--- language: - en license: llama3.1 library_name: transformers tags: - autoround - auto-round - intel-autoround - intel - woq - meta - pytorch - llama - llama-3 model_name: Llama-3.1 Tulu 3 8B SFT base_model: - meta-llama/Llama-3.1-8B datasets: - allenai/tulu-3-sft-mixture inference: false model_creator: allenai pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/fbaldassarri/allenai/Llama-3.1-Tulu-3-8B-SFT) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 64 - Asymmetrical Quantization - Method WoQ (AutoRound format) Fast and low memory, 2-3X speedup (slight accuracy drop at W4G64) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6 Note: this INT4 version of Llama-3.1-Tulu-3-8B-SFT has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.6.tar.gz tar -xvzf v0.4.6.tar.gz cd auto-round-0.4.6 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "allenai/Llama-3.1-Tulu-3-8B-SFT" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device = 4, 64, False, 'cpu' autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device) autoround.quantize() output_dir = "./AutoRound/allenai_Llama-3.1-Tulu-3-8B-SFT-autoround-int4-gs64-asym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Llama 3.1 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.