Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +869 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: shihab17/bangla-sentence-transformer
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:1000000
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: ফেসবুক পোস্টে জোসেফ রাধিক জানিয়েছেন, প্রথম থেকেই ফটোগ্রাফির নেশা
|
14 |
+
ছিল তার
|
15 |
+
sentences:
|
16 |
+
- ফেসবুক পোস্টে জোসেফ রাধিক জানিয়েছেন, প্রথম থেকেই ফটোগ্রাফির নেশা ছিল তার
|
17 |
+
- গত বছর সিউল অলিম্পিক স্টেডিয়ামে হাজির হয়েছিলেন হাজার দর্শক
|
18 |
+
- বিশ্বের সবচেয়ে প্রবীণ পুরুষ জাপানের সাকারি মোমোই বছর বয়সে মারা গেছেন
|
19 |
+
- source_sentence: তিনি যুগান্তরকে বলেন, মাগুরা জেলার রাজনৈতিক কর্মকাণ্ড আবর্তিত
|
20 |
+
হচ্ছে সাইফুজ্জামান শিখরকে ঘিরেই
|
21 |
+
sentences:
|
22 |
+
- যাবার আগে বলে গেলেন আসি
|
23 |
+
- তিনি যুগান্তরকে বলেন, মাগুরা জেলার রাজনৈতিক কর্মকাণ্ড আবর্তিত হচ্ছে সাইফুজ্জামান
|
24 |
+
শিখরকে ঘিরেই
|
25 |
+
- ওই কর্মকর্তা বলেন, সাম্প্রতিক জঙ্গি হামলার পরিপ্রেক্ষিতে ওই সময়ে টেলিযোগাযোগকে
|
26 |
+
কীভাবে কাজে লাগানো যায় তার অংশ হিসেবে এ মহড়া হবে বলে তাদেরকে জানানো হয়েছে
|
27 |
+
- source_sentence: এ স্বাধীনতা অর্জনের পথে সমগ্র জাতির সঙ্গে একই কাতারে পাবনার বেড়া
|
28 |
+
অঞ্চলের হাজারো মানুষ যুদ্ধে অবতীর্ণ হন এবং অনেকেই শাহাদাত বরণ করেন
|
29 |
+
sentences:
|
30 |
+
- এ স্বাধীনতা অর্জনের পথে সমগ্র জাতির সঙ্গে একই কাতারে পাবনার বেড়া অঞ্চলের হাজারো
|
31 |
+
মানুষ যুদ্ধে অবতীর্ণ হন এবং অনেকেই শাহাদাত বরণ করেন
|
32 |
+
- বোরো মৌসুমের ধান কাটাতে হয়
|
33 |
+
- এই আতঙ্কের অবসান কে ঘটাবে? এখন আর কোনো সময় নেই
|
34 |
+
- source_sentence: ওয়েস্ট ইন্ডিজের বিপক্ষে চার ইনিংসে বাংলাদেশের রান ছিল যথাক্রমে
|
35 |
+
, , ও
|
36 |
+
sentences:
|
37 |
+
- বাংলাদেশের অন্যতম সফল ব্যাটার আশরাফুল
|
38 |
+
- ওয়েস্ট ইন্ডিজের বিপক্ষে চার ইনিংসে বাংলাদেশের রান ছিল যথাক্রমে , , ও
|
39 |
+
- রয়টার্স
|
40 |
+
- source_sentence: রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই
|
41 |
+
স্বরাষ্ট্রমন্ত্রী আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন
|
42 |
+
sentences:
|
43 |
+
- এ পর্বে অতিথি হিসেবে উপস্থিত হবেন বীর মুক্তিযোদ্ধা এবং বিশিষ্ট সাংস্কৃতিক ব্যক্তিত্ব
|
44 |
+
নাসির উদ্দীন ইউসুফ এবং তার মেয়ে প্রযোজক ও মঞ্চ অভিনেত্রী এশা ইউসুফ
|
45 |
+
- আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র
|
46 |
+
জানিয়েছে
|
47 |
+
- রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই স্বরাষ্ট্রমন্ত্রী
|
48 |
+
আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন
|
49 |
+
---
|
50 |
+
|
51 |
+
# SentenceTransformer based on shihab17/bangla-sentence-transformer
|
52 |
+
|
53 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [shihab17/bangla-sentence-transformer](https://huggingface.co/shihab17/bangla-sentence-transformer). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
54 |
+
|
55 |
+
## Model Details
|
56 |
+
|
57 |
+
### Model Description
|
58 |
+
- **Model Type:** Sentence Transformer
|
59 |
+
- **Base model:** [shihab17/bangla-sentence-transformer](https://huggingface.co/shihab17/bangla-sentence-transformer) <!-- at revision ab250a2c767638562cd3caa8c0017b106a481755 -->
|
60 |
+
- **Maximum Sequence Length:** 512 tokens
|
61 |
+
- **Output Dimensionality:** 768 dimensions
|
62 |
+
- **Similarity Function:** Cosine Similarity
|
63 |
+
<!-- - **Training Dataset:** Unknown -->
|
64 |
+
<!-- - **Language:** Unknown -->
|
65 |
+
<!-- - **License:** Unknown -->
|
66 |
+
|
67 |
+
### Model Sources
|
68 |
+
|
69 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
70 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
71 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
72 |
+
|
73 |
+
### Full Model Architecture
|
74 |
+
|
75 |
+
```
|
76 |
+
SentenceTransformer(
|
77 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
78 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
79 |
+
)
|
80 |
+
```
|
81 |
+
|
82 |
+
## Usage
|
83 |
+
|
84 |
+
### Direct Usage (Sentence Transformers)
|
85 |
+
|
86 |
+
First install the Sentence Transformers library:
|
87 |
+
|
88 |
+
```bash
|
89 |
+
pip install -U sentence-transformers
|
90 |
+
```
|
91 |
+
|
92 |
+
Then you can load this model and run inference.
|
93 |
+
```python
|
94 |
+
from sentence_transformers import SentenceTransformer
|
95 |
+
|
96 |
+
# Download from the 🤗 Hub
|
97 |
+
model = SentenceTransformer("farhana1996/unsupervised-simcse-bangla-sbert")
|
98 |
+
# Run inference
|
99 |
+
sentences = [
|
100 |
+
'রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই স্বরাষ্ট্রমন্ত্রী আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন',
|
101 |
+
'রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই স্বরাষ্ট্রমন্ত্রী আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন',
|
102 |
+
'আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র জানিয়েছে',
|
103 |
+
]
|
104 |
+
embeddings = model.encode(sentences)
|
105 |
+
print(embeddings.shape)
|
106 |
+
# [3, 768]
|
107 |
+
|
108 |
+
# Get the similarity scores for the embeddings
|
109 |
+
similarities = model.similarity(embeddings, embeddings)
|
110 |
+
print(similarities.shape)
|
111 |
+
# [3, 3]
|
112 |
+
```
|
113 |
+
|
114 |
+
<!--
|
115 |
+
### Direct Usage (Transformers)
|
116 |
+
|
117 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Downstream Usage (Sentence Transformers)
|
124 |
+
|
125 |
+
You can finetune this model on your own dataset.
|
126 |
+
|
127 |
+
<details><summary>Click to expand</summary>
|
128 |
+
|
129 |
+
</details>
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Out-of-Scope Use
|
134 |
+
|
135 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
## Bias, Risks and Limitations
|
140 |
+
|
141 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Recommendations
|
146 |
+
|
147 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
148 |
+
-->
|
149 |
+
|
150 |
+
## Training Details
|
151 |
+
|
152 |
+
### Training Dataset
|
153 |
+
|
154 |
+
#### Unnamed Dataset
|
155 |
+
|
156 |
+
* Size: 1,000,000 training samples
|
157 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
158 |
+
* Approximate statistics based on the first 1000 samples:
|
159 |
+
| | sentence_0 | sentence_1 |
|
160 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
161 |
+
| type | string | string |
|
162 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 25.91 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 25.91 tokens</li><li>max: 148 tokens</li></ul> |
|
163 |
+
* Samples:
|
164 |
+
| sentence_0 | sentence_1 |
|
165 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
166 |
+
| <code>বিনোদন ডেস্ক অভিনেতা নির্মাতা জাহিদ হাসান ঈদ উপলক্ষে অভিনয় ও পরিচালনা নিয়ে ব্যস্ত সময় কাটাচ্ছেন</code> | <code>বিনোদন ডেস্ক অভিনেতা নির্মাতা জাহিদ হাসান ঈদ উপলক্ষে অভিনয় ও পরিচালনা নিয়ে ব্যস্ত সময় কাটাচ্ছেন</code> |
|
167 |
+
| <code>আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র জানিয়েছে</code> | <code>আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র জানিয়েছে</code> |
|
168 |
+
| <code>বিশ্ববিদ্যালয় ভারপ্রাপ্ত রেজিস্ট্রার প্রফেসর ড কামরুল হুদা বলেন, পুলিশ বিশ্ববিদ্যালয় প্রশাসনের কাছে তালিকা চাইলে বিশ্ববিদ্যালয়ের বিভিন্ন বিভাগে খোঁজ নিয়ে জনের নাম পাওয়া যায়</code> | <code>বিশ্ববিদ্যালয় ভারপ্রাপ্ত রেজিস্ট্রার প্রফেসর ড কামরুল হুদা বলেন, পুলিশ বিশ্ববিদ্যালয় প্রশাসনের কাছে তালিকা চাইলে বিশ্ববিদ্যালয়ের বিভিন্ন বিভাগে খোঁজ নিয়ে জনের নাম পাওয়া যায়</code> |
|
169 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
170 |
+
```json
|
171 |
+
{
|
172 |
+
"scale": 20.0,
|
173 |
+
"similarity_fct": "cos_sim"
|
174 |
+
}
|
175 |
+
```
|
176 |
+
|
177 |
+
### Training Hyperparameters
|
178 |
+
#### Non-Default Hyperparameters
|
179 |
+
|
180 |
+
- `per_device_train_batch_size`: 4
|
181 |
+
- `per_device_eval_batch_size`: 4
|
182 |
+
- `num_train_epochs`: 1
|
183 |
+
- `fp16`: True
|
184 |
+
- `multi_dataset_batch_sampler`: round_robin
|
185 |
+
|
186 |
+
#### All Hyperparameters
|
187 |
+
<details><summary>Click to expand</summary>
|
188 |
+
|
189 |
+
- `overwrite_output_dir`: False
|
190 |
+
- `do_predict`: False
|
191 |
+
- `eval_strategy`: no
|
192 |
+
- `prediction_loss_only`: True
|
193 |
+
- `per_device_train_batch_size`: 4
|
194 |
+
- `per_device_eval_batch_size`: 4
|
195 |
+
- `per_gpu_train_batch_size`: None
|
196 |
+
- `per_gpu_eval_batch_size`: None
|
197 |
+
- `gradient_accumulation_steps`: 1
|
198 |
+
- `eval_accumulation_steps`: None
|
199 |
+
- `torch_empty_cache_steps`: None
|
200 |
+
- `learning_rate`: 5e-05
|
201 |
+
- `weight_decay`: 0.0
|
202 |
+
- `adam_beta1`: 0.9
|
203 |
+
- `adam_beta2`: 0.999
|
204 |
+
- `adam_epsilon`: 1e-08
|
205 |
+
- `max_grad_norm`: 1
|
206 |
+
- `num_train_epochs`: 1
|
207 |
+
- `max_steps`: -1
|
208 |
+
- `lr_scheduler_type`: linear
|
209 |
+
- `lr_scheduler_kwargs`: {}
|
210 |
+
- `warmup_ratio`: 0.0
|
211 |
+
- `warmup_steps`: 0
|
212 |
+
- `log_level`: passive
|
213 |
+
- `log_level_replica`: warning
|
214 |
+
- `log_on_each_node`: True
|
215 |
+
- `logging_nan_inf_filter`: True
|
216 |
+
- `save_safetensors`: True
|
217 |
+
- `save_on_each_node`: False
|
218 |
+
- `save_only_model`: False
|
219 |
+
- `restore_callback_states_from_checkpoint`: False
|
220 |
+
- `no_cuda`: False
|
221 |
+
- `use_cpu`: False
|
222 |
+
- `use_mps_device`: False
|
223 |
+
- `seed`: 42
|
224 |
+
- `data_seed`: None
|
225 |
+
- `jit_mode_eval`: False
|
226 |
+
- `use_ipex`: False
|
227 |
+
- `bf16`: False
|
228 |
+
- `fp16`: True
|
229 |
+
- `fp16_opt_level`: O1
|
230 |
+
- `half_precision_backend`: auto
|
231 |
+
- `bf16_full_eval`: False
|
232 |
+
- `fp16_full_eval`: False
|
233 |
+
- `tf32`: None
|
234 |
+
- `local_rank`: 0
|
235 |
+
- `ddp_backend`: None
|
236 |
+
- `tpu_num_cores`: None
|
237 |
+
- `tpu_metrics_debug`: False
|
238 |
+
- `debug`: []
|
239 |
+
- `dataloader_drop_last`: False
|
240 |
+
- `dataloader_num_workers`: 0
|
241 |
+
- `dataloader_prefetch_factor`: None
|
242 |
+
- `past_index`: -1
|
243 |
+
- `disable_tqdm`: False
|
244 |
+
- `remove_unused_columns`: True
|
245 |
+
- `label_names`: None
|
246 |
+
- `load_best_model_at_end`: False
|
247 |
+
- `ignore_data_skip`: False
|
248 |
+
- `fsdp`: []
|
249 |
+
- `fsdp_min_num_params`: 0
|
250 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
251 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
252 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
253 |
+
- `deepspeed`: None
|
254 |
+
- `label_smoothing_factor`: 0.0
|
255 |
+
- `optim`: adamw_torch
|
256 |
+
- `optim_args`: None
|
257 |
+
- `adafactor`: False
|
258 |
+
- `group_by_length`: False
|
259 |
+
- `length_column_name`: length
|
260 |
+
- `ddp_find_unused_parameters`: None
|
261 |
+
- `ddp_bucket_cap_mb`: None
|
262 |
+
- `ddp_broadcast_buffers`: False
|
263 |
+
- `dataloader_pin_memory`: True
|
264 |
+
- `dataloader_persistent_workers`: False
|
265 |
+
- `skip_memory_metrics`: True
|
266 |
+
- `use_legacy_prediction_loop`: False
|
267 |
+
- `push_to_hub`: False
|
268 |
+
- `resume_from_checkpoint`: None
|
269 |
+
- `hub_model_id`: None
|
270 |
+
- `hub_strategy`: every_save
|
271 |
+
- `hub_private_repo`: None
|
272 |
+
- `hub_always_push`: False
|
273 |
+
- `gradient_checkpointing`: False
|
274 |
+
- `gradient_checkpointing_kwargs`: None
|
275 |
+
- `include_inputs_for_metrics`: False
|
276 |
+
- `include_for_metrics`: []
|
277 |
+
- `eval_do_concat_batches`: True
|
278 |
+
- `fp16_backend`: auto
|
279 |
+
- `push_to_hub_model_id`: None
|
280 |
+
- `push_to_hub_organization`: None
|
281 |
+
- `mp_parameters`:
|
282 |
+
- `auto_find_batch_size`: False
|
283 |
+
- `full_determinism`: False
|
284 |
+
- `torchdynamo`: None
|
285 |
+
- `ray_scope`: last
|
286 |
+
- `ddp_timeout`: 1800
|
287 |
+
- `torch_compile`: False
|
288 |
+
- `torch_compile_backend`: None
|
289 |
+
- `torch_compile_mode`: None
|
290 |
+
- `dispatch_batches`: None
|
291 |
+
- `split_batches`: None
|
292 |
+
- `include_tokens_per_second`: False
|
293 |
+
- `include_num_input_tokens_seen`: False
|
294 |
+
- `neftune_noise_alpha`: None
|
295 |
+
- `optim_target_modules`: None
|
296 |
+
- `batch_eval_metrics`: False
|
297 |
+
- `eval_on_start`: False
|
298 |
+
- `use_liger_kernel`: False
|
299 |
+
- `eval_use_gather_object`: False
|
300 |
+
- `average_tokens_across_devices`: False
|
301 |
+
- `prompts`: None
|
302 |
+
- `batch_sampler`: batch_sampler
|
303 |
+
- `multi_dataset_batch_sampler`: round_robin
|
304 |
+
|
305 |
+
</details>
|
306 |
+
|
307 |
+
### Training Logs
|
308 |
+
<details><summary>Click to expand</summary>
|
309 |
+
|
310 |
+
| Epoch | Step | Training Loss |
|
311 |
+
|:-----:|:------:|:-------------:|
|
312 |
+
| 0.002 | 500 | 0.0036 |
|
313 |
+
| 0.004 | 1000 | 0.0001 |
|
314 |
+
| 0.006 | 1500 | 0.0 |
|
315 |
+
| 0.008 | 2000 | 0.0001 |
|
316 |
+
| 0.01 | 2500 | 0.0 |
|
317 |
+
| 0.012 | 3000 | 0.0 |
|
318 |
+
| 0.014 | 3500 | 0.0 |
|
319 |
+
| 0.016 | 4000 | 0.0 |
|
320 |
+
| 0.018 | 4500 | 0.0 |
|
321 |
+
| 0.02 | 5000 | 0.0001 |
|
322 |
+
| 0.022 | 5500 | 0.0 |
|
323 |
+
| 0.024 | 6000 | 0.0 |
|
324 |
+
| 0.026 | 6500 | 0.0 |
|
325 |
+
| 0.028 | 7000 | 0.0 |
|
326 |
+
| 0.03 | 7500 | 0.0 |
|
327 |
+
| 0.032 | 8000 | 0.0 |
|
328 |
+
| 0.034 | 8500 | 0.0 |
|
329 |
+
| 0.036 | 9000 | 0.0 |
|
330 |
+
| 0.038 | 9500 | 0.0 |
|
331 |
+
| 0.04 | 10000 | 0.0001 |
|
332 |
+
| 0.042 | 10500 | 0.0 |
|
333 |
+
| 0.044 | 11000 | 0.0002 |
|
334 |
+
| 0.046 | 11500 | 0.0 |
|
335 |
+
| 0.048 | 12000 | 0.0 |
|
336 |
+
| 0.05 | 12500 | 0.0 |
|
337 |
+
| 0.052 | 13000 | 0.0 |
|
338 |
+
| 0.054 | 13500 | 0.0 |
|
339 |
+
| 0.056 | 14000 | 0.0 |
|
340 |
+
| 0.058 | 14500 | 0.0006 |
|
341 |
+
| 0.06 | 15000 | 0.0 |
|
342 |
+
| 0.062 | 15500 | 0.0 |
|
343 |
+
| 0.064 | 16000 | 0.0 |
|
344 |
+
| 0.066 | 16500 | 0.0001 |
|
345 |
+
| 0.068 | 17000 | 0.0 |
|
346 |
+
| 0.07 | 17500 | 0.0 |
|
347 |
+
| 0.072 | 18000 | 0.0 |
|
348 |
+
| 0.074 | 18500 | 0.0 |
|
349 |
+
| 0.076 | 19000 | 0.0 |
|
350 |
+
| 0.078 | 19500 | 0.0 |
|
351 |
+
| 0.08 | 20000 | 0.0 |
|
352 |
+
| 0.082 | 20500 | 0.0 |
|
353 |
+
| 0.084 | 21000 | 0.0004 |
|
354 |
+
| 0.086 | 21500 | 0.0 |
|
355 |
+
| 0.088 | 22000 | 0.0 |
|
356 |
+
| 0.09 | 22500 | 0.0 |
|
357 |
+
| 0.092 | 23000 | 0.0 |
|
358 |
+
| 0.094 | 23500 | 0.0 |
|
359 |
+
| 0.096 | 24000 | 0.0001 |
|
360 |
+
| 0.098 | 24500 | 0.0 |
|
361 |
+
| 0.1 | 25000 | 0.0 |
|
362 |
+
| 0.102 | 25500 | 0.0001 |
|
363 |
+
| 0.104 | 26000 | 0.0 |
|
364 |
+
| 0.106 | 26500 | 0.0001 |
|
365 |
+
| 0.108 | 27000 | 0.0 |
|
366 |
+
| 0.11 | 27500 | 0.0 |
|
367 |
+
| 0.112 | 28000 | 0.0 |
|
368 |
+
| 0.114 | 28500 | 0.0 |
|
369 |
+
| 0.116 | 29000 | 0.0 |
|
370 |
+
| 0.118 | 29500 | 0.0007 |
|
371 |
+
| 0.12 | 30000 | 0.0 |
|
372 |
+
| 0.122 | 30500 | 0.0 |
|
373 |
+
| 0.124 | 31000 | 0.0 |
|
374 |
+
| 0.126 | 31500 | 0.0 |
|
375 |
+
| 0.128 | 32000 | 0.0 |
|
376 |
+
| 0.13 | 32500 | 0.0 |
|
377 |
+
| 0.132 | 33000 | 0.0 |
|
378 |
+
| 0.134 | 33500 | 0.0003 |
|
379 |
+
| 0.136 | 34000 | 0.0 |
|
380 |
+
| 0.138 | 34500 | 0.0001 |
|
381 |
+
| 0.14 | 35000 | 0.0 |
|
382 |
+
| 0.142 | 35500 | 0.0007 |
|
383 |
+
| 0.144 | 36000 | 0.0001 |
|
384 |
+
| 0.146 | 36500 | 0.0 |
|
385 |
+
| 0.148 | 37000 | 0.0 |
|
386 |
+
| 0.15 | 37500 | 0.0 |
|
387 |
+
| 0.152 | 38000 | 0.0 |
|
388 |
+
| 0.154 | 38500 | 0.0 |
|
389 |
+
| 0.156 | 39000 | 0.0 |
|
390 |
+
| 0.158 | 39500 | 0.0 |
|
391 |
+
| 0.16 | 40000 | 0.0 |
|
392 |
+
| 0.162 | 40500 | 0.0 |
|
393 |
+
| 0.164 | 41000 | 0.0 |
|
394 |
+
| 0.166 | 41500 | 0.0 |
|
395 |
+
| 0.168 | 42000 | 0.0005 |
|
396 |
+
| 0.17 | 42500 | 0.0 |
|
397 |
+
| 0.172 | 43000 | 0.0 |
|
398 |
+
| 0.174 | 43500 | 0.0 |
|
399 |
+
| 0.176 | 44000 | 0.0 |
|
400 |
+
| 0.178 | 44500 | 0.0 |
|
401 |
+
| 0.18 | 45000 | 0.0 |
|
402 |
+
| 0.182 | 45500 | 0.0 |
|
403 |
+
| 0.184 | 46000 | 0.0 |
|
404 |
+
| 0.186 | 46500 | 0.0 |
|
405 |
+
| 0.188 | 47000 | 0.0 |
|
406 |
+
| 0.19 | 47500 | 0.0 |
|
407 |
+
| 0.192 | 48000 | 0.0 |
|
408 |
+
| 0.194 | 48500 | 0.0 |
|
409 |
+
| 0.196 | 49000 | 0.0002 |
|
410 |
+
| 0.198 | 49500 | 0.0 |
|
411 |
+
| 0.2 | 50000 | 0.0 |
|
412 |
+
| 0.202 | 50500 | 0.0008 |
|
413 |
+
| 0.204 | 51000 | 0.0 |
|
414 |
+
| 0.206 | 51500 | 0.0 |
|
415 |
+
| 0.208 | 52000 | 0.0 |
|
416 |
+
| 0.21 | 52500 | 0.0 |
|
417 |
+
| 0.212 | 53000 | 0.0 |
|
418 |
+
| 0.214 | 53500 | 0.0 |
|
419 |
+
| 0.216 | 54000 | 0.0 |
|
420 |
+
| 0.218 | 54500 | 0.0 |
|
421 |
+
| 0.22 | 55000 | 0.0 |
|
422 |
+
| 0.222 | 55500 | 0.0 |
|
423 |
+
| 0.224 | 56000 | 0.0 |
|
424 |
+
| 0.226 | 56500 | 0.0 |
|
425 |
+
| 0.228 | 57000 | 0.0 |
|
426 |
+
| 0.23 | 57500 | 0.0 |
|
427 |
+
| 0.232 | 58000 | 0.0001 |
|
428 |
+
| 0.234 | 58500 | 0.0005 |
|
429 |
+
| 0.236 | 59000 | 0.0 |
|
430 |
+
| 0.238 | 59500 | 0.0 |
|
431 |
+
| 0.24 | 60000 | 0.0 |
|
432 |
+
| 0.242 | 60500 | 0.0 |
|
433 |
+
| 0.244 | 61000 | 0.0 |
|
434 |
+
| 0.246 | 61500 | 0.0 |
|
435 |
+
| 0.248 | 62000 | 0.0 |
|
436 |
+
| 0.25 | 62500 | 0.0 |
|
437 |
+
| 0.252 | 63000 | 0.0 |
|
438 |
+
| 0.254 | 63500 | 0.0 |
|
439 |
+
| 0.256 | 64000 | 0.0001 |
|
440 |
+
| 0.258 | 64500 | 0.0007 |
|
441 |
+
| 0.26 | 65000 | 0.0 |
|
442 |
+
| 0.262 | 65500 | 0.0 |
|
443 |
+
| 0.264 | 66000 | 0.0 |
|
444 |
+
| 0.266 | 66500 | 0.0 |
|
445 |
+
| 0.268 | 67000 | 0.0003 |
|
446 |
+
| 0.27 | 67500 | 0.0 |
|
447 |
+
| 0.272 | 68000 | 0.0 |
|
448 |
+
| 0.274 | 68500 | 0.0 |
|
449 |
+
| 0.276 | 69000 | 0.0 |
|
450 |
+
| 0.278 | 69500 | 0.0 |
|
451 |
+
| 0.28 | 70000 | 0.0 |
|
452 |
+
| 0.282 | 70500 | 0.0 |
|
453 |
+
| 0.284 | 71000 | 0.0 |
|
454 |
+
| 0.286 | 71500 | 0.0 |
|
455 |
+
| 0.288 | 72000 | 0.0 |
|
456 |
+
| 0.29 | 72500 | 0.0 |
|
457 |
+
| 0.292 | 73000 | 0.0 |
|
458 |
+
| 0.294 | 73500 | 0.0 |
|
459 |
+
| 0.296 | 74000 | 0.0004 |
|
460 |
+
| 0.298 | 74500 | 0.0 |
|
461 |
+
| 0.3 | 75000 | 0.0 |
|
462 |
+
| 0.302 | 75500 | 0.0 |
|
463 |
+
| 0.304 | 76000 | 0.0 |
|
464 |
+
| 0.306 | 76500 | 0.0 |
|
465 |
+
| 0.308 | 77000 | 0.0 |
|
466 |
+
| 0.31 | 77500 | 0.0 |
|
467 |
+
| 0.312 | 78000 | 0.0 |
|
468 |
+
| 0.314 | 78500 | 0.0 |
|
469 |
+
| 0.316 | 79000 | 0.0 |
|
470 |
+
| 0.318 | 79500 | 0.0 |
|
471 |
+
| 0.32 | 80000 | 0.0 |
|
472 |
+
| 0.322 | 80500 | 0.0 |
|
473 |
+
| 0.324 | 81000 | 0.0 |
|
474 |
+
| 0.326 | 81500 | 0.0 |
|
475 |
+
| 0.328 | 82000 | 0.0 |
|
476 |
+
| 0.33 | 82500 | 0.0 |
|
477 |
+
| 0.332 | 83000 | 0.0 |
|
478 |
+
| 0.334 | 83500 | 0.0 |
|
479 |
+
| 0.336 | 84000 | 0.0 |
|
480 |
+
| 0.338 | 84500 | 0.0 |
|
481 |
+
| 0.34 | 85000 | 0.0 |
|
482 |
+
| 0.342 | 85500 | 0.0 |
|
483 |
+
| 0.344 | 86000 | 0.0 |
|
484 |
+
| 0.346 | 86500 | 0.0 |
|
485 |
+
| 0.348 | 87000 | 0.0 |
|
486 |
+
| 0.35 | 87500 | 0.0 |
|
487 |
+
| 0.352 | 88000 | 0.0002 |
|
488 |
+
| 0.354 | 88500 | 0.0 |
|
489 |
+
| 0.356 | 89000 | 0.0 |
|
490 |
+
| 0.358 | 89500 | 0.0 |
|
491 |
+
| 0.36 | 90000 | 0.0 |
|
492 |
+
| 0.362 | 90500 | 0.0 |
|
493 |
+
| 0.364 | 91000 | 0.0 |
|
494 |
+
| 0.366 | 91500 | 0.0 |
|
495 |
+
| 0.368 | 92000 | 0.0 |
|
496 |
+
| 0.37 | 92500 | 0.0 |
|
497 |
+
| 0.372 | 93000 | 0.0 |
|
498 |
+
| 0.374 | 93500 | 0.0 |
|
499 |
+
| 0.376 | 94000 | 0.0002 |
|
500 |
+
| 0.378 | 94500 | 0.0 |
|
501 |
+
| 0.38 | 95000 | 0.0 |
|
502 |
+
| 0.382 | 95500 | 0.0 |
|
503 |
+
| 0.384 | 96000 | 0.0001 |
|
504 |
+
| 0.386 | 96500 | 0.0 |
|
505 |
+
| 0.388 | 97000 | 0.0 |
|
506 |
+
| 0.39 | 97500 | 0.0 |
|
507 |
+
| 0.392 | 98000 | 0.0 |
|
508 |
+
| 0.394 | 98500 | 0.0 |
|
509 |
+
| 0.396 | 99000 | 0.0 |
|
510 |
+
| 0.398 | 99500 | 0.0 |
|
511 |
+
| 0.4 | 100000 | 0.0006 |
|
512 |
+
| 0.402 | 100500 | 0.0 |
|
513 |
+
| 0.404 | 101000 | 0.0 |
|
514 |
+
| 0.406 | 101500 | 0.0 |
|
515 |
+
| 0.408 | 102000 | 0.0 |
|
516 |
+
| 0.41 | 102500 | 0.0 |
|
517 |
+
| 0.412 | 103000 | 0.0 |
|
518 |
+
| 0.414 | 103500 | 0.0 |
|
519 |
+
| 0.416 | 104000 | 0.0 |
|
520 |
+
| 0.418 | 104500 | 0.0 |
|
521 |
+
| 0.42 | 105000 | 0.0 |
|
522 |
+
| 0.422 | 105500 | 0.0 |
|
523 |
+
| 0.424 | 106000 | 0.0 |
|
524 |
+
| 0.426 | 106500 | 0.0 |
|
525 |
+
| 0.428 | 107000 | 0.0 |
|
526 |
+
| 0.43 | 107500 | 0.0 |
|
527 |
+
| 0.432 | 108000 | 0.0 |
|
528 |
+
| 0.434 | 108500 | 0.0 |
|
529 |
+
| 0.436 | 109000 | 0.0 |
|
530 |
+
| 0.438 | 109500 | 0.0 |
|
531 |
+
| 0.44 | 110000 | 0.0 |
|
532 |
+
| 0.442 | 110500 | 0.0 |
|
533 |
+
| 0.444 | 111000 | 0.0 |
|
534 |
+
| 0.446 | 111500 | 0.0 |
|
535 |
+
| 0.448 | 112000 | 0.0 |
|
536 |
+
| 0.45 | 112500 | 0.0 |
|
537 |
+
| 0.452 | 113000 | 0.0 |
|
538 |
+
| 0.454 | 113500 | 0.0 |
|
539 |
+
| 0.456 | 114000 | 0.0 |
|
540 |
+
| 0.458 | 114500 | 0.0 |
|
541 |
+
| 0.46 | 115000 | 0.0 |
|
542 |
+
| 0.462 | 115500 | 0.0001 |
|
543 |
+
| 0.464 | 116000 | 0.0 |
|
544 |
+
| 0.466 | 116500 | 0.0 |
|
545 |
+
| 0.468 | 117000 | 0.0 |
|
546 |
+
| 0.47 | 117500 | 0.0 |
|
547 |
+
| 0.472 | 118000 | 0.0 |
|
548 |
+
| 0.474 | 118500 | 0.0 |
|
549 |
+
| 0.476 | 119000 | 0.0 |
|
550 |
+
| 0.478 | 119500 | 0.0 |
|
551 |
+
| 0.48 | 120000 | 0.0 |
|
552 |
+
| 0.482 | 120500 | 0.0 |
|
553 |
+
| 0.484 | 121000 | 0.0 |
|
554 |
+
| 0.486 | 121500 | 0.0 |
|
555 |
+
| 0.488 | 122000 | 0.0 |
|
556 |
+
| 0.49 | 122500 | 0.0 |
|
557 |
+
| 0.492 | 123000 | 0.0 |
|
558 |
+
| 0.494 | 123500 | 0.0 |
|
559 |
+
| 0.496 | 124000 | 0.001 |
|
560 |
+
| 0.498 | 124500 | 0.0 |
|
561 |
+
| 0.5 | 125000 | 0.0 |
|
562 |
+
| 0.502 | 125500 | 0.0 |
|
563 |
+
| 0.504 | 126000 | 0.0 |
|
564 |
+
| 0.506 | 126500 | 0.0 |
|
565 |
+
| 0.508 | 127000 | 0.0 |
|
566 |
+
| 0.51 | 127500 | 0.0 |
|
567 |
+
| 0.512 | 128000 | 0.0 |
|
568 |
+
| 0.514 | 128500 | 0.0 |
|
569 |
+
| 0.516 | 129000 | 0.0 |
|
570 |
+
| 0.518 | 129500 | 0.0 |
|
571 |
+
| 0.52 | 130000 | 0.0 |
|
572 |
+
| 0.522 | 130500 | 0.0 |
|
573 |
+
| 0.524 | 131000 | 0.0 |
|
574 |
+
| 0.526 | 131500 | 0.0 |
|
575 |
+
| 0.528 | 132000 | 0.0 |
|
576 |
+
| 0.53 | 132500 | 0.0 |
|
577 |
+
| 0.532 | 133000 | 0.0 |
|
578 |
+
| 0.534 | 133500 | 0.0 |
|
579 |
+
| 0.536 | 134000 | 0.0 |
|
580 |
+
| 0.538 | 134500 | 0.0 |
|
581 |
+
| 0.54 | 135000 | 0.0 |
|
582 |
+
| 0.542 | 135500 | 0.0 |
|
583 |
+
| 0.544 | 136000 | 0.0 |
|
584 |
+
| 0.546 | 136500 | 0.0 |
|
585 |
+
| 0.548 | 137000 | 0.0 |
|
586 |
+
| 0.55 | 137500 | 0.0 |
|
587 |
+
| 0.552 | 138000 | 0.0 |
|
588 |
+
| 0.554 | 138500 | 0.0 |
|
589 |
+
| 0.556 | 139000 | 0.0 |
|
590 |
+
| 0.558 | 139500 | 0.0 |
|
591 |
+
| 0.56 | 140000 | 0.0 |
|
592 |
+
| 0.562 | 140500 | 0.0 |
|
593 |
+
| 0.564 | 141000 | 0.0 |
|
594 |
+
| 0.566 | 141500 | 0.0 |
|
595 |
+
| 0.568 | 142000 | 0.0 |
|
596 |
+
| 0.57 | 142500 | 0.0 |
|
597 |
+
| 0.572 | 143000 | 0.0 |
|
598 |
+
| 0.574 | 143500 | 0.0 |
|
599 |
+
| 0.576 | 144000 | 0.0 |
|
600 |
+
| 0.578 | 144500 | 0.0 |
|
601 |
+
| 0.58 | 145000 | 0.0 |
|
602 |
+
| 0.582 | 145500 | 0.0 |
|
603 |
+
| 0.584 | 146000 | 0.0 |
|
604 |
+
| 0.586 | 146500 | 0.0 |
|
605 |
+
| 0.588 | 147000 | 0.0 |
|
606 |
+
| 0.59 | 147500 | 0.0 |
|
607 |
+
| 0.592 | 148000 | 0.0 |
|
608 |
+
| 0.594 | 148500 | 0.0 |
|
609 |
+
| 0.596 | 149000 | 0.0 |
|
610 |
+
| 0.598 | 149500 | 0.0 |
|
611 |
+
| 0.6 | 150000 | 0.0 |
|
612 |
+
| 0.602 | 150500 | 0.0 |
|
613 |
+
| 0.604 | 151000 | 0.0 |
|
614 |
+
| 0.606 | 151500 | 0.0 |
|
615 |
+
| 0.608 | 152000 | 0.0 |
|
616 |
+
| 0.61 | 152500 | 0.0 |
|
617 |
+
| 0.612 | 153000 | 0.0 |
|
618 |
+
| 0.614 | 153500 | 0.0 |
|
619 |
+
| 0.616 | 154000 | 0.0 |
|
620 |
+
| 0.618 | 154500 | 0.0 |
|
621 |
+
| 0.62 | 155000 | 0.0 |
|
622 |
+
| 0.622 | 155500 | 0.0 |
|
623 |
+
| 0.624 | 156000 | 0.0 |
|
624 |
+
| 0.626 | 156500 | 0.0 |
|
625 |
+
| 0.628 | 157000 | 0.0 |
|
626 |
+
| 0.63 | 157500 | 0.0 |
|
627 |
+
| 0.632 | 158000 | 0.0 |
|
628 |
+
| 0.634 | 158500 | 0.0 |
|
629 |
+
| 0.636 | 159000 | 0.0 |
|
630 |
+
| 0.638 | 159500 | 0.0 |
|
631 |
+
| 0.64 | 160000 | 0.0 |
|
632 |
+
| 0.642 | 160500 | 0.0 |
|
633 |
+
| 0.644 | 161000 | 0.0 |
|
634 |
+
| 0.646 | 161500 | 0.0 |
|
635 |
+
| 0.648 | 162000 | 0.0 |
|
636 |
+
| 0.65 | 162500 | 0.0 |
|
637 |
+
| 0.652 | 163000 | 0.0 |
|
638 |
+
| 0.654 | 163500 | 0.0 |
|
639 |
+
| 0.656 | 164000 | 0.0001 |
|
640 |
+
| 0.658 | 164500 | 0.0 |
|
641 |
+
| 0.66 | 165000 | 0.0 |
|
642 |
+
| 0.662 | 165500 | 0.0 |
|
643 |
+
| 0.664 | 166000 | 0.0 |
|
644 |
+
| 0.666 | 166500 | 0.0 |
|
645 |
+
| 0.668 | 167000 | 0.0 |
|
646 |
+
| 0.67 | 167500 | 0.0 |
|
647 |
+
| 0.672 | 168000 | 0.0 |
|
648 |
+
| 0.674 | 168500 | 0.0 |
|
649 |
+
| 0.676 | 169000 | 0.0 |
|
650 |
+
| 0.678 | 169500 | 0.0 |
|
651 |
+
| 0.68 | 170000 | 0.0 |
|
652 |
+
| 0.682 | 170500 | 0.0 |
|
653 |
+
| 0.684 | 171000 | 0.0 |
|
654 |
+
| 0.686 | 171500 | 0.0 |
|
655 |
+
| 0.688 | 172000 | 0.0 |
|
656 |
+
| 0.69 | 172500 | 0.0 |
|
657 |
+
| 0.692 | 173000 | 0.0 |
|
658 |
+
| 0.694 | 173500 | 0.0 |
|
659 |
+
| 0.696 | 174000 | 0.0 |
|
660 |
+
| 0.698 | 174500 | 0.0 |
|
661 |
+
| 0.7 | 175000 | 0.0 |
|
662 |
+
| 0.702 | 175500 | 0.0 |
|
663 |
+
| 0.704 | 176000 | 0.0 |
|
664 |
+
| 0.706 | 176500 | 0.0 |
|
665 |
+
| 0.708 | 177000 | 0.0 |
|
666 |
+
| 0.71 | 177500 | 0.0 |
|
667 |
+
| 0.712 | 178000 | 0.0 |
|
668 |
+
| 0.714 | 178500 | 0.0 |
|
669 |
+
| 0.716 | 179000 | 0.0 |
|
670 |
+
| 0.718 | 179500 | 0.0 |
|
671 |
+
| 0.72 | 180000 | 0.0 |
|
672 |
+
| 0.722 | 180500 | 0.0 |
|
673 |
+
| 0.724 | 181000 | 0.0 |
|
674 |
+
| 0.726 | 181500 | 0.0 |
|
675 |
+
| 0.728 | 182000 | 0.0007 |
|
676 |
+
| 0.73 | 182500 | 0.0 |
|
677 |
+
| 0.732 | 183000 | 0.0 |
|
678 |
+
| 0.734 | 183500 | 0.0 |
|
679 |
+
| 0.736 | 184000 | 0.0 |
|
680 |
+
| 0.738 | 184500 | 0.0 |
|
681 |
+
| 0.74 | 185000 | 0.0 |
|
682 |
+
| 0.742 | 185500 | 0.0 |
|
683 |
+
| 0.744 | 186000 | 0.0 |
|
684 |
+
| 0.746 | 186500 | 0.0 |
|
685 |
+
| 0.748 | 187000 | 0.0 |
|
686 |
+
| 0.75 | 187500 | 0.0 |
|
687 |
+
| 0.752 | 188000 | 0.0 |
|
688 |
+
| 0.754 | 188500 | 0.0 |
|
689 |
+
| 0.756 | 189000 | 0.0 |
|
690 |
+
| 0.758 | 189500 | 0.0 |
|
691 |
+
| 0.76 | 190000 | 0.0 |
|
692 |
+
| 0.762 | 190500 | 0.0 |
|
693 |
+
| 0.764 | 191000 | 0.0 |
|
694 |
+
| 0.766 | 191500 | 0.0 |
|
695 |
+
| 0.768 | 192000 | 0.0 |
|
696 |
+
| 0.77 | 192500 | 0.0 |
|
697 |
+
| 0.772 | 193000 | 0.0 |
|
698 |
+
| 0.774 | 193500 | 0.0 |
|
699 |
+
| 0.776 | 194000 | 0.0 |
|
700 |
+
| 0.778 | 194500 | 0.0 |
|
701 |
+
| 0.78 | 195000 | 0.0 |
|
702 |
+
| 0.782 | 195500 | 0.0 |
|
703 |
+
| 0.784 | 196000 | 0.0007 |
|
704 |
+
| 0.786 | 196500 | 0.0 |
|
705 |
+
| 0.788 | 197000 | 0.0 |
|
706 |
+
| 0.79 | 197500 | 0.0 |
|
707 |
+
| 0.792 | 198000 | 0.0 |
|
708 |
+
| 0.794 | 198500 | 0.0 |
|
709 |
+
| 0.796 | 199000 | 0.0 |
|
710 |
+
| 0.798 | 199500 | 0.0 |
|
711 |
+
| 0.8 | 200000 | 0.0 |
|
712 |
+
| 0.802 | 200500 | 0.0 |
|
713 |
+
| 0.804 | 201000 | 0.0 |
|
714 |
+
| 0.806 | 201500 | 0.0 |
|
715 |
+
| 0.808 | 202000 | 0.0 |
|
716 |
+
| 0.81 | 202500 | 0.0 |
|
717 |
+
| 0.812 | 203000 | 0.0 |
|
718 |
+
| 0.814 | 203500 | 0.0 |
|
719 |
+
| 0.816 | 204000 | 0.0 |
|
720 |
+
| 0.818 | 204500 | 0.0 |
|
721 |
+
| 0.82 | 205000 | 0.0 |
|
722 |
+
| 0.822 | 205500 | 0.0 |
|
723 |
+
| 0.824 | 206000 | 0.0 |
|
724 |
+
| 0.826 | 206500 | 0.0 |
|
725 |
+
| 0.828 | 207000 | 0.0 |
|
726 |
+
| 0.83 | 207500 | 0.0 |
|
727 |
+
| 0.832 | 208000 | 0.0 |
|
728 |
+
| 0.834 | 208500 | 0.0 |
|
729 |
+
| 0.836 | 209000 | 0.0 |
|
730 |
+
| 0.838 | 209500 | 0.0 |
|
731 |
+
| 0.84 | 210000 | 0.0 |
|
732 |
+
| 0.842 | 210500 | 0.0 |
|
733 |
+
| 0.844 | 211000 | 0.0 |
|
734 |
+
| 0.846 | 211500 | 0.0 |
|
735 |
+
| 0.848 | 212000 | 0.0 |
|
736 |
+
| 0.85 | 212500 | 0.0 |
|
737 |
+
| 0.852 | 213000 | 0.0 |
|
738 |
+
| 0.854 | 213500 | 0.0 |
|
739 |
+
| 0.856 | 214000 | 0.0 |
|
740 |
+
| 0.858 | 214500 | 0.0 |
|
741 |
+
| 0.86 | 215000 | 0.0 |
|
742 |
+
| 0.862 | 215500 | 0.0 |
|
743 |
+
| 0.864 | 216000 | 0.0 |
|
744 |
+
| 0.866 | 216500 | 0.0 |
|
745 |
+
| 0.868 | 217000 | 0.0 |
|
746 |
+
| 0.87 | 217500 | 0.0 |
|
747 |
+
| 0.872 | 218000 | 0.0 |
|
748 |
+
| 0.874 | 218500 | 0.0 |
|
749 |
+
| 0.876 | 219000 | 0.0 |
|
750 |
+
| 0.878 | 219500 | 0.0 |
|
751 |
+
| 0.88 | 220000 | 0.0001 |
|
752 |
+
| 0.882 | 220500 | 0.0006 |
|
753 |
+
| 0.884 | 221000 | 0.0 |
|
754 |
+
| 0.886 | 221500 | 0.0 |
|
755 |
+
| 0.888 | 222000 | 0.0 |
|
756 |
+
| 0.89 | 222500 | 0.0 |
|
757 |
+
| 0.892 | 223000 | 0.0 |
|
758 |
+
| 0.894 | 223500 | 0.0 |
|
759 |
+
| 0.896 | 224000 | 0.0 |
|
760 |
+
| 0.898 | 224500 | 0.0 |
|
761 |
+
| 0.9 | 225000 | 0.0 |
|
762 |
+
| 0.902 | 225500 | 0.0 |
|
763 |
+
| 0.904 | 226000 | 0.0 |
|
764 |
+
| 0.906 | 226500 | 0.0 |
|
765 |
+
| 0.908 | 227000 | 0.0 |
|
766 |
+
| 0.91 | 227500 | 0.0 |
|
767 |
+
| 0.912 | 228000 | 0.0 |
|
768 |
+
| 0.914 | 228500 | 0.0 |
|
769 |
+
| 0.916 | 229000 | 0.0 |
|
770 |
+
| 0.918 | 229500 | 0.0 |
|
771 |
+
| 0.92 | 230000 | 0.0 |
|
772 |
+
| 0.922 | 230500 | 0.0 |
|
773 |
+
| 0.924 | 231000 | 0.0 |
|
774 |
+
| 0.926 | 231500 | 0.0 |
|
775 |
+
| 0.928 | 232000 | 0.0 |
|
776 |
+
| 0.93 | 232500 | 0.0 |
|
777 |
+
| 0.932 | 233000 | 0.0 |
|
778 |
+
| 0.934 | 233500 | 0.0 |
|
779 |
+
| 0.936 | 234000 | 0.0 |
|
780 |
+
| 0.938 | 234500 | 0.0 |
|
781 |
+
| 0.94 | 235000 | 0.0 |
|
782 |
+
| 0.942 | 235500 | 0.0 |
|
783 |
+
| 0.944 | 236000 | 0.0 |
|
784 |
+
| 0.946 | 236500 | 0.0 |
|
785 |
+
| 0.948 | 237000 | 0.0 |
|
786 |
+
| 0.95 | 237500 | 0.0 |
|
787 |
+
| 0.952 | 238000 | 0.0 |
|
788 |
+
| 0.954 | 238500 | 0.0 |
|
789 |
+
| 0.956 | 239000 | 0.0 |
|
790 |
+
| 0.958 | 239500 | 0.0 |
|
791 |
+
| 0.96 | 240000 | 0.0 |
|
792 |
+
| 0.962 | 240500 | 0.0 |
|
793 |
+
| 0.964 | 241000 | 0.0 |
|
794 |
+
| 0.966 | 241500 | 0.0 |
|
795 |
+
| 0.968 | 242000 | 0.0 |
|
796 |
+
| 0.97 | 242500 | 0.0 |
|
797 |
+
| 0.972 | 243000 | 0.0 |
|
798 |
+
| 0.974 | 243500 | 0.0 |
|
799 |
+
| 0.976 | 244000 | 0.0 |
|
800 |
+
| 0.978 | 244500 | 0.0 |
|
801 |
+
| 0.98 | 245000 | 0.0 |
|
802 |
+
| 0.982 | 245500 | 0.0 |
|
803 |
+
| 0.984 | 246000 | 0.0 |
|
804 |
+
| 0.986 | 246500 | 0.0 |
|
805 |
+
| 0.988 | 247000 | 0.0 |
|
806 |
+
| 0.99 | 247500 | 0.0 |
|
807 |
+
| 0.992 | 248000 | 0.0 |
|
808 |
+
| 0.994 | 248500 | 0.0 |
|
809 |
+
| 0.996 | 249000 | 0.0 |
|
810 |
+
| 0.998 | 249500 | 0.0 |
|
811 |
+
| 1.0 | 250000 | 0.0 |
|
812 |
+
|
813 |
+
</details>
|
814 |
+
|
815 |
+
### Framework Versions
|
816 |
+
- Python: 3.10.14
|
817 |
+
- Sentence Transformers: 3.4.1
|
818 |
+
- Transformers: 4.48.2
|
819 |
+
- PyTorch: 2.4.1+cu121
|
820 |
+
- Accelerate: 0.34.2
|
821 |
+
- Datasets: 3.0.1
|
822 |
+
- Tokenizers: 0.21.0
|
823 |
+
|
824 |
+
## Citation
|
825 |
+
|
826 |
+
### BibTeX
|
827 |
+
|
828 |
+
#### Sentence Transformers
|
829 |
+
```bibtex
|
830 |
+
@inproceedings{reimers-2019-sentence-bert,
|
831 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
832 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
833 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
834 |
+
month = "11",
|
835 |
+
year = "2019",
|
836 |
+
publisher = "Association for Computational Linguistics",
|
837 |
+
url = "https://arxiv.org/abs/1908.10084",
|
838 |
+
}
|
839 |
+
```
|
840 |
+
|
841 |
+
#### MultipleNegativesRankingLoss
|
842 |
+
```bibtex
|
843 |
+
@misc{henderson2017efficient,
|
844 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
845 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
846 |
+
year={2017},
|
847 |
+
eprint={1705.00652},
|
848 |
+
archivePrefix={arXiv},
|
849 |
+
primaryClass={cs.CL}
|
850 |
+
}
|
851 |
+
```
|
852 |
+
|
853 |
+
<!--
|
854 |
+
## Glossary
|
855 |
+
|
856 |
+
*Clearly define terms in order to be accessible across audiences.*
|
857 |
+
-->
|
858 |
+
|
859 |
+
<!--
|
860 |
+
## Model Card Authors
|
861 |
+
|
862 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
863 |
+
-->
|
864 |
+
|
865 |
+
<!--
|
866 |
+
## Model Card Contact
|
867 |
+
|
868 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
869 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "unsupervised-simcse-bangla-sbert",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.5,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92eb2a20c19b526afac50ce0ae69235f0c3ac8e83d1455c07434c3471cb07f26
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|