Upload README.md
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ datasets:
|
|
18 |
- togethercomputer/RedPajama-Data-1T
|
19 |
model_name: OpenLLaMA 7B v2
|
20 |
base_model:
|
21 |
-
- openlm-research/
|
22 |
inference: false
|
23 |
model_creator: openlm-research
|
24 |
pipeline_tag: text-generation
|
@@ -29,7 +29,7 @@ quantized_by: fbaldassarri
|
|
29 |
|
30 |
## Model Information
|
31 |
|
32 |
-
Quantized version of [openlm-research/
|
33 |
- 4 bits (INT4)
|
34 |
- group size = 128
|
35 |
- Asymmetrical Quantization
|
@@ -39,7 +39,7 @@ Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
|
|
39 |
|
40 |
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
|
41 |
|
42 |
-
Note: this INT4 version of
|
43 |
|
44 |
## Replication Recipe
|
45 |
|
@@ -64,14 +64,14 @@ pip install -vvv --no-build-isolation -e .[cpu]
|
|
64 |
|
65 |
```
|
66 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
67 |
-
model_name = "openlm-research/
|
68 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
from auto_round import AutoRound
|
71 |
bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
|
72 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
73 |
autoround.quantize()
|
74 |
-
output_dir = "./AutoRound/openlm-
|
75 |
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
|
76 |
```
|
77 |
|
|
|
18 |
- togethercomputer/RedPajama-Data-1T
|
19 |
model_name: OpenLLaMA 7B v2
|
20 |
base_model:
|
21 |
+
- openlm-research/open_llama_7b_v2
|
22 |
inference: false
|
23 |
model_creator: openlm-research
|
24 |
pipeline_tag: text-generation
|
|
|
29 |
|
30 |
## Model Information
|
31 |
|
32 |
+
Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) using torch.float32 for quantization tuning.
|
33 |
- 4 bits (INT4)
|
34 |
- group size = 128
|
35 |
- Asymmetrical Quantization
|
|
|
39 |
|
40 |
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
|
41 |
|
42 |
+
Note: this INT4 version of open_llama_7b_v2 has been quantized to run inference through CPU.
|
43 |
|
44 |
## Replication Recipe
|
45 |
|
|
|
64 |
|
65 |
```
|
66 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
67 |
+
model_name = "openlm-research/open_llama_7b_v2"
|
68 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
from auto_round import AutoRound
|
71 |
bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
|
72 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
73 |
autoround.quantize()
|
74 |
+
output_dir = "./AutoRound/openlm-research_open_llama_7b_v2-autoround-int4-gs128-asym"
|
75 |
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
|
76 |
```
|
77 |
|