fats-fme commited on
Commit
3e28521
·
verified ·
1 Parent(s): 44922c7

End of training

Browse files
Files changed (2) hide show
  1. README.md +165 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama2
4
+ base_model: lmsys/vicuna-7b-v1.5
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 167be4db-b25a-495d-88db-a0b1dd58dac0
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: lmsys/vicuna-7b-v1.5
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - c3dc1221f780d83b_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/
32
+ type:
33
+ field_instruction: instruct
34
+ field_output: output
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ device_map: auto
42
+ early_stopping_patience: 5
43
+ eval_max_new_tokens: 128
44
+ eval_sample_packing: false
45
+ eval_steps: 100
46
+ eval_table_size: null
47
+ evals_per_epoch: null
48
+ flash_attention: false
49
+ fp16: false
50
+ fsdp: null
51
+ fsdp_config: null
52
+ gradient_accumulation_steps: 8
53
+ gradient_checkpointing: true
54
+ group_by_length: true
55
+ hub_model_id: fats-fme/167be4db-b25a-495d-88db-a0b1dd58dac0
56
+ hub_repo: null
57
+ hub_strategy: checkpoint
58
+ hub_token: null
59
+ learning_rate: 1.0e-05
60
+ load_in_4bit: false
61
+ load_in_8bit: false
62
+ local_rank: null
63
+ logging_steps: 10
64
+ lora_alpha: 256
65
+ lora_dropout: 0.05
66
+ lora_fan_in_fan_out: null
67
+ lora_model_dir: null
68
+ lora_r: 128
69
+ lora_target_linear: true
70
+ lora_target_modules:
71
+ - gate_proj
72
+ - up_proj
73
+ - o_proj
74
+ - down_proj
75
+ - k_proj
76
+ - q_proj
77
+ - v_proj
78
+ lr_scheduler: cosine
79
+ max_memory:
80
+ 0: 130GB
81
+ max_steps: 200
82
+ micro_batch_size: 1
83
+ mlflow_experiment_name: /tmp/c3dc1221f780d83b_train_data.json
84
+ model_type: AutoModelForCausalLM
85
+ num_epochs: 3
86
+ optimizer: adamw_torch_fused
87
+ output_dir: miner_id_24
88
+ pad_to_sequence_len: true
89
+ resume_from_checkpoint: null
90
+ s2_attention: null
91
+ sample_packing: false
92
+ save_steps: 100
93
+ saves_per_epoch: null
94
+ sequence_len: 2048
95
+ strict: false
96
+ tf32: false
97
+ tokenizer_type: AutoTokenizer
98
+ train_on_inputs: false
99
+ trust_remote_code: true
100
+ use_scaled_dot_product_attention: false
101
+ val_set_size: 0.05
102
+ wandb_entity: null
103
+ wandb_mode: online
104
+ wandb_name: a60bff33-b218-420b-8df6-798d74a1449e
105
+ wandb_project: Gradients-On-Demand
106
+ wandb_run: your_name
107
+ wandb_runid: a60bff33-b218-420b-8df6-798d74a1449e
108
+ warmup_steps: 100
109
+ weight_decay: 0.01
110
+ xformers_attention: null
111
+
112
+ ```
113
+
114
+ </details><br>
115
+
116
+ # 167be4db-b25a-495d-88db-a0b1dd58dac0
117
+
118
+ This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset.
119
+ It achieves the following results on the evaluation set:
120
+ - Loss: 1.2176
121
+
122
+ ## Model description
123
+
124
+ More information needed
125
+
126
+ ## Intended uses & limitations
127
+
128
+ More information needed
129
+
130
+ ## Training and evaluation data
131
+
132
+ More information needed
133
+
134
+ ## Training procedure
135
+
136
+ ### Training hyperparameters
137
+
138
+ The following hyperparameters were used during training:
139
+ - learning_rate: 1e-05
140
+ - train_batch_size: 1
141
+ - eval_batch_size: 1
142
+ - seed: 42
143
+ - gradient_accumulation_steps: 8
144
+ - total_train_batch_size: 8
145
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
146
+ - lr_scheduler_type: cosine
147
+ - lr_scheduler_warmup_steps: 100
148
+ - training_steps: 200
149
+
150
+ ### Training results
151
+
152
+ | Training Loss | Epoch | Step | Validation Loss |
153
+ |:-------------:|:------:|:----:|:---------------:|
154
+ | No log | 0.0000 | 1 | 1.9373 |
155
+ | 2.6955 | 0.0023 | 100 | 1.4105 |
156
+ | 2.4783 | 0.0046 | 200 | 1.2176 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe93da4b12af01c5ec8b43c3db5f650889b3e4fc36429de4cfe10c755437ff53
3
+ size 1279424714