maximuspowers commited on
Commit
8e93305
1 Parent(s): 0fbe754

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +60 -0
handler.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ import json
3
+ import torch
4
+ from transformers import BertTokenizerFast, BertForTokenClassification
5
+
6
+ class EndpointHandler():
7
+ def __init__(self, path=""):
8
+ # Load the tokenizer and model
9
+ self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
10
+ self.model = BertForTokenClassification.from_pretrained(path)
11
+ self.model.eval()
12
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
13
+ self.model.to(self.device)
14
+
15
+ # ID to label mapping
16
+ self.id2label = {
17
+ 0: 'O',
18
+ 1: 'B-STEREO',
19
+ 2: 'I-STEREO',
20
+ 3: 'B-GEN',
21
+ 4: 'I-GEN',
22
+ 5: 'B-UNFAIR',
23
+ 6: 'I-UNFAIR'
24
+ }
25
+
26
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
27
+ """
28
+ Args:
29
+ data (Dict[str, Any]): A dictionary containing the input text under 'inputs'.
30
+
31
+ Returns:
32
+ List[Dict[str, Any]]: A list of dictionaries with token labels.
33
+ """
34
+ # Extract the input sentence
35
+ sentence = data.get("inputs", "")
36
+ if not sentence:
37
+ return [{"error": "Input 'inputs' is required."}]
38
+
39
+ # Tokenize the input sentence
40
+ inputs = self.tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
41
+ input_ids = inputs['input_ids'].to(self.device)
42
+ attention_mask = inputs['attention_mask'].to(self.device)
43
+
44
+ # Run inference
45
+ with torch.no_grad():
46
+ outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
47
+ logits = outputs.logits
48
+ probabilities = torch.sigmoid(logits)
49
+ predicted_labels = (probabilities > 0.5).int()
50
+
51
+ # Prepare the result
52
+ result = []
53
+ tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
54
+ for i, token in enumerate(tokens):
55
+ if token not in self.tokenizer.all_special_tokens:
56
+ label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
57
+ labels = [self.id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
58
+ result.append({"token": token, "labels": labels})
59
+
60
+ return result