fbaldassarri commited on
Commit
ed21034
·
verified ·
1 Parent(s): 853e1de

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -18,7 +18,7 @@ datasets:
18
  - togethercomputer/RedPajama-Data-1T
19
  model_name: OpenLLaMA 7B v2
20
  base_model:
21
- - openlm-research/open_llama_7B_v2
22
  inference: false
23
  model_creator: openlm-research
24
  pipeline_tag: text-generation
@@ -29,7 +29,7 @@ quantized_by: fbaldassarri
29
 
30
  ## Model Information
31
 
32
- Quantized version of [openlm-research/open_llama_7B_v2](https://huggingface.co/openlm-research/open_llama_7B_v2) using torch.float32 for quantization tuning.
33
  - 4 bits (INT4)
34
  - group size = 128
35
  - Asymmetrical Quantization
@@ -39,7 +39,7 @@ Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
39
 
40
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
41
 
42
- Note: this INT4 version of open_llama_7B_v2 has been quantized to run inference through CPU.
43
 
44
  ## Replication Recipe
45
 
@@ -64,14 +64,14 @@ pip install -vvv --no-build-isolation -e .[cpu]
64
 
65
  ```
66
  from transformers import AutoModelForCausalLM, AutoTokenizer
67
- model_name = "openlm-research/open_llama_7B_v2"
68
  model = AutoModelForCausalLM.from_pretrained(model_name)
69
  tokenizer = AutoTokenizer.from_pretrained(model_name)
70
  from auto_round import AutoRound
71
  bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
72
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
73
  autoround.quantize()
74
- output_dir = "./AutoRound/openlm-research_open_llama_7B_v2-autoround-int4-gs128-asym"
75
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)
76
  ```
77
 
 
18
  - togethercomputer/RedPajama-Data-1T
19
  model_name: OpenLLaMA 7B v2
20
  base_model:
21
+ - openlm-research/open_llama_7b_v2
22
  inference: false
23
  model_creator: openlm-research
24
  pipeline_tag: text-generation
 
29
 
30
  ## Model Information
31
 
32
+ Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) using torch.float32 for quantization tuning.
33
  - 4 bits (INT4)
34
  - group size = 128
35
  - Asymmetrical Quantization
 
39
 
40
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
41
 
42
+ Note: this INT4 version of open_llama_7b_v2 has been quantized to run inference through CPU.
43
 
44
  ## Replication Recipe
45
 
 
64
 
65
  ```
66
  from transformers import AutoModelForCausalLM, AutoTokenizer
67
+ model_name = "openlm-research/open_llama_7b_v2"
68
  model = AutoModelForCausalLM.from_pretrained(model_name)
69
  tokenizer = AutoTokenizer.from_pretrained(model_name)
70
  from auto_round import AutoRound
71
  bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
72
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
73
  autoround.quantize()
74
+ output_dir = "./AutoRound/openlm-research_open_llama_7b_v2-autoround-int4-gs128-asym"
75
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)
76
  ```
77