nielsr HF staff commited on
Commit
702e82a
·
1 Parent(s): 429dc56

Make code example more clear

Browse files
Files changed (1) hide show
  1. README.md +6 -0
README.md CHANGED
@@ -33,13 +33,19 @@ Here is how to use this model to classify an image of the COCO 2017 dataset into
33
  from transformers import AutoFeatureExtractor, DeiTForImageClassificationWithTeacher
34
  from PIL import Image
35
  import requests
 
36
  url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
37
  image = Image.open(requests.get(url, stream=True).raw)
 
38
  feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224')
39
  model = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224')
 
40
  inputs = feature_extractor(images=image, return_tensors="pt")
 
 
41
  outputs = model(**inputs)
42
  logits = outputs.logits
 
43
  # model predicts one of the 1000 ImageNet classes
44
  predicted_class_idx = logits.argmax(-1).item()
45
  print("Predicted class:", model.config.id2label[predicted_class_idx])
 
33
  from transformers import AutoFeatureExtractor, DeiTForImageClassificationWithTeacher
34
  from PIL import Image
35
  import requests
36
+
37
  url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
38
  image = Image.open(requests.get(url, stream=True).raw)
39
+
40
  feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224')
41
  model = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224')
42
+
43
  inputs = feature_extractor(images=image, return_tensors="pt")
44
+
45
+ # forward pass
46
  outputs = model(**inputs)
47
  logits = outputs.logits
48
+
49
  # model predicts one of the 1000 ImageNet classes
50
  predicted_class_idx = logits.argmax(-1).item()
51
  print("Predicted class:", model.config.id2label[predicted_class_idx])