fawwazanvilen commited on
Commit
d60f151
·
1 Parent(s): 3037680

first day of Deep RL!

Browse files
PPO-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3edaad6bce34e4637712975955308a9f18d2ffd786a90dde7962b08d128f9300
3
+ size 147141
PPO-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
PPO-LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b81ebdca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b81ebdd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b81ebddc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b81ebde50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3b81ebdee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3b81ebdf70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b81ec1040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3b81ec10d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b81ec1160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b81ec11f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b81ec1280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3b81eb94e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671950838495011366,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1pMD4Pa2q8b5Y3O3XkX7n5f9O9fbRougAAgD8AAIA/TacuvgMyb7xqE827HHxGup5/7j36GyA7AACAPwAAgD8gxza+O9rAvADPVDnrneY3C2osPjSDlbgAAIA/AACAP83f9zzYaqg90nX7PEMpKr4WXDU62xhNPQAAAAAAAAAAbmSwvic3WD/6JwK9YRbwvnVIWL5D50g+AAAAAAAAAADaau49jayxPyJI0z5COMW+SnDwPRKhEj4AAAAAAAAAAM1T870RNDs+TskGPpM4ab502Jo83EyQvAAAAAAAAAAA8wvQPSkoIrqaXLA5PMpTtrULw7pY/Mm4AAAAAAAAgD+m+RA+vm8YP2DlmDxuaZ6+DaKTPUE0gjsAAAAAAAAAAGYkLT24CJw/xQD2PZOYHr8xiV09K1MAPQAAAAAAAAAAwM8OvrgxrT3w++09l/9Zvr55Yjw4CVQ9AAAAAAAAAACNHks+145tPMKMF76vHpq7q/OnPnx7jr0AAIA/AACAP+Z4o70pKDe6MtvAuzGntzc4pdg64ykUtwAAAAAAAIA/mmc0Pk7etrwsISC7qVWXOVQXJL7tqlw6AACAPwAAgD8TJyS+z+98vJo2DLtbAFO5jALYPQH7QDoAAIA/AACAP40+0L1ckyq65hAWNpqlKC9AuHu3sJk9tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxqS/l4J+cECUhpRSlIwBbJRL8YwBdJRHQJlOy8Hv+fh1fZQoaAZoCWgPQwi46c9+ZE1xQJSGlFKUaBVL7mgWR0CZTueMhougdX2UKGgGaAloD0MIh97i4b3OZUCUhpRSlGgVTegDaBZHQJlPgKYzBRB1fZQoaAZoCWgPQwjyDBr659FxQJSGlFKUaBVNcQFoFkdAmVFWxQizLXV9lChoBmgJaA9DCNejcD2KOG9AlIaUUpRoFUv2aBZHQJlR7Ta0x/N1fZQoaAZoCWgPQwgiADj27CpxQJSGlFKUaBVNOgFoFkdAmVL1wT/Q0HV9lChoBmgJaA9DCBpR2ht8tHFAlIaUUpRoFU0BAWgWR0CZU/vFm4AkdX2UKGgGaAloD0MITRJLyh2lcUCUhpRSlGgVS/5oFkdAmVRT7MxGlXV9lChoBmgJaA9DCHB9WG+Uk3FAlIaUUpRoFU0kAWgWR0CZVLY+Sr5qdX2UKGgGaAloD0MIBU1LrEzRckCUhpRSlGgVTR4BaBZHQJm2ZuTA31l1fZQoaAZoCWgPQwjEeM2r+mxwQJSGlFKUaBVNAgFoFkdAmbagWBSUDHV9lChoBmgJaA9DCKzGEtZGzHNAlIaUUpRoFUvhaBZHQJm2wDYAbQ11fZQoaAZoCWgPQwjUnpJzosNwQJSGlFKUaBVNMwFoFkdAmbb/DHfdh3V9lChoBmgJaA9DCLMmFviKrnBAlIaUUpRoFUvsaBZHQJm3JfUnXup1fZQoaAZoCWgPQwi/RpIgnBlwQJSGlFKUaBVNCANoFkdAmbiU87p3YHV9lChoBmgJaA9DCNf5t8s+GnJAlIaUUpRoFU0bAWgWR0CZuQn+AEt/dX2UKGgGaAloD0MIs0RnmcV/bkCUhpRSlGgVS/loFkdAmbn+Fg2If3V9lChoBmgJaA9DCDHrxVAOjHNAlIaUUpRoFU0bAWgWR0CZu8CJoCdSdX2UKGgGaAloD0MISvHxCVk4bkCUhpRSlGgVS99oFkdAmbxDVH4GlnV9lChoBmgJaA9DCBQ/xtw1TGBAlIaUUpRoFU3oA2gWR0CZvFOskpqidX2UKGgGaAloD0MIcTlegeg5cUCUhpRSlGgVS/NoFkdAmbyTd56dD3V9lChoBmgJaA9DCDLmriXkq29AlIaUUpRoFUv4aBZHQJm9YfV7QcB1fZQoaAZoCWgPQwgXnwJgvH9yQJSGlFKUaBVL52gWR0CZvXW5paicdX2UKGgGaAloD0MIdhcoKXBBcECUhpRSlGgVS9xoFkdAmb20ALiMpHV9lChoBmgJaA9DCJAxdy3hHHFAlIaUUpRoFU0HAWgWR0CZviJRfnfVdX2UKGgGaAloD0MIh07Pu7Eab0CUhpRSlGgVS9xoFkdAmb8ukxh2GXV9lChoBmgJaA9DCJOmQdG8inFAlIaUUpRoFUv4aBZHQJnAedJ8OTd1fZQoaAZoCWgPQwhanDHMSRtxQJSGlFKUaBVL8GgWR0CZwUG+9Jz1dX2UKGgGaAloD0MIt39lpYnTcECUhpRSlGgVS9FoFkdAmcIEW69TP3V9lChoBmgJaA9DCKxwy0cSf3BAlIaUUpRoFUvTaBZHQJnC8plSS/11fZQoaAZoCWgPQwgOT6+UJdxwQJSGlFKUaBVL+mgWR0CZxAFZPl+3dX2UKGgGaAloD0MI24mSkEhYbUCUhpRSlGgVTQIBaBZHQJnENqnFYMh1fZQoaAZoCWgPQwhTPC6qhTFxQJSGlFKUaBVL3mgWR0CZxD8Md92HdX2UKGgGaAloD0MImfViKKfEYECUhpRSlGgVTegDaBZHQJnE5rBTGYN1fZQoaAZoCWgPQwgZVYZxt7ZvQJSGlFKUaBVL6mgWR0CZxPpn6EamdX2UKGgGaAloD0MImRJJ9LIRb0CUhpRSlGgVS+NoFkdAmcU3v2GqP3V9lChoBmgJaA9DCBQH0O/7929AlIaUUpRoFUv7aBZHQJnFNc4YJmd1fZQoaAZoCWgPQwh6ihwi7nxxQJSGlFKUaBVL8WgWR0CZxpNpdrwfdX2UKGgGaAloD0MIGELO+79VckCUhpRSlGgVS+RoFkdAmcdtlZowmHV9lChoBmgJaA9DCJ7PgHqzc3JAlIaUUpRoFUvnaBZHQJnI+tzS1E51fZQoaAZoCWgPQwjK4Ch59dFwQJSGlFKUaBVL32gWR0CZyZY9xIatdX2UKGgGaAloD0MIbFuU2WDTcUCUhpRSlGgVS+FoFkdAmcrw79ycTnV9lChoBmgJaA9DCMWRByKLm3FAlIaUUpRoFUvxaBZHQJnLQTlDF611fZQoaAZoCWgPQwjqk9xh0wtwQJSGlFKUaBVL4GgWR0CZy63FUADJdX2UKGgGaAloD0MIYcWp1gLRcUCUhpRSlGgVTR0BaBZHQJnM5z7uUll1fZQoaAZoCWgPQwjkolpElDtiQJSGlFKUaBVN6ANoFkdAmcznkDIRy3V9lChoBmgJaA9DCCtsBrhgOnBAlIaUUpRoFU0CAWgWR0CZzRdxhlUZdX2UKGgGaAloD0MIsz9Qblv7bECUhpRSlGgVTRQBaBZHQJnNoPjGT9t1fZQoaAZoCWgPQwioqzsWmxVxQJSGlFKUaBVL5GgWR0CZzrRoysS1dX2UKGgGaAloD0MIY7fPKnOKckCUhpRSlGgVS99oFkdAmdAvm5lOGnV9lChoBmgJaA9DCNI5P8XxaW5AlIaUUpRoFUvkaBZHQJnQ+eDnNgV1fZQoaAZoCWgPQwjLZDieD0xyQJSGlFKUaBVL+2gWR0CZ0yBqKxcFdX2UKGgGaAloD0MI0O6QYoDGY0CUhpRSlGgVTegDaBZHQJnTKt0V8Cx1fZQoaAZoCWgPQwhVwaikzrlvQJSGlFKUaBVL0WgWR0CZ06sniNsFdX2UKGgGaAloD0MIWhDK+7jcbUCUhpRSlGgVS9loFkdAmdQXcL0BfnV9lChoBmgJaA9DCMU3FD6b1HJAlIaUUpRoFU0LAWgWR0CZ1Xr8BMi9dX2UKGgGaAloD0MIdmwE4vVwYkCUhpRSlGgVTegDaBZHQJnVlBKL8791fZQoaAZoCWgPQwhM4UGza8FhQJSGlFKUaBVN6ANoFkdAmdXau8scyXV9lChoBmgJaA9DCIHLY80I0XJAlIaUUpRoFU1GAWgWR0CZ1iacI7eVdX2UKGgGaAloD0MIQx1WuOWxUkCUhpRSlGgVS9loFkdAmdfNbxEv03V9lChoBmgJaA9DCIAQyZAjbHFAlIaUUpRoFU1fAWgWR0CZ2K/WDpTudX2UKGgGaAloD0MIKQezCfC0ckCUhpRSlGgVTSEBaBZHQJnZPSc9W6t1fZQoaAZoCWgPQwgSaRt/ohhwQJSGlFKUaBVL2WgWR0CZ2bms/6frdX2UKGgGaAloD0MIxJlfzYFScECUhpRSlGgVTQEBaBZHQJna5T/ACXB1fZQoaAZoCWgPQwhUxr/POMVtQJSGlFKUaBVL4WgWR0CZ3OB7u2JBdX2UKGgGaAloD0MINWJmn4cmcECUhpRSlGgVS/loFkdAmdzyOinHenV9lChoBmgJaA9DCPmE7LyNjHJAlIaUUpRoFU03AWgWR0CZ3Q8P4EfUdX2UKGgGaAloD0MIQwHbwcg9cECUhpRSlGgVTQIBaBZHQJndjkp7TlV1fZQoaAZoCWgPQwhz2lNyzjBxQJSGlFKUaBVNbwFoFkdAmd80YoAn2XV9lChoBmgJaA9DCEQzT66p4nBAlIaUUpRoFUvaaBZHQJnfTIsAeaN1fZQoaAZoCWgPQwi+3v3xHmlxQJSGlFKUaBVLy2gWR0CZ3++ee4CqdX2UKGgGaAloD0MII4Wy8PXlZECUhpRSlGgVTegDaBZHQJngZTkyULV1fZQoaAZoCWgPQwg8Tzxny5JyQJSGlFKUaBVNFAFoFkdAmeOqxs2vS3V9lChoBmgJaA9DCHYyOEpeHmFAlIaUUpRoFU3oA2gWR0CZ5BblijL0dX2UKGgGaAloD0MIA9AoXXphbECUhpRSlGgVS+poFkdAmeR6HXVbzXV9lChoBmgJaA9DCPmE7LyNv21AlIaUUpRoFUvnaBZHQJnklNCZ4Od1fZQoaAZoCWgPQwhoyk4/KGBxQJSGlFKUaBVL12gWR0CZ5J64lQdkdX2UKGgGaAloD0MI16NwPYpMY0CUhpRSlGgVTegDaBZHQJnmSeWfK6p1fZQoaAZoCWgPQwiGHcakv2xxQJSGlFKUaBVL1GgWR0CZ5l7GNrCWdX2UKGgGaAloD0MISUp6GBp2ckCUhpRSlGgVS/xoFkdAmee9DYywfXV9lChoBmgJaA9DCHk+A+pNrHBAlIaUUpRoFUv+aBZHQJnodsqJ/G51fZQoaAZoCWgPQwh4uB0a1tFwQJSGlFKUaBVNAAFoFkdAmej4is4kvHV9lChoBmgJaA9DCBAlWvJ4NXFAlIaUUpRoFU1yAmgWR0CZ6VxZ+x4ZdX2UKGgGaAloD0MIsOJUa2GXb0CUhpRSlGgVS9FoFkdAmep+4XoC+3V9lChoBmgJaA9DCOyEl+DUAmNAlIaUUpRoFU3oA2gWR0CZ6v2gWac7dX2UKGgGaAloD0MImrD9ZEzCckCUhpRSlGgVS9loFkdAmetuHerMknV9lChoBmgJaA9DCMO3sG68v29AlIaUUpRoFUvtaBZHQJnrrbL2YfJ1fZQoaAZoCWgPQwi3lslwPL5tQJSGlFKUaBVL72gWR0CZ7DA3DNyHdX2UKGgGaAloD0MIAK358RcTcECUhpRSlGgVS+loFkdAme17kCFK03V9lChoBmgJaA9DCKaaWUtBR3FAlIaUUpRoFU0jAWgWR0CZ7bPdVNpNdX2UKGgGaAloD0MIl+SAXY1RcUCUhpRSlGgVS8poFkdAme3YJ/oaDXV9lChoBmgJaA9DCGg8EcT5e2JAlIaUUpRoFU3oA2gWR0CZ7jTJQtSRdX2UKGgGaAloD0MIIPEr1vDecECUhpRSlGgVTRwBaBZHQJnu+Zb6guh1fZQoaAZoCWgPQwi/gF64c2dwQJSGlFKUaBVL4mgWR0CZ70N21UlzdX2UKGgGaAloD0MIvokhOVkycUCUhpRSlGgVS/9oFkdAmfCQF1SwW3V9lChoBmgJaA9DCBedLLVeUHBAlIaUUpRoFUvzaBZHQJnwl9/jKgZ1fZQoaAZoCWgPQwi0HVN35eVwQJSGlFKUaBVL5mgWR0CZ8zULlV94dX2UKGgGaAloD0MI0jb+RGVYcUCUhpRSlGgVTQQBaBZHQJnzW2x6fJ51fZQoaAZoCWgPQwilaVA0z5hwQJSGlFKUaBVNNwFoFkdAmfSlSbYsd3V9lChoBmgJaA9DCCnsougBnnBAlIaUUpRoFUviaBZHQJn04189fTl1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc5bbaedbf3087a81a525cac81af0a35db6685c6e9f5b2c886d9f80eb4fe5a3
3
+ size 87929
PPO-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f96851e1638da5fed160713830af594537dffd061476dcb6a32a1a12683417
3
+ size 43201
PPO-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 241.32 +/- 37.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b81ebdca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b81ebdd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b81ebddc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b81ebde50>", "_build": "<function ActorCriticPolicy._build at 0x7f3b81ebdee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b81ebdf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b81ec1040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b81ec10d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b81ec1160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b81ec11f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b81ec1280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3b81eb94e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671950838495011366, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1pMD4Pa2q8b5Y3O3XkX7n5f9O9fbRougAAgD8AAIA/TacuvgMyb7xqE827HHxGup5/7j36GyA7AACAPwAAgD8gxza+O9rAvADPVDnrneY3C2osPjSDlbgAAIA/AACAP83f9zzYaqg90nX7PEMpKr4WXDU62xhNPQAAAAAAAAAAbmSwvic3WD/6JwK9YRbwvnVIWL5D50g+AAAAAAAAAADaau49jayxPyJI0z5COMW+SnDwPRKhEj4AAAAAAAAAAM1T870RNDs+TskGPpM4ab502Jo83EyQvAAAAAAAAAAA8wvQPSkoIrqaXLA5PMpTtrULw7pY/Mm4AAAAAAAAgD+m+RA+vm8YP2DlmDxuaZ6+DaKTPUE0gjsAAAAAAAAAAGYkLT24CJw/xQD2PZOYHr8xiV09K1MAPQAAAAAAAAAAwM8OvrgxrT3w++09l/9Zvr55Yjw4CVQ9AAAAAAAAAACNHks+145tPMKMF76vHpq7q/OnPnx7jr0AAIA/AACAP+Z4o70pKDe6MtvAuzGntzc4pdg64ykUtwAAAAAAAIA/mmc0Pk7etrwsISC7qVWXOVQXJL7tqlw6AACAPwAAgD8TJyS+z+98vJo2DLtbAFO5jALYPQH7QDoAAIA/AACAP40+0L1ckyq65hAWNpqlKC9AuHu3sJk9tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxqS/l4J+cECUhpRSlIwBbJRL8YwBdJRHQJlOy8Hv+fh1fZQoaAZoCWgPQwi46c9+ZE1xQJSGlFKUaBVL7mgWR0CZTueMhougdX2UKGgGaAloD0MIh97i4b3OZUCUhpRSlGgVTegDaBZHQJlPgKYzBRB1fZQoaAZoCWgPQwjyDBr659FxQJSGlFKUaBVNcQFoFkdAmVFWxQizLXV9lChoBmgJaA9DCNejcD2KOG9AlIaUUpRoFUv2aBZHQJlR7Ta0x/N1fZQoaAZoCWgPQwgiADj27CpxQJSGlFKUaBVNOgFoFkdAmVL1wT/Q0HV9lChoBmgJaA9DCBpR2ht8tHFAlIaUUpRoFU0BAWgWR0CZU/vFm4AkdX2UKGgGaAloD0MITRJLyh2lcUCUhpRSlGgVS/5oFkdAmVRT7MxGlXV9lChoBmgJaA9DCHB9WG+Uk3FAlIaUUpRoFU0kAWgWR0CZVLY+Sr5qdX2UKGgGaAloD0MIBU1LrEzRckCUhpRSlGgVTR4BaBZHQJm2ZuTA31l1fZQoaAZoCWgPQwjEeM2r+mxwQJSGlFKUaBVNAgFoFkdAmbagWBSUDHV9lChoBmgJaA9DCKzGEtZGzHNAlIaUUpRoFUvhaBZHQJm2wDYAbQ11fZQoaAZoCWgPQwjUnpJzosNwQJSGlFKUaBVNMwFoFkdAmbb/DHfdh3V9lChoBmgJaA9DCLMmFviKrnBAlIaUUpRoFUvsaBZHQJm3JfUnXup1fZQoaAZoCWgPQwi/RpIgnBlwQJSGlFKUaBVNCANoFkdAmbiU87p3YHV9lChoBmgJaA9DCNf5t8s+GnJAlIaUUpRoFU0bAWgWR0CZuQn+AEt/dX2UKGgGaAloD0MIs0RnmcV/bkCUhpRSlGgVS/loFkdAmbn+Fg2If3V9lChoBmgJaA9DCDHrxVAOjHNAlIaUUpRoFU0bAWgWR0CZu8CJoCdSdX2UKGgGaAloD0MISvHxCVk4bkCUhpRSlGgVS99oFkdAmbxDVH4GlnV9lChoBmgJaA9DCBQ/xtw1TGBAlIaUUpRoFU3oA2gWR0CZvFOskpqidX2UKGgGaAloD0MIcTlegeg5cUCUhpRSlGgVS/NoFkdAmbyTd56dD3V9lChoBmgJaA9DCDLmriXkq29AlIaUUpRoFUv4aBZHQJm9YfV7QcB1fZQoaAZoCWgPQwgXnwJgvH9yQJSGlFKUaBVL52gWR0CZvXW5paicdX2UKGgGaAloD0MIdhcoKXBBcECUhpRSlGgVS9xoFkdAmb20ALiMpHV9lChoBmgJaA9DCJAxdy3hHHFAlIaUUpRoFU0HAWgWR0CZviJRfnfVdX2UKGgGaAloD0MIh07Pu7Eab0CUhpRSlGgVS9xoFkdAmb8ukxh2GXV9lChoBmgJaA9DCJOmQdG8inFAlIaUUpRoFUv4aBZHQJnAedJ8OTd1fZQoaAZoCWgPQwhanDHMSRtxQJSGlFKUaBVL8GgWR0CZwUG+9Jz1dX2UKGgGaAloD0MIt39lpYnTcECUhpRSlGgVS9FoFkdAmcIEW69TP3V9lChoBmgJaA9DCKxwy0cSf3BAlIaUUpRoFUvTaBZHQJnC8plSS/11fZQoaAZoCWgPQwgOT6+UJdxwQJSGlFKUaBVL+mgWR0CZxAFZPl+3dX2UKGgGaAloD0MI24mSkEhYbUCUhpRSlGgVTQIBaBZHQJnENqnFYMh1fZQoaAZoCWgPQwhTPC6qhTFxQJSGlFKUaBVL3mgWR0CZxD8Md92HdX2UKGgGaAloD0MImfViKKfEYECUhpRSlGgVTegDaBZHQJnE5rBTGYN1fZQoaAZoCWgPQwgZVYZxt7ZvQJSGlFKUaBVL6mgWR0CZxPpn6EamdX2UKGgGaAloD0MImRJJ9LIRb0CUhpRSlGgVS+NoFkdAmcU3v2GqP3V9lChoBmgJaA9DCBQH0O/7929AlIaUUpRoFUv7aBZHQJnFNc4YJmd1fZQoaAZoCWgPQwh6ihwi7nxxQJSGlFKUaBVL8WgWR0CZxpNpdrwfdX2UKGgGaAloD0MIGELO+79VckCUhpRSlGgVS+RoFkdAmcdtlZowmHV9lChoBmgJaA9DCJ7PgHqzc3JAlIaUUpRoFUvnaBZHQJnI+tzS1E51fZQoaAZoCWgPQwjK4Ch59dFwQJSGlFKUaBVL32gWR0CZyZY9xIatdX2UKGgGaAloD0MIbFuU2WDTcUCUhpRSlGgVS+FoFkdAmcrw79ycTnV9lChoBmgJaA9DCMWRByKLm3FAlIaUUpRoFUvxaBZHQJnLQTlDF611fZQoaAZoCWgPQwjqk9xh0wtwQJSGlFKUaBVL4GgWR0CZy63FUADJdX2UKGgGaAloD0MIYcWp1gLRcUCUhpRSlGgVTR0BaBZHQJnM5z7uUll1fZQoaAZoCWgPQwjkolpElDtiQJSGlFKUaBVN6ANoFkdAmcznkDIRy3V9lChoBmgJaA9DCCtsBrhgOnBAlIaUUpRoFU0CAWgWR0CZzRdxhlUZdX2UKGgGaAloD0MIsz9Qblv7bECUhpRSlGgVTRQBaBZHQJnNoPjGT9t1fZQoaAZoCWgPQwioqzsWmxVxQJSGlFKUaBVL5GgWR0CZzrRoysS1dX2UKGgGaAloD0MIY7fPKnOKckCUhpRSlGgVS99oFkdAmdAvm5lOGnV9lChoBmgJaA9DCNI5P8XxaW5AlIaUUpRoFUvkaBZHQJnQ+eDnNgV1fZQoaAZoCWgPQwjLZDieD0xyQJSGlFKUaBVL+2gWR0CZ0yBqKxcFdX2UKGgGaAloD0MI0O6QYoDGY0CUhpRSlGgVTegDaBZHQJnTKt0V8Cx1fZQoaAZoCWgPQwhVwaikzrlvQJSGlFKUaBVL0WgWR0CZ06sniNsFdX2UKGgGaAloD0MIWhDK+7jcbUCUhpRSlGgVS9loFkdAmdQXcL0BfnV9lChoBmgJaA9DCMU3FD6b1HJAlIaUUpRoFU0LAWgWR0CZ1Xr8BMi9dX2UKGgGaAloD0MIdmwE4vVwYkCUhpRSlGgVTegDaBZHQJnVlBKL8791fZQoaAZoCWgPQwhM4UGza8FhQJSGlFKUaBVN6ANoFkdAmdXau8scyXV9lChoBmgJaA9DCIHLY80I0XJAlIaUUpRoFU1GAWgWR0CZ1iacI7eVdX2UKGgGaAloD0MIQx1WuOWxUkCUhpRSlGgVS9loFkdAmdfNbxEv03V9lChoBmgJaA9DCIAQyZAjbHFAlIaUUpRoFU1fAWgWR0CZ2K/WDpTudX2UKGgGaAloD0MIKQezCfC0ckCUhpRSlGgVTSEBaBZHQJnZPSc9W6t1fZQoaAZoCWgPQwgSaRt/ohhwQJSGlFKUaBVL2WgWR0CZ2bms/6frdX2UKGgGaAloD0MIxJlfzYFScECUhpRSlGgVTQEBaBZHQJna5T/ACXB1fZQoaAZoCWgPQwhUxr/POMVtQJSGlFKUaBVL4WgWR0CZ3OB7u2JBdX2UKGgGaAloD0MINWJmn4cmcECUhpRSlGgVS/loFkdAmdzyOinHenV9lChoBmgJaA9DCPmE7LyNjHJAlIaUUpRoFU03AWgWR0CZ3Q8P4EfUdX2UKGgGaAloD0MIQwHbwcg9cECUhpRSlGgVTQIBaBZHQJndjkp7TlV1fZQoaAZoCWgPQwhz2lNyzjBxQJSGlFKUaBVNbwFoFkdAmd80YoAn2XV9lChoBmgJaA9DCEQzT66p4nBAlIaUUpRoFUvaaBZHQJnfTIsAeaN1fZQoaAZoCWgPQwi+3v3xHmlxQJSGlFKUaBVLy2gWR0CZ3++ee4CqdX2UKGgGaAloD0MII4Wy8PXlZECUhpRSlGgVTegDaBZHQJngZTkyULV1fZQoaAZoCWgPQwg8Tzxny5JyQJSGlFKUaBVNFAFoFkdAmeOqxs2vS3V9lChoBmgJaA9DCHYyOEpeHmFAlIaUUpRoFU3oA2gWR0CZ5BblijL0dX2UKGgGaAloD0MIA9AoXXphbECUhpRSlGgVS+poFkdAmeR6HXVbzXV9lChoBmgJaA9DCPmE7LyNv21AlIaUUpRoFUvnaBZHQJnklNCZ4Od1fZQoaAZoCWgPQwhoyk4/KGBxQJSGlFKUaBVL12gWR0CZ5J64lQdkdX2UKGgGaAloD0MI16NwPYpMY0CUhpRSlGgVTegDaBZHQJnmSeWfK6p1fZQoaAZoCWgPQwiGHcakv2xxQJSGlFKUaBVL1GgWR0CZ5l7GNrCWdX2UKGgGaAloD0MISUp6GBp2ckCUhpRSlGgVS/xoFkdAmee9DYywfXV9lChoBmgJaA9DCHk+A+pNrHBAlIaUUpRoFUv+aBZHQJnodsqJ/G51fZQoaAZoCWgPQwh4uB0a1tFwQJSGlFKUaBVNAAFoFkdAmej4is4kvHV9lChoBmgJaA9DCBAlWvJ4NXFAlIaUUpRoFU1yAmgWR0CZ6VxZ+x4ZdX2UKGgGaAloD0MIsOJUa2GXb0CUhpRSlGgVS9FoFkdAmep+4XoC+3V9lChoBmgJaA9DCOyEl+DUAmNAlIaUUpRoFU3oA2gWR0CZ6v2gWac7dX2UKGgGaAloD0MImrD9ZEzCckCUhpRSlGgVS9loFkdAmetuHerMknV9lChoBmgJaA9DCMO3sG68v29AlIaUUpRoFUvtaBZHQJnrrbL2YfJ1fZQoaAZoCWgPQwi3lslwPL5tQJSGlFKUaBVL72gWR0CZ7DA3DNyHdX2UKGgGaAloD0MIAK358RcTcECUhpRSlGgVS+loFkdAme17kCFK03V9lChoBmgJaA9DCKaaWUtBR3FAlIaUUpRoFU0jAWgWR0CZ7bPdVNpNdX2UKGgGaAloD0MIl+SAXY1RcUCUhpRSlGgVS8poFkdAme3YJ/oaDXV9lChoBmgJaA9DCGg8EcT5e2JAlIaUUpRoFU3oA2gWR0CZ7jTJQtSRdX2UKGgGaAloD0MIIPEr1vDecECUhpRSlGgVTRwBaBZHQJnu+Zb6guh1fZQoaAZoCWgPQwi/gF64c2dwQJSGlFKUaBVL4mgWR0CZ70N21UlzdX2UKGgGaAloD0MIvokhOVkycUCUhpRSlGgVS/9oFkdAmfCQF1SwW3V9lChoBmgJaA9DCBedLLVeUHBAlIaUUpRoFUvzaBZHQJnwl9/jKgZ1fZQoaAZoCWgPQwi0HVN35eVwQJSGlFKUaBVL5mgWR0CZ8zULlV94dX2UKGgGaAloD0MI0jb+RGVYcUCUhpRSlGgVTQQBaBZHQJnzW2x6fJ51fZQoaAZoCWgPQwilaVA0z5hwQJSGlFKUaBVNNwFoFkdAmfSlSbYsd3V9lChoBmgJaA9DCCnsougBnnBAlIaUUpRoFUviaBZHQJn04189fTl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (222 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 241.32262742704876, "std_reward": 37.33772939303107, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-25T07:25:31.678951"}