8.583525789068516e-06,
2802
+ "loss": 1.6988,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 1.2861736334405145,
2807
+ "grad_norm": 0.45125649284081243,
2808
+ "learning_rate": 8.574739281575898e-06,
2809
+ "loss": 1.5701,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 1.2893890675241158,
2814
+ "grad_norm": 0.53317806439095,
2815
+ "learning_rate": 8.565891472868219e-06,
2816
+ "loss": 1.7179,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 1.292604501607717,
2821
+ "grad_norm": 0.6275759768767125,
2822
+ "learning_rate": 8.55698171917542e-06,
2823
+ "loss": 1.6918,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 1.2958199356913183,
2828
+ "grad_norm": 0.38316459378318246,
2829
+ "learning_rate": 8.5480093676815e-06,
2830
+ "loss": 1.7194,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 1.2990353697749195,
2835
+ "grad_norm": 0.42281492046011937,
2836
+ "learning_rate": 8.53897375636506e-06,
2837
+ "loss": 1.6056,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 1.302250803858521,
2842
+ "grad_norm": 0.5423212471954062,
2843
+ "learning_rate": 8.52987421383648e-06,
2844
+ "loss": 1.6599,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 1.3054662379421222,
2849
+ "grad_norm": 0.3926198800543086,
2850
+ "learning_rate": 8.520710059171598e-06,
2851
+ "loss": 1.7273,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 1.3086816720257235,
2856
+ "grad_norm": 0.41111535425621437,
2857
+ "learning_rate": 8.511480601741886e-06,
2858
+ "loss": 1.6712,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 1.3118971061093248,
2863
+ "grad_norm": 0.4164950928775684,
2864
+ "learning_rate": 8.502185141040922e-06,
2865
+ "loss": 1.6356,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 1.315112540192926,
2870
+ "grad_norm": 0.42331481781783037,
2871
+ "learning_rate": 8.492822966507178e-06,
2872
+ "loss": 1.7424,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 1.3183279742765273,
2877
+ "grad_norm": 0.5375647747454178,
2878
+ "learning_rate": 8.483393357342938e-06,
2879
+ "loss": 1.727,
2880
+ "step": 410
2881
+ },
2882
+ {
2883
+ "epoch": 1.3215434083601285,
2884
+ "grad_norm": 0.3511881681775179,
2885
+ "learning_rate": 8.473895582329317e-06,
2886
+ "loss": 1.6824,
2887
+ "step": 411
2888
+ },
2889
+ {
2890
+ "epoch": 1.32475884244373,
2891
+ "grad_norm": 0.3745512197529067,
2892
+ "learning_rate": 8.464328899637244e-06,
2893
+ "loss": 1.6541,
2894
+ "step": 412
2895
+ },
2896
+ {
2897
+ "epoch": 1.3279742765273312,
2898
+ "grad_norm": 0.36035208515341016,
2899
+ "learning_rate": 8.454692556634303e-06,
2900
+ "loss": 1.5663,
2901
+ "step": 413
2902
+ },
2903
+ {
2904
+ "epoch": 1.3311897106109325,
2905
+ "grad_norm": 0.5271629572900195,
2906
+ "learning_rate": 8.444985789687374e-06,
2907
+ "loss": 1.6666,
2908
+ "step": 414
2909
+ },
2910
+ {
2911
+ "epoch": 1.3344051446945338,
2912
+ "grad_norm": 0.4035052849324303,
2913
+ "learning_rate": 8.435207823960882e-06,
2914
+ "loss": 1.666,
2915
+ "step": 415
2916
+ },
2917
+ {
2918
+ "epoch": 1.337620578778135,
2919
+ "grad_norm": 0.5141622387219502,
2920
+ "learning_rate": 8.425357873210634e-06,
2921
+ "loss": 1.6095,
2922
+ "step": 416
2923
+ },
2924
+ {
2925
+ "epoch": 1.3408360128617363,
2926
+ "grad_norm": 0.3903148174211921,
2927
+ "learning_rate": 8.41543513957307e-06,
2928
+ "loss": 1.7249,
2929
+ "step": 417
2930
+ },
2931
+ {
2932
+ "epoch": 1.3440514469453375,
2933
+ "grad_norm": 0.3837027760154029,
2934
+ "learning_rate": 8.405438813349816e-06,
2935
+ "loss": 1.6892,
2936
+ "step": 418
2937
+ },
2938
+ {
2939
+ "epoch": 1.347266881028939,
2940
+ "grad_norm": 0.5991756282596358,
2941
+ "learning_rate": 8.395368072787428e-06,
2942
+ "loss": 1.4517,
2943
+ "step": 419
2944
+ },
2945
+ {
2946
+ "epoch": 1.3504823151125402,
2947
+ "grad_norm": 0.8352176814664566,
2948
+ "learning_rate": 8.38522208385222e-06,
2949
+ "loss": 1.7663,
2950
+ "step": 420
2951
+ },
2952
+ {
2953
+ "epoch": 1.3536977491961415,
2954
+ "grad_norm": 0.39312344645907427,
2955
+ "learning_rate": 8.375e-06,
2956
+ "loss": 1.779,
2957
+ "step": 421
2958
+ },
2959
+ {
2960
+ "epoch": 1.3569131832797428,
2961
+ "grad_norm": 0.6153100653488431,
2962
+ "learning_rate": 8.364700961940612e-06,
2963
+ "loss": 1.603,
2964
+ "step": 422
2965
+ },
2966
+ {
2967
+ "epoch": 1.360128617363344,
2968
+ "grad_norm": 0.4917240270173188,
2969
+ "learning_rate": 8.354324097397145e-06,
2970
+ "loss": 1.8095,
2971
+ "step": 423
2972
+ },
2973
+ {
2974
+ "epoch": 1.3633440514469453,
2975
+ "grad_norm": 0.45200112908044476,
2976
+ "learning_rate": 8.34386852085967e-06,
2977
+ "loss": 1.6269,
2978
+ "step": 424
2979
+ },
2980
+ {
2981
+ "epoch": 1.3665594855305465,
2982
+ "grad_norm": 0.49866971451151026,
2983
+ "learning_rate": 8.333333333333334e-06,
2984
+ "loss": 1.5597,
2985
+ "step": 425
2986
+ },
2987
+ {
2988
+ "epoch": 1.369774919614148,
2989
+ "grad_norm": 0.4813276516774304,
2990
+ "learning_rate": 8.322717622080679e-06,
2991
+ "loss": 1.6371,
2992
+ "step": 426
2993
+ },
2994
+ {
2995
+ "epoch": 1.3729903536977492,
2996
+ "grad_norm": 0.6706487993975442,
2997
+ "learning_rate": 8.312020460358056e-06,
2998
+ "loss": 1.6942,
2999
+ "step": 427
3000
+ },
3001
+ {
3002
+ "epoch": 1.3762057877813505,
3003
+ "grad_norm": 0.4410278961954752,
3004
+ "learning_rate": 8.301240907145914e-06,
3005
+ "loss": 1.6795,
3006
+ "step": 428
3007
+ },
3008
+ {
3009
+ "epoch": 1.3794212218649518,
3010
+ "grad_norm": 0.6619090011753649,
3011
+ "learning_rate": 8.290378006872852e-06,
3012
+ "loss": 1.6588,
3013
+ "step": 429
3014
+ },
3015
+ {
3016
+ "epoch": 1.382636655948553,
3017
+ "grad_norm": 0.3835351559503038,
3018
+ "learning_rate": 8.279430789133249e-06,
3019
+ "loss": 1.6239,
3020
+ "step": 430
3021
+ },
3022
+ {
3023
+ "epoch": 1.3858520900321543,
3024
+ "grad_norm": 0.3636590588929943,
3025
+ "learning_rate": 8.268398268398268e-06,
3026
+ "loss": 1.6285,
3027
+ "step": 431
3028
+ },
3029
+ {
3030
+ "epoch": 1.3890675241157555,
3031
+ "grad_norm": 0.44522127662825833,
3032
+ "learning_rate": 8.257279443720123e-06,
3033
+ "loss": 1.5958,
3034
+ "step": 432
3035
+ },
3036
+ {
3037
+ "epoch": 1.392282958199357,
3038
+ "grad_norm": 0.4367527889875373,
3039
+ "learning_rate": 8.24607329842932e-06,
3040
+ "loss": 1.639,
3041
+ "step": 433
3042
+ },
3043
+ {
3044
+ "epoch": 1.3954983922829582,
3045
+ "grad_norm": 0.4182542142164959,
3046
+ "learning_rate": 8.234778799824793e-06,
3047
+ "loss": 1.6411,
3048
+ "step": 434
3049
+ },
3050
+ {
3051
+ "epoch": 1.3987138263665595,
3052
+ "grad_norm": 0.4220733115803737,
3053
+ "learning_rate": 8.223394898856639e-06,
3054
+ "loss": 1.6993,
3055
+ "step": 435
3056
+ },
3057
+ {
3058
+ "epoch": 1.4019292604501608,
3059
+ "grad_norm": 0.5095746374942131,
3060
+ "learning_rate": 8.211920529801326e-06,
3061
+ "loss": 1.5549,
3062
+ "step": 436
3063
+ },
3064
+ {
3065
+ "epoch": 1.405144694533762,
3066
+ "grad_norm": 0.4003936984745165,
3067
+ "learning_rate": 8.200354609929079e-06,
3068
+ "loss": 1.6424,
3069
+ "step": 437
3070
+ },
3071
+ {
3072
+ "epoch": 1.4083601286173635,
3073
+ "grad_norm": 0.35448019224992106,
3074
+ "learning_rate": 8.18869603916333e-06,
3075
+ "loss": 1.7231,
3076
+ "step": 438
3077
+ },
3078
+ {
3079
+ "epoch": 1.4115755627009645,
3080
+ "grad_norm": 0.3958358149507715,
3081
+ "learning_rate": 8.176943699731904e-06,
3082
+ "loss": 1.5607,
3083
+ "step": 439
3084
+ },
3085
+ {
3086
+ "epoch": 1.414790996784566,
3087
+ "grad_norm": 0.4572398550528086,
3088
+ "learning_rate": 8.16509645580978e-06,
3089
+ "loss": 1.7685,
3090
+ "step": 440
3091
+ },
3092
+ {
3093
+ "epoch": 1.4180064308681672,
3094
+ "grad_norm": 0.4108744685040581,
3095
+ "learning_rate": 8.153153153153154e-06,
3096
+ "loss": 1.7027,
3097
+ "step": 441
3098
+ },
3099
+ {
3100
+ "epoch": 1.4212218649517685,
3101
+ "grad_norm": 0.39339819264830506,
3102
+ "learning_rate": 8.141112618724561e-06,
3103
+ "loss": 1.5663,
3104
+ "step": 442
3105
+ },
3106
+ {
3107
+ "epoch": 1.4244372990353698,
3108
+ "grad_norm": 0.555394722524567,
3109
+ "learning_rate": 8.12897366030881e-06,
3110
+ "loss": 1.7123,
3111
+ "step": 443
3112
+ },
3113
+ {
3114
+ "epoch": 1.427652733118971,
3115
+ "grad_norm": 0.32604297722404485,
3116
+ "learning_rate": 8.11673506611947e-06,
3117
+ "loss": 1.7202,
3118
+ "step": 444
3119
+ },
3120
+ {
3121
+ "epoch": 1.4308681672025725,
3122
+ "grad_norm": 0.57079829329324,
3123
+ "learning_rate": 8.104395604395604e-06,
3124
+ "loss": 1.655,
3125
+ "step": 445
3126
+ },
3127
+ {
3128
+ "epoch": 1.4340836012861735,
3129
+ "grad_norm": 0.4490468868427245,
3130
+ "learning_rate": 8.091954022988505e-06,
3131
+ "loss": 1.5641,
3132
+ "step": 446
3133
+ },
3134
+ {
3135
+ "epoch": 1.437299035369775,
3136
+ "grad_norm": 0.43447954022994156,
3137
+ "learning_rate": 8.079409048938135e-06,
3138
+ "loss": 1.6025,
3139
+ "step": 447
3140
+ },
3141
+ {
3142
+ "epoch": 1.4405144694533762,
3143
+ "grad_norm": 0.5540793015292118,
3144
+ "learning_rate": 8.066759388038942e-06,
3145
+ "loss": 1.7527,
3146
+ "step": 448
3147
+ },
3148
+ {
3149
+ "epoch": 1.4437299035369775,
3150
+ "grad_norm": 0.3563614235496872,
3151
+ "learning_rate": 8.054003724394785e-06,
3152
+ "loss": 1.5934,
3153
+ "step": 449
3154
+ },
3155
+ {
3156
+ "epoch": 1.4469453376205788,
3157
+ "grad_norm": 0.913224093708608,
3158
+ "learning_rate": 8.041140719962602e-06,
3159
+ "loss": 1.6911,
3160
+ "step": 450
3161
+ },
3162
+ {
3163
+ "epoch": 1.45016077170418,
3164
+ "grad_norm": 0.43504913816692775,
3165
+ "learning_rate": 8.028169014084509e-06,
3166
+ "loss": 1.5177,
3167
+ "step": 451
3168
+ },
3169
+ {
3170
+ "epoch": 1.4533762057877815,
3171
+ "grad_norm": 0.48590476141217886,
3172
+ "learning_rate": 8.015087223008017e-06,
3173
+ "loss": 1.7909,
3174
+ "step": 452
3175
+ },
3176
+ {
3177
+ "epoch": 1.4565916398713825,
3178
+ "grad_norm": 0.5080378493045535,
3179
+ "learning_rate": 8.00189393939394e-06,
3180
+ "loss": 1.5838,
3181
+ "step": 453
3182
+ },
3183
+ {
3184
+ "epoch": 1.459807073954984,
3185
+ "grad_norm": 1.64509386470527,
3186
+ "learning_rate": 7.988587731811699e-06,
3187
+ "loss": 1.6472,
3188
+ "step": 454
3189
+ },
3190
+ {
3191
+ "epoch": 1.4630225080385852,
3192
+ "grad_norm": 0.3673483192332043,
3193
+ "learning_rate": 7.975167144221587e-06,
3194
+ "loss": 1.6316,
3195
+ "step": 455
3196
+ },
3197
+ {
3198
+ "epoch": 1.4662379421221865,
3199
+ "grad_norm": 0.41136311504318224,
3200
+ "learning_rate": 7.961630695443646e-06,
3201
+ "loss": 1.761,
3202
+ "step": 456
3203
+ },
3204
+ {
3205
+ "epoch": 1.4694533762057878,
3206
+ "grad_norm": 0.35308464122017075,
3207
+ "learning_rate": 7.947976878612718e-06,
3208
+ "loss": 1.536,
3209
+ "step": 457
3210
+ },
3211
+ {
3212
+ "epoch": 1.472668810289389,
3213
+ "grad_norm": 0.41734252770432045,
3214
+ "learning_rate": 7.934204160619255e-06,
3215
+ "loss": 1.6562,
3216
+ "step": 458
3217
+ },
3218
+ {
3219
+ "epoch": 1.4758842443729905,
3220
+ "grad_norm": 0.44696724275948946,
3221
+ "learning_rate": 7.920310981535472e-06,
3222
+ "loss": 1.6589,
3223
+ "step": 459
3224
+ },
3225
+ {
3226
+ "epoch": 1.4790996784565915,
3227
+ "grad_norm": 1.740141532341783,
3228
+ "learning_rate": 7.906295754026353e-06,
3229
+ "loss": 1.5841,
3230
+ "step": 460
3231
+ },
3232
+ {
3233
+ "epoch": 1.482315112540193,
3234
+ "grad_norm": 0.38345032126320727,
3235
+ "learning_rate": 7.892156862745098e-06,
3236
+ "loss": 1.5586,
3237
+ "step": 461
3238
+ },
3239
+ {
3240
+ "epoch": 1.4855305466237942,
3241
+ "grad_norm": 0.3505893213058495,
3242
+ "learning_rate": 7.877892663712457e-06,
3243
+ "loss": 1.6964,
3244
+ "step": 462
3245
+ },
3246
+ {
3247
+ "epoch": 1.4887459807073955,
3248
+ "grad_norm": 0.34378052648599977,
3249
+ "learning_rate": 7.863501483679526e-06,
3250
+ "loss": 1.6686,
3251
+ "step": 463
3252
+ },
3253
+ {
3254
+ "epoch": 1.4919614147909968,
3255
+ "grad_norm": 0.43787743191378786,
3256
+ "learning_rate": 7.848981619473423e-06,
3257
+ "loss": 1.7217,
3258
+ "step": 464
3259
+ },
3260
+ {
3261
+ "epoch": 1.495176848874598,
3262
+ "grad_norm": 0.4599462355427195,
3263
+ "learning_rate": 7.834331337325349e-06,
3264
+ "loss": 1.5408,
3265
+ "step": 465
3266
+ },
3267
+ {
3268
+ "epoch": 1.4983922829581995,
3269
+ "grad_norm": 0.47641665252632553,
3270
+ "learning_rate": 7.819548872180452e-06,
3271
+ "loss": 1.6856,
3272
+ "step": 466
3273
+ },
3274
+ {
3275
+ "epoch": 1.5016077170418005,
3276
+ "grad_norm": 0.5146461637653273,
3277
+ "learning_rate": 7.804632426988925e-06,
3278
+ "loss": 1.6533,
3279
+ "step": 467
3280
+ },
3281
+ {
3282
+ "epoch": 1.504823151125402,
3283
+ "grad_norm": 0.44826649985888556,
3284
+ "learning_rate": 7.789580171977745e-06,
3285
+ "loss": 1.587,
3286
+ "step": 468
3287
+ }
3288
+ ],
3289
+ "logging_steps": 1,
3290
+ "max_steps": 622,
3291
+ "num_input_tokens_seen": 0,
3292
+ "num_train_epochs": 2,
3293
+ "save_steps": 156,
3294
+ "stateful_callbacks": {
3295
+ "TrainerControl": {
3296
+ "args": {
3297
+ "should_epoch_stop": false,
3298
+ "should_evaluate": false,
3299
+ "should_log": false,
3300
+ "should_save": true,
3301
+ "should_training_stop": false
3302
+ },
3303
+ "attributes": {}
3304
+ }
3305
+ },
3306
+ "total_flos": 5.162683181480018e+17,
3307
+ "train_batch_size": 3,
3308
+ "trial_name": null,
3309
+ "trial_params": null
3310
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a86bf8d9477e72976e0a27b0e142493e8cb3d748490c2a974cb9f77bd67d914
3
+ size 8888
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)