farhana1996 commited on
Commit
cdb7e83
·
verified ·
1 Parent(s): 3d3649f

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,869 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: shihab17/bangla-sentence-transformer
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:1000000
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: ফেসবুক পোস্টে জোসেফ রাধিক জানিয়েছেন, প্রথম থেকেই ফটোগ্রাফির নেশা
14
+ ছিল তার
15
+ sentences:
16
+ - ফেসবুক পোস্টে জোসেফ রাধিক জানিয়েছেন, প্রথম থেকেই ফটোগ্রাফির নেশা ছিল তার
17
+ - গত বছর সিউল অলিম্পিক স্টেডিয়ামে হাজির হয়েছিলেন হাজার দর্শক
18
+ - বিশ্বের সবচেয়ে প্রবীণ পুরুষ জাপানের সাকারি মোমোই বছর বয়সে মারা গেছেন
19
+ - source_sentence: তিনি যুগান্তরকে বলেন, মাগুরা জেলার রাজনৈতিক কর্মকাণ্ড আবর্তিত
20
+ হচ্ছে সাইফুজ্জামান শিখরকে ঘিরেই
21
+ sentences:
22
+ - যাবার আগে বলে গেলেন আসি
23
+ - তিনি যুগান্তরকে বলেন, মাগুরা জেলার রাজনৈতিক কর্মকাণ্ড আবর্তিত হচ্ছে সাইফুজ্জামান
24
+ শিখরকে ঘিরেই
25
+ - ওই কর্মকর্তা বলেন, সাম্প্রতিক জঙ্গি হামলার পরিপ্রেক্ষিতে ওই সময়ে টেলিযোগাযোগকে
26
+ কীভাবে কাজে লাগানো যায় তার অংশ হিসেবে এ মহড়া হবে বলে তাদেরকে জানানো হয়েছে
27
+ - source_sentence: এ স্বাধীনতা অর্জনের পথে সমগ্র জাতির সঙ্গে একই কাতারে পাবনার বেড়া
28
+ অঞ্চলের হাজারো মানুষ যুদ্ধে অবতীর্ণ হন এবং অনেকেই শাহাদাত বরণ করেন
29
+ sentences:
30
+ - এ স্বাধীনতা অর্জনের পথে সমগ্র জাতির সঙ্গে একই কাতারে পাবনার বেড়া অঞ্চলের হাজারো
31
+ মানুষ যুদ্ধে অবতীর্ণ হন এবং অনেকেই শাহাদাত বরণ করেন
32
+ - বোরো মৌসুমের ধান কাটাতে হয়
33
+ - এই আতঙ্কের অবসান কে ঘটাবে? এখন আর কোনো সময় নেই
34
+ - source_sentence: ওয়েস্ট ইন্ডিজের বিপক্ষে চার ইনিংসে বাংলাদেশের রান ছিল যথাক্রমে
35
+ , , ও
36
+ sentences:
37
+ - বাংলাদেশের অন্যতম সফল ব্যাটার আশরাফুল
38
+ - ওয়েস্ট ইন্ডিজের বিপক্ষে চার ইনিংসে বাংলাদেশের রান ছিল যথাক্রমে , , ও
39
+ - রয়টার্স
40
+ - source_sentence: রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই
41
+ স্বরাষ্ট্রমন্ত্রী আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন
42
+ sentences:
43
+ - এ পর্বে অতিথি হিসেবে উপস্থিত হবেন বীর মুক্তিযোদ্ধা এবং বিশিষ্ট সাংস্কৃতিক ব্যক্তিত্ব
44
+ নাসির উদ্দীন ইউসুফ এবং তার মেয়ে প্রযোজক ও মঞ্চ অভিনেত্রী এশা ইউসুফ
45
+ - আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র
46
+ জানিয়েছে
47
+ - রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই স্বরাষ্ট্রমন্ত্রী
48
+ আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন
49
+ ---
50
+
51
+ # SentenceTransformer based on shihab17/bangla-sentence-transformer
52
+
53
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [shihab17/bangla-sentence-transformer](https://huggingface.co/shihab17/bangla-sentence-transformer). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** Sentence Transformer
59
+ - **Base model:** [shihab17/bangla-sentence-transformer](https://huggingface.co/shihab17/bangla-sentence-transformer) <!-- at revision ab250a2c767638562cd3caa8c0017b106a481755 -->
60
+ - **Maximum Sequence Length:** 512 tokens
61
+ - **Output Dimensionality:** 768 dimensions
62
+ - **Similarity Function:** Cosine Similarity
63
+ <!-- - **Training Dataset:** Unknown -->
64
+ <!-- - **Language:** Unknown -->
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
70
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
71
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
72
+
73
+ ### Full Model Architecture
74
+
75
+ ```
76
+ SentenceTransformer(
77
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
78
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
79
+ )
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
+
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SentenceTransformer("farhana1996/unsupervised-simcse-bangla-sbert")
98
+ # Run inference
99
+ sentences = [
100
+ 'রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই স্বরাষ্ট্রমন্ত্রী আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন',
101
+ 'রোহিঙ্গা অনুপ্রবেশসহ বিভিন্ন ইস্যুতে নানা টানা পোড়েনের মধ্যেই স্বরাষ্ট্রমন্ত্রী আসাদুজ্জামান খান কামাল মিয়ানমার সফরে যাচ্ছেন',
102
+ 'আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র জানিয়েছে',
103
+ ]
104
+ embeddings = model.encode(sentences)
105
+ print(embeddings.shape)
106
+ # [3, 768]
107
+
108
+ # Get the similarity scores for the embeddings
109
+ similarities = model.similarity(embeddings, embeddings)
110
+ print(similarities.shape)
111
+ # [3, 3]
112
+ ```
113
+
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Dataset
153
+
154
+ #### Unnamed Dataset
155
+
156
+ * Size: 1,000,000 training samples
157
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | sentence_0 | sentence_1 |
160
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
161
+ | type | string | string |
162
+ | details | <ul><li>min: 3 tokens</li><li>mean: 25.91 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 25.91 tokens</li><li>max: 148 tokens</li></ul> |
163
+ * Samples:
164
+ | sentence_0 | sentence_1 |
165
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
166
+ | <code>বিনোদন ডেস্ক অভিনেতা নির্মাতা জাহিদ হাসান ঈদ উপলক্ষে অভিনয় ও পরিচালনা নিয়ে ব্যস্ত সময় কাটাচ্ছেন</code> | <code>বিনোদন ডেস্ক অভিনেতা নির্মাতা জাহিদ হাসান ঈদ উপলক্ষে অভিনয় ও পরিচালনা নিয়ে ব্যস্ত সময় কাটাচ্ছেন</code> |
167
+ | <code>আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র জানিয়েছে</code> | <code>আগামী এক মাসের মধ্যে এটি জনপ্রশাসন মন্ত্রণালয়ে পাঠানো হবে বলে সংশ্লিষ্ট সূত্র জানিয়েছে</code> |
168
+ | <code>বিশ্ববিদ্যালয় ভারপ্রাপ্ত রেজিস্ট্রার প্রফেসর ড কামরুল হুদা বলেন, পুলিশ বিশ্ববিদ্যালয় প্রশাসনের কাছে তালিকা চাইলে বিশ্ববিদ্যালয়ের বিভিন্ন বিভাগে খোঁজ নিয়ে জনের নাম পাওয়া যায়</code> | <code>বিশ্ববিদ্যালয় ভারপ্রাপ্ত রেজিস্ট্রার প্রফেসর ড কামরুল হুদা বলেন, পুলিশ বিশ্ববিদ্যালয় প্রশাসনের কাছে তালিকা চাইলে বিশ্ববিদ্যালয়ের বিভিন্ন বিভাগে খোঁজ নিয়ে জনের নাম পাওয়া যায়</code> |
169
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
170
+ ```json
171
+ {
172
+ "scale": 20.0,
173
+ "similarity_fct": "cos_sim"
174
+ }
175
+ ```
176
+
177
+ ### Training Hyperparameters
178
+ #### Non-Default Hyperparameters
179
+
180
+ - `per_device_train_batch_size`: 4
181
+ - `per_device_eval_batch_size`: 4
182
+ - `num_train_epochs`: 1
183
+ - `fp16`: True
184
+ - `multi_dataset_batch_sampler`: round_robin
185
+
186
+ #### All Hyperparameters
187
+ <details><summary>Click to expand</summary>
188
+
189
+ - `overwrite_output_dir`: False
190
+ - `do_predict`: False
191
+ - `eval_strategy`: no
192
+ - `prediction_loss_only`: True
193
+ - `per_device_train_batch_size`: 4
194
+ - `per_device_eval_batch_size`: 4
195
+ - `per_gpu_train_batch_size`: None
196
+ - `per_gpu_eval_batch_size`: None
197
+ - `gradient_accumulation_steps`: 1
198
+ - `eval_accumulation_steps`: None
199
+ - `torch_empty_cache_steps`: None
200
+ - `learning_rate`: 5e-05
201
+ - `weight_decay`: 0.0
202
+ - `adam_beta1`: 0.9
203
+ - `adam_beta2`: 0.999
204
+ - `adam_epsilon`: 1e-08
205
+ - `max_grad_norm`: 1
206
+ - `num_train_epochs`: 1
207
+ - `max_steps`: -1
208
+ - `lr_scheduler_type`: linear
209
+ - `lr_scheduler_kwargs`: {}
210
+ - `warmup_ratio`: 0.0
211
+ - `warmup_steps`: 0
212
+ - `log_level`: passive
213
+ - `log_level_replica`: warning
214
+ - `log_on_each_node`: True
215
+ - `logging_nan_inf_filter`: True
216
+ - `save_safetensors`: True
217
+ - `save_on_each_node`: False
218
+ - `save_only_model`: False
219
+ - `restore_callback_states_from_checkpoint`: False
220
+ - `no_cuda`: False
221
+ - `use_cpu`: False
222
+ - `use_mps_device`: False
223
+ - `seed`: 42
224
+ - `data_seed`: None
225
+ - `jit_mode_eval`: False
226
+ - `use_ipex`: False
227
+ - `bf16`: False
228
+ - `fp16`: True
229
+ - `fp16_opt_level`: O1
230
+ - `half_precision_backend`: auto
231
+ - `bf16_full_eval`: False
232
+ - `fp16_full_eval`: False
233
+ - `tf32`: None
234
+ - `local_rank`: 0
235
+ - `ddp_backend`: None
236
+ - `tpu_num_cores`: None
237
+ - `tpu_metrics_debug`: False
238
+ - `debug`: []
239
+ - `dataloader_drop_last`: False
240
+ - `dataloader_num_workers`: 0
241
+ - `dataloader_prefetch_factor`: None
242
+ - `past_index`: -1
243
+ - `disable_tqdm`: False
244
+ - `remove_unused_columns`: True
245
+ - `label_names`: None
246
+ - `load_best_model_at_end`: False
247
+ - `ignore_data_skip`: False
248
+ - `fsdp`: []
249
+ - `fsdp_min_num_params`: 0
250
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
251
+ - `fsdp_transformer_layer_cls_to_wrap`: None
252
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
253
+ - `deepspeed`: None
254
+ - `label_smoothing_factor`: 0.0
255
+ - `optim`: adamw_torch
256
+ - `optim_args`: None
257
+ - `adafactor`: False
258
+ - `group_by_length`: False
259
+ - `length_column_name`: length
260
+ - `ddp_find_unused_parameters`: None
261
+ - `ddp_bucket_cap_mb`: None
262
+ - `ddp_broadcast_buffers`: False
263
+ - `dataloader_pin_memory`: True
264
+ - `dataloader_persistent_workers`: False
265
+ - `skip_memory_metrics`: True
266
+ - `use_legacy_prediction_loop`: False
267
+ - `push_to_hub`: False
268
+ - `resume_from_checkpoint`: None
269
+ - `hub_model_id`: None
270
+ - `hub_strategy`: every_save
271
+ - `hub_private_repo`: None
272
+ - `hub_always_push`: False
273
+ - `gradient_checkpointing`: False
274
+ - `gradient_checkpointing_kwargs`: None
275
+ - `include_inputs_for_metrics`: False
276
+ - `include_for_metrics`: []
277
+ - `eval_do_concat_batches`: True
278
+ - `fp16_backend`: auto
279
+ - `push_to_hub_model_id`: None
280
+ - `push_to_hub_organization`: None
281
+ - `mp_parameters`:
282
+ - `auto_find_batch_size`: False
283
+ - `full_determinism`: False
284
+ - `torchdynamo`: None
285
+ - `ray_scope`: last
286
+ - `ddp_timeout`: 1800
287
+ - `torch_compile`: False
288
+ - `torch_compile_backend`: None
289
+ - `torch_compile_mode`: None
290
+ - `dispatch_batches`: None
291
+ - `split_batches`: None
292
+ - `include_tokens_per_second`: False
293
+ - `include_num_input_tokens_seen`: False
294
+ - `neftune_noise_alpha`: None
295
+ - `optim_target_modules`: None
296
+ - `batch_eval_metrics`: False
297
+ - `eval_on_start`: False
298
+ - `use_liger_kernel`: False
299
+ - `eval_use_gather_object`: False
300
+ - `average_tokens_across_devices`: False
301
+ - `prompts`: None
302
+ - `batch_sampler`: batch_sampler
303
+ - `multi_dataset_batch_sampler`: round_robin
304
+
305
+ </details>
306
+
307
+ ### Training Logs
308
+ <details><summary>Click to expand</summary>
309
+
310
+ | Epoch | Step | Training Loss |
311
+ |:-----:|:------:|:-------------:|
312
+ | 0.002 | 500 | 0.0036 |
313
+ | 0.004 | 1000 | 0.0001 |
314
+ | 0.006 | 1500 | 0.0 |
315
+ | 0.008 | 2000 | 0.0001 |
316
+ | 0.01 | 2500 | 0.0 |
317
+ | 0.012 | 3000 | 0.0 |
318
+ | 0.014 | 3500 | 0.0 |
319
+ | 0.016 | 4000 | 0.0 |
320
+ | 0.018 | 4500 | 0.0 |
321
+ | 0.02 | 5000 | 0.0001 |
322
+ | 0.022 | 5500 | 0.0 |
323
+ | 0.024 | 6000 | 0.0 |
324
+ | 0.026 | 6500 | 0.0 |
325
+ | 0.028 | 7000 | 0.0 |
326
+ | 0.03 | 7500 | 0.0 |
327
+ | 0.032 | 8000 | 0.0 |
328
+ | 0.034 | 8500 | 0.0 |
329
+ | 0.036 | 9000 | 0.0 |
330
+ | 0.038 | 9500 | 0.0 |
331
+ | 0.04 | 10000 | 0.0001 |
332
+ | 0.042 | 10500 | 0.0 |
333
+ | 0.044 | 11000 | 0.0002 |
334
+ | 0.046 | 11500 | 0.0 |
335
+ | 0.048 | 12000 | 0.0 |
336
+ | 0.05 | 12500 | 0.0 |
337
+ | 0.052 | 13000 | 0.0 |
338
+ | 0.054 | 13500 | 0.0 |
339
+ | 0.056 | 14000 | 0.0 |
340
+ | 0.058 | 14500 | 0.0006 |
341
+ | 0.06 | 15000 | 0.0 |
342
+ | 0.062 | 15500 | 0.0 |
343
+ | 0.064 | 16000 | 0.0 |
344
+ | 0.066 | 16500 | 0.0001 |
345
+ | 0.068 | 17000 | 0.0 |
346
+ | 0.07 | 17500 | 0.0 |
347
+ | 0.072 | 18000 | 0.0 |
348
+ | 0.074 | 18500 | 0.0 |
349
+ | 0.076 | 19000 | 0.0 |
350
+ | 0.078 | 19500 | 0.0 |
351
+ | 0.08 | 20000 | 0.0 |
352
+ | 0.082 | 20500 | 0.0 |
353
+ | 0.084 | 21000 | 0.0004 |
354
+ | 0.086 | 21500 | 0.0 |
355
+ | 0.088 | 22000 | 0.0 |
356
+ | 0.09 | 22500 | 0.0 |
357
+ | 0.092 | 23000 | 0.0 |
358
+ | 0.094 | 23500 | 0.0 |
359
+ | 0.096 | 24000 | 0.0001 |
360
+ | 0.098 | 24500 | 0.0 |
361
+ | 0.1 | 25000 | 0.0 |
362
+ | 0.102 | 25500 | 0.0001 |
363
+ | 0.104 | 26000 | 0.0 |
364
+ | 0.106 | 26500 | 0.0001 |
365
+ | 0.108 | 27000 | 0.0 |
366
+ | 0.11 | 27500 | 0.0 |
367
+ | 0.112 | 28000 | 0.0 |
368
+ | 0.114 | 28500 | 0.0 |
369
+ | 0.116 | 29000 | 0.0 |
370
+ | 0.118 | 29500 | 0.0007 |
371
+ | 0.12 | 30000 | 0.0 |
372
+ | 0.122 | 30500 | 0.0 |
373
+ | 0.124 | 31000 | 0.0 |
374
+ | 0.126 | 31500 | 0.0 |
375
+ | 0.128 | 32000 | 0.0 |
376
+ | 0.13 | 32500 | 0.0 |
377
+ | 0.132 | 33000 | 0.0 |
378
+ | 0.134 | 33500 | 0.0003 |
379
+ | 0.136 | 34000 | 0.0 |
380
+ | 0.138 | 34500 | 0.0001 |
381
+ | 0.14 | 35000 | 0.0 |
382
+ | 0.142 | 35500 | 0.0007 |
383
+ | 0.144 | 36000 | 0.0001 |
384
+ | 0.146 | 36500 | 0.0 |
385
+ | 0.148 | 37000 | 0.0 |
386
+ | 0.15 | 37500 | 0.0 |
387
+ | 0.152 | 38000 | 0.0 |
388
+ | 0.154 | 38500 | 0.0 |
389
+ | 0.156 | 39000 | 0.0 |
390
+ | 0.158 | 39500 | 0.0 |
391
+ | 0.16 | 40000 | 0.0 |
392
+ | 0.162 | 40500 | 0.0 |
393
+ | 0.164 | 41000 | 0.0 |
394
+ | 0.166 | 41500 | 0.0 |
395
+ | 0.168 | 42000 | 0.0005 |
396
+ | 0.17 | 42500 | 0.0 |
397
+ | 0.172 | 43000 | 0.0 |
398
+ | 0.174 | 43500 | 0.0 |
399
+ | 0.176 | 44000 | 0.0 |
400
+ | 0.178 | 44500 | 0.0 |
401
+ | 0.18 | 45000 | 0.0 |
402
+ | 0.182 | 45500 | 0.0 |
403
+ | 0.184 | 46000 | 0.0 |
404
+ | 0.186 | 46500 | 0.0 |
405
+ | 0.188 | 47000 | 0.0 |
406
+ | 0.19 | 47500 | 0.0 |
407
+ | 0.192 | 48000 | 0.0 |
408
+ | 0.194 | 48500 | 0.0 |
409
+ | 0.196 | 49000 | 0.0002 |
410
+ | 0.198 | 49500 | 0.0 |
411
+ | 0.2 | 50000 | 0.0 |
412
+ | 0.202 | 50500 | 0.0008 |
413
+ | 0.204 | 51000 | 0.0 |
414
+ | 0.206 | 51500 | 0.0 |
415
+ | 0.208 | 52000 | 0.0 |
416
+ | 0.21 | 52500 | 0.0 |
417
+ | 0.212 | 53000 | 0.0 |
418
+ | 0.214 | 53500 | 0.0 |
419
+ | 0.216 | 54000 | 0.0 |
420
+ | 0.218 | 54500 | 0.0 |
421
+ | 0.22 | 55000 | 0.0 |
422
+ | 0.222 | 55500 | 0.0 |
423
+ | 0.224 | 56000 | 0.0 |
424
+ | 0.226 | 56500 | 0.0 |
425
+ | 0.228 | 57000 | 0.0 |
426
+ | 0.23 | 57500 | 0.0 |
427
+ | 0.232 | 58000 | 0.0001 |
428
+ | 0.234 | 58500 | 0.0005 |
429
+ | 0.236 | 59000 | 0.0 |
430
+ | 0.238 | 59500 | 0.0 |
431
+ | 0.24 | 60000 | 0.0 |
432
+ | 0.242 | 60500 | 0.0 |
433
+ | 0.244 | 61000 | 0.0 |
434
+ | 0.246 | 61500 | 0.0 |
435
+ | 0.248 | 62000 | 0.0 |
436
+ | 0.25 | 62500 | 0.0 |
437
+ | 0.252 | 63000 | 0.0 |
438
+ | 0.254 | 63500 | 0.0 |
439
+ | 0.256 | 64000 | 0.0001 |
440
+ | 0.258 | 64500 | 0.0007 |
441
+ | 0.26 | 65000 | 0.0 |
442
+ | 0.262 | 65500 | 0.0 |
443
+ | 0.264 | 66000 | 0.0 |
444
+ | 0.266 | 66500 | 0.0 |
445
+ | 0.268 | 67000 | 0.0003 |
446
+ | 0.27 | 67500 | 0.0 |
447
+ | 0.272 | 68000 | 0.0 |
448
+ | 0.274 | 68500 | 0.0 |
449
+ | 0.276 | 69000 | 0.0 |
450
+ | 0.278 | 69500 | 0.0 |
451
+ | 0.28 | 70000 | 0.0 |
452
+ | 0.282 | 70500 | 0.0 |
453
+ | 0.284 | 71000 | 0.0 |
454
+ | 0.286 | 71500 | 0.0 |
455
+ | 0.288 | 72000 | 0.0 |
456
+ | 0.29 | 72500 | 0.0 |
457
+ | 0.292 | 73000 | 0.0 |
458
+ | 0.294 | 73500 | 0.0 |
459
+ | 0.296 | 74000 | 0.0004 |
460
+ | 0.298 | 74500 | 0.0 |
461
+ | 0.3 | 75000 | 0.0 |
462
+ | 0.302 | 75500 | 0.0 |
463
+ | 0.304 | 76000 | 0.0 |
464
+ | 0.306 | 76500 | 0.0 |
465
+ | 0.308 | 77000 | 0.0 |
466
+ | 0.31 | 77500 | 0.0 |
467
+ | 0.312 | 78000 | 0.0 |
468
+ | 0.314 | 78500 | 0.0 |
469
+ | 0.316 | 79000 | 0.0 |
470
+ | 0.318 | 79500 | 0.0 |
471
+ | 0.32 | 80000 | 0.0 |
472
+ | 0.322 | 80500 | 0.0 |
473
+ | 0.324 | 81000 | 0.0 |
474
+ | 0.326 | 81500 | 0.0 |
475
+ | 0.328 | 82000 | 0.0 |
476
+ | 0.33 | 82500 | 0.0 |
477
+ | 0.332 | 83000 | 0.0 |
478
+ | 0.334 | 83500 | 0.0 |
479
+ | 0.336 | 84000 | 0.0 |
480
+ | 0.338 | 84500 | 0.0 |
481
+ | 0.34 | 85000 | 0.0 |
482
+ | 0.342 | 85500 | 0.0 |
483
+ | 0.344 | 86000 | 0.0 |
484
+ | 0.346 | 86500 | 0.0 |
485
+ | 0.348 | 87000 | 0.0 |
486
+ | 0.35 | 87500 | 0.0 |
487
+ | 0.352 | 88000 | 0.0002 |
488
+ | 0.354 | 88500 | 0.0 |
489
+ | 0.356 | 89000 | 0.0 |
490
+ | 0.358 | 89500 | 0.0 |
491
+ | 0.36 | 90000 | 0.0 |
492
+ | 0.362 | 90500 | 0.0 |
493
+ | 0.364 | 91000 | 0.0 |
494
+ | 0.366 | 91500 | 0.0 |
495
+ | 0.368 | 92000 | 0.0 |
496
+ | 0.37 | 92500 | 0.0 |
497
+ | 0.372 | 93000 | 0.0 |
498
+ | 0.374 | 93500 | 0.0 |
499
+ | 0.376 | 94000 | 0.0002 |
500
+ | 0.378 | 94500 | 0.0 |
501
+ | 0.38 | 95000 | 0.0 |
502
+ | 0.382 | 95500 | 0.0 |
503
+ | 0.384 | 96000 | 0.0001 |
504
+ | 0.386 | 96500 | 0.0 |
505
+ | 0.388 | 97000 | 0.0 |
506
+ | 0.39 | 97500 | 0.0 |
507
+ | 0.392 | 98000 | 0.0 |
508
+ | 0.394 | 98500 | 0.0 |
509
+ | 0.396 | 99000 | 0.0 |
510
+ | 0.398 | 99500 | 0.0 |
511
+ | 0.4 | 100000 | 0.0006 |
512
+ | 0.402 | 100500 | 0.0 |
513
+ | 0.404 | 101000 | 0.0 |
514
+ | 0.406 | 101500 | 0.0 |
515
+ | 0.408 | 102000 | 0.0 |
516
+ | 0.41 | 102500 | 0.0 |
517
+ | 0.412 | 103000 | 0.0 |
518
+ | 0.414 | 103500 | 0.0 |
519
+ | 0.416 | 104000 | 0.0 |
520
+ | 0.418 | 104500 | 0.0 |
521
+ | 0.42 | 105000 | 0.0 |
522
+ | 0.422 | 105500 | 0.0 |
523
+ | 0.424 | 106000 | 0.0 |
524
+ | 0.426 | 106500 | 0.0 |
525
+ | 0.428 | 107000 | 0.0 |
526
+ | 0.43 | 107500 | 0.0 |
527
+ | 0.432 | 108000 | 0.0 |
528
+ | 0.434 | 108500 | 0.0 |
529
+ | 0.436 | 109000 | 0.0 |
530
+ | 0.438 | 109500 | 0.0 |
531
+ | 0.44 | 110000 | 0.0 |
532
+ | 0.442 | 110500 | 0.0 |
533
+ | 0.444 | 111000 | 0.0 |
534
+ | 0.446 | 111500 | 0.0 |
535
+ | 0.448 | 112000 | 0.0 |
536
+ | 0.45 | 112500 | 0.0 |
537
+ | 0.452 | 113000 | 0.0 |
538
+ | 0.454 | 113500 | 0.0 |
539
+ | 0.456 | 114000 | 0.0 |
540
+ | 0.458 | 114500 | 0.0 |
541
+ | 0.46 | 115000 | 0.0 |
542
+ | 0.462 | 115500 | 0.0001 |
543
+ | 0.464 | 116000 | 0.0 |
544
+ | 0.466 | 116500 | 0.0 |
545
+ | 0.468 | 117000 | 0.0 |
546
+ | 0.47 | 117500 | 0.0 |
547
+ | 0.472 | 118000 | 0.0 |
548
+ | 0.474 | 118500 | 0.0 |
549
+ | 0.476 | 119000 | 0.0 |
550
+ | 0.478 | 119500 | 0.0 |
551
+ | 0.48 | 120000 | 0.0 |
552
+ | 0.482 | 120500 | 0.0 |
553
+ | 0.484 | 121000 | 0.0 |
554
+ | 0.486 | 121500 | 0.0 |
555
+ | 0.488 | 122000 | 0.0 |
556
+ | 0.49 | 122500 | 0.0 |
557
+ | 0.492 | 123000 | 0.0 |
558
+ | 0.494 | 123500 | 0.0 |
559
+ | 0.496 | 124000 | 0.001 |
560
+ | 0.498 | 124500 | 0.0 |
561
+ | 0.5 | 125000 | 0.0 |
562
+ | 0.502 | 125500 | 0.0 |
563
+ | 0.504 | 126000 | 0.0 |
564
+ | 0.506 | 126500 | 0.0 |
565
+ | 0.508 | 127000 | 0.0 |
566
+ | 0.51 | 127500 | 0.0 |
567
+ | 0.512 | 128000 | 0.0 |
568
+ | 0.514 | 128500 | 0.0 |
569
+ | 0.516 | 129000 | 0.0 |
570
+ | 0.518 | 129500 | 0.0 |
571
+ | 0.52 | 130000 | 0.0 |
572
+ | 0.522 | 130500 | 0.0 |
573
+ | 0.524 | 131000 | 0.0 |
574
+ | 0.526 | 131500 | 0.0 |
575
+ | 0.528 | 132000 | 0.0 |
576
+ | 0.53 | 132500 | 0.0 |
577
+ | 0.532 | 133000 | 0.0 |
578
+ | 0.534 | 133500 | 0.0 |
579
+ | 0.536 | 134000 | 0.0 |
580
+ | 0.538 | 134500 | 0.0 |
581
+ | 0.54 | 135000 | 0.0 |
582
+ | 0.542 | 135500 | 0.0 |
583
+ | 0.544 | 136000 | 0.0 |
584
+ | 0.546 | 136500 | 0.0 |
585
+ | 0.548 | 137000 | 0.0 |
586
+ | 0.55 | 137500 | 0.0 |
587
+ | 0.552 | 138000 | 0.0 |
588
+ | 0.554 | 138500 | 0.0 |
589
+ | 0.556 | 139000 | 0.0 |
590
+ | 0.558 | 139500 | 0.0 |
591
+ | 0.56 | 140000 | 0.0 |
592
+ | 0.562 | 140500 | 0.0 |
593
+ | 0.564 | 141000 | 0.0 |
594
+ | 0.566 | 141500 | 0.0 |
595
+ | 0.568 | 142000 | 0.0 |
596
+ | 0.57 | 142500 | 0.0 |
597
+ | 0.572 | 143000 | 0.0 |
598
+ | 0.574 | 143500 | 0.0 |
599
+ | 0.576 | 144000 | 0.0 |
600
+ | 0.578 | 144500 | 0.0 |
601
+ | 0.58 | 145000 | 0.0 |
602
+ | 0.582 | 145500 | 0.0 |
603
+ | 0.584 | 146000 | 0.0 |
604
+ | 0.586 | 146500 | 0.0 |
605
+ | 0.588 | 147000 | 0.0 |
606
+ | 0.59 | 147500 | 0.0 |
607
+ | 0.592 | 148000 | 0.0 |
608
+ | 0.594 | 148500 | 0.0 |
609
+ | 0.596 | 149000 | 0.0 |
610
+ | 0.598 | 149500 | 0.0 |
611
+ | 0.6 | 150000 | 0.0 |
612
+ | 0.602 | 150500 | 0.0 |
613
+ | 0.604 | 151000 | 0.0 |
614
+ | 0.606 | 151500 | 0.0 |
615
+ | 0.608 | 152000 | 0.0 |
616
+ | 0.61 | 152500 | 0.0 |
617
+ | 0.612 | 153000 | 0.0 |
618
+ | 0.614 | 153500 | 0.0 |
619
+ | 0.616 | 154000 | 0.0 |
620
+ | 0.618 | 154500 | 0.0 |
621
+ | 0.62 | 155000 | 0.0 |
622
+ | 0.622 | 155500 | 0.0 |
623
+ | 0.624 | 156000 | 0.0 |
624
+ | 0.626 | 156500 | 0.0 |
625
+ | 0.628 | 157000 | 0.0 |
626
+ | 0.63 | 157500 | 0.0 |
627
+ | 0.632 | 158000 | 0.0 |
628
+ | 0.634 | 158500 | 0.0 |
629
+ | 0.636 | 159000 | 0.0 |
630
+ | 0.638 | 159500 | 0.0 |
631
+ | 0.64 | 160000 | 0.0 |
632
+ | 0.642 | 160500 | 0.0 |
633
+ | 0.644 | 161000 | 0.0 |
634
+ | 0.646 | 161500 | 0.0 |
635
+ | 0.648 | 162000 | 0.0 |
636
+ | 0.65 | 162500 | 0.0 |
637
+ | 0.652 | 163000 | 0.0 |
638
+ | 0.654 | 163500 | 0.0 |
639
+ | 0.656 | 164000 | 0.0001 |
640
+ | 0.658 | 164500 | 0.0 |
641
+ | 0.66 | 165000 | 0.0 |
642
+ | 0.662 | 165500 | 0.0 |
643
+ | 0.664 | 166000 | 0.0 |
644
+ | 0.666 | 166500 | 0.0 |
645
+ | 0.668 | 167000 | 0.0 |
646
+ | 0.67 | 167500 | 0.0 |
647
+ | 0.672 | 168000 | 0.0 |
648
+ | 0.674 | 168500 | 0.0 |
649
+ | 0.676 | 169000 | 0.0 |
650
+ | 0.678 | 169500 | 0.0 |
651
+ | 0.68 | 170000 | 0.0 |
652
+ | 0.682 | 170500 | 0.0 |
653
+ | 0.684 | 171000 | 0.0 |
654
+ | 0.686 | 171500 | 0.0 |
655
+ | 0.688 | 172000 | 0.0 |
656
+ | 0.69 | 172500 | 0.0 |
657
+ | 0.692 | 173000 | 0.0 |
658
+ | 0.694 | 173500 | 0.0 |
659
+ | 0.696 | 174000 | 0.0 |
660
+ | 0.698 | 174500 | 0.0 |
661
+ | 0.7 | 175000 | 0.0 |
662
+ | 0.702 | 175500 | 0.0 |
663
+ | 0.704 | 176000 | 0.0 |
664
+ | 0.706 | 176500 | 0.0 |
665
+ | 0.708 | 177000 | 0.0 |
666
+ | 0.71 | 177500 | 0.0 |
667
+ | 0.712 | 178000 | 0.0 |
668
+ | 0.714 | 178500 | 0.0 |
669
+ | 0.716 | 179000 | 0.0 |
670
+ | 0.718 | 179500 | 0.0 |
671
+ | 0.72 | 180000 | 0.0 |
672
+ | 0.722 | 180500 | 0.0 |
673
+ | 0.724 | 181000 | 0.0 |
674
+ | 0.726 | 181500 | 0.0 |
675
+ | 0.728 | 182000 | 0.0007 |
676
+ | 0.73 | 182500 | 0.0 |
677
+ | 0.732 | 183000 | 0.0 |
678
+ | 0.734 | 183500 | 0.0 |
679
+ | 0.736 | 184000 | 0.0 |
680
+ | 0.738 | 184500 | 0.0 |
681
+ | 0.74 | 185000 | 0.0 |
682
+ | 0.742 | 185500 | 0.0 |
683
+ | 0.744 | 186000 | 0.0 |
684
+ | 0.746 | 186500 | 0.0 |
685
+ | 0.748 | 187000 | 0.0 |
686
+ | 0.75 | 187500 | 0.0 |
687
+ | 0.752 | 188000 | 0.0 |
688
+ | 0.754 | 188500 | 0.0 |
689
+ | 0.756 | 189000 | 0.0 |
690
+ | 0.758 | 189500 | 0.0 |
691
+ | 0.76 | 190000 | 0.0 |
692
+ | 0.762 | 190500 | 0.0 |
693
+ | 0.764 | 191000 | 0.0 |
694
+ | 0.766 | 191500 | 0.0 |
695
+ | 0.768 | 192000 | 0.0 |
696
+ | 0.77 | 192500 | 0.0 |
697
+ | 0.772 | 193000 | 0.0 |
698
+ | 0.774 | 193500 | 0.0 |
699
+ | 0.776 | 194000 | 0.0 |
700
+ | 0.778 | 194500 | 0.0 |
701
+ | 0.78 | 195000 | 0.0 |
702
+ | 0.782 | 195500 | 0.0 |
703
+ | 0.784 | 196000 | 0.0007 |
704
+ | 0.786 | 196500 | 0.0 |
705
+ | 0.788 | 197000 | 0.0 |
706
+ | 0.79 | 197500 | 0.0 |
707
+ | 0.792 | 198000 | 0.0 |
708
+ | 0.794 | 198500 | 0.0 |
709
+ | 0.796 | 199000 | 0.0 |
710
+ | 0.798 | 199500 | 0.0 |
711
+ | 0.8 | 200000 | 0.0 |
712
+ | 0.802 | 200500 | 0.0 |
713
+ | 0.804 | 201000 | 0.0 |
714
+ | 0.806 | 201500 | 0.0 |
715
+ | 0.808 | 202000 | 0.0 |
716
+ | 0.81 | 202500 | 0.0 |
717
+ | 0.812 | 203000 | 0.0 |
718
+ | 0.814 | 203500 | 0.0 |
719
+ | 0.816 | 204000 | 0.0 |
720
+ | 0.818 | 204500 | 0.0 |
721
+ | 0.82 | 205000 | 0.0 |
722
+ | 0.822 | 205500 | 0.0 |
723
+ | 0.824 | 206000 | 0.0 |
724
+ | 0.826 | 206500 | 0.0 |
725
+ | 0.828 | 207000 | 0.0 |
726
+ | 0.83 | 207500 | 0.0 |
727
+ | 0.832 | 208000 | 0.0 |
728
+ | 0.834 | 208500 | 0.0 |
729
+ | 0.836 | 209000 | 0.0 |
730
+ | 0.838 | 209500 | 0.0 |
731
+ | 0.84 | 210000 | 0.0 |
732
+ | 0.842 | 210500 | 0.0 |
733
+ | 0.844 | 211000 | 0.0 |
734
+ | 0.846 | 211500 | 0.0 |
735
+ | 0.848 | 212000 | 0.0 |
736
+ | 0.85 | 212500 | 0.0 |
737
+ | 0.852 | 213000 | 0.0 |
738
+ | 0.854 | 213500 | 0.0 |
739
+ | 0.856 | 214000 | 0.0 |
740
+ | 0.858 | 214500 | 0.0 |
741
+ | 0.86 | 215000 | 0.0 |
742
+ | 0.862 | 215500 | 0.0 |
743
+ | 0.864 | 216000 | 0.0 |
744
+ | 0.866 | 216500 | 0.0 |
745
+ | 0.868 | 217000 | 0.0 |
746
+ | 0.87 | 217500 | 0.0 |
747
+ | 0.872 | 218000 | 0.0 |
748
+ | 0.874 | 218500 | 0.0 |
749
+ | 0.876 | 219000 | 0.0 |
750
+ | 0.878 | 219500 | 0.0 |
751
+ | 0.88 | 220000 | 0.0001 |
752
+ | 0.882 | 220500 | 0.0006 |
753
+ | 0.884 | 221000 | 0.0 |
754
+ | 0.886 | 221500 | 0.0 |
755
+ | 0.888 | 222000 | 0.0 |
756
+ | 0.89 | 222500 | 0.0 |
757
+ | 0.892 | 223000 | 0.0 |
758
+ | 0.894 | 223500 | 0.0 |
759
+ | 0.896 | 224000 | 0.0 |
760
+ | 0.898 | 224500 | 0.0 |
761
+ | 0.9 | 225000 | 0.0 |
762
+ | 0.902 | 225500 | 0.0 |
763
+ | 0.904 | 226000 | 0.0 |
764
+ | 0.906 | 226500 | 0.0 |
765
+ | 0.908 | 227000 | 0.0 |
766
+ | 0.91 | 227500 | 0.0 |
767
+ | 0.912 | 228000 | 0.0 |
768
+ | 0.914 | 228500 | 0.0 |
769
+ | 0.916 | 229000 | 0.0 |
770
+ | 0.918 | 229500 | 0.0 |
771
+ | 0.92 | 230000 | 0.0 |
772
+ | 0.922 | 230500 | 0.0 |
773
+ | 0.924 | 231000 | 0.0 |
774
+ | 0.926 | 231500 | 0.0 |
775
+ | 0.928 | 232000 | 0.0 |
776
+ | 0.93 | 232500 | 0.0 |
777
+ | 0.932 | 233000 | 0.0 |
778
+ | 0.934 | 233500 | 0.0 |
779
+ | 0.936 | 234000 | 0.0 |
780
+ | 0.938 | 234500 | 0.0 |
781
+ | 0.94 | 235000 | 0.0 |
782
+ | 0.942 | 235500 | 0.0 |
783
+ | 0.944 | 236000 | 0.0 |
784
+ | 0.946 | 236500 | 0.0 |
785
+ | 0.948 | 237000 | 0.0 |
786
+ | 0.95 | 237500 | 0.0 |
787
+ | 0.952 | 238000 | 0.0 |
788
+ | 0.954 | 238500 | 0.0 |
789
+ | 0.956 | 239000 | 0.0 |
790
+ | 0.958 | 239500 | 0.0 |
791
+ | 0.96 | 240000 | 0.0 |
792
+ | 0.962 | 240500 | 0.0 |
793
+ | 0.964 | 241000 | 0.0 |
794
+ | 0.966 | 241500 | 0.0 |
795
+ | 0.968 | 242000 | 0.0 |
796
+ | 0.97 | 242500 | 0.0 |
797
+ | 0.972 | 243000 | 0.0 |
798
+ | 0.974 | 243500 | 0.0 |
799
+ | 0.976 | 244000 | 0.0 |
800
+ | 0.978 | 244500 | 0.0 |
801
+ | 0.98 | 245000 | 0.0 |
802
+ | 0.982 | 245500 | 0.0 |
803
+ | 0.984 | 246000 | 0.0 |
804
+ | 0.986 | 246500 | 0.0 |
805
+ | 0.988 | 247000 | 0.0 |
806
+ | 0.99 | 247500 | 0.0 |
807
+ | 0.992 | 248000 | 0.0 |
808
+ | 0.994 | 248500 | 0.0 |
809
+ | 0.996 | 249000 | 0.0 |
810
+ | 0.998 | 249500 | 0.0 |
811
+ | 1.0 | 250000 | 0.0 |
812
+
813
+ </details>
814
+
815
+ ### Framework Versions
816
+ - Python: 3.10.14
817
+ - Sentence Transformers: 3.4.1
818
+ - Transformers: 4.48.2
819
+ - PyTorch: 2.4.1+cu121
820
+ - Accelerate: 0.34.2
821
+ - Datasets: 3.0.1
822
+ - Tokenizers: 0.21.0
823
+
824
+ ## Citation
825
+
826
+ ### BibTeX
827
+
828
+ #### Sentence Transformers
829
+ ```bibtex
830
+ @inproceedings{reimers-2019-sentence-bert,
831
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
832
+ author = "Reimers, Nils and Gurevych, Iryna",
833
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
834
+ month = "11",
835
+ year = "2019",
836
+ publisher = "Association for Computational Linguistics",
837
+ url = "https://arxiv.org/abs/1908.10084",
838
+ }
839
+ ```
840
+
841
+ #### MultipleNegativesRankingLoss
842
+ ```bibtex
843
+ @misc{henderson2017efficient,
844
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
845
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
846
+ year={2017},
847
+ eprint={1705.00652},
848
+ archivePrefix={arXiv},
849
+ primaryClass={cs.CL}
850
+ }
851
+ ```
852
+
853
+ <!--
854
+ ## Glossary
855
+
856
+ *Clearly define terms in order to be accessible across audiences.*
857
+ -->
858
+
859
+ <!--
860
+ ## Model Card Authors
861
+
862
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
863
+ -->
864
+
865
+ <!--
866
+ ## Model Card Contact
867
+
868
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
869
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "unsupervised-simcse-bangla-sbert",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.5,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92eb2a20c19b526afac50ce0ae69235f0c3ac8e83d1455c07434c3471cb07f26
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }