Upload README.md
Browse files
README.md
CHANGED
@@ -33,14 +33,14 @@ quantized_by: fbaldassarri
|
|
33 |
## Model Information
|
34 |
|
35 |
Quantized version of [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct) using torch.float32 for quantization tuning.
|
36 |
-
-
|
37 |
- group size = 128
|
38 |
- Asymmetrical Quantization
|
39 |
- Method AutoGPTQ
|
40 |
|
41 |
-
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.
|
42 |
|
43 |
-
Note: this
|
44 |
|
45 |
## Replication Recipe
|
46 |
|
@@ -49,9 +49,9 @@ Note: this INT4 version of Falcon3-10B-Instruct has been quantized to run infere
|
|
49 |
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
|
50 |
|
51 |
```
|
52 |
-
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.
|
53 |
-
tar -xvzf v0.4.
|
54 |
-
cd auto-round-0.4.
|
55 |
pip install -r requirements-cpu.txt --upgrade
|
56 |
```
|
57 |
|
@@ -69,10 +69,10 @@ pip install -vvv --no-build-isolation -e .[cpu]
|
|
69 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
70 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
71 |
from auto_round import AutoRound
|
72 |
-
bits, group_size, sym, device, amp =
|
73 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
74 |
autoround.quantize()
|
75 |
-
output_dir = "./AutoRound/tiiuae_Falcon3-10B-Instruct-autogptq-
|
76 |
autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)
|
77 |
```
|
78 |
|
|
|
33 |
## Model Information
|
34 |
|
35 |
Quantized version of [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct) using torch.float32 for quantization tuning.
|
36 |
+
- 8 bits (INT8)
|
37 |
- group size = 128
|
38 |
- Asymmetrical Quantization
|
39 |
- Method AutoGPTQ
|
40 |
|
41 |
+
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.5
|
42 |
|
43 |
+
Note: this INT8 version of Falcon3-10B-Instruct has been quantized to run inference through CPU.
|
44 |
|
45 |
## Replication Recipe
|
46 |
|
|
|
49 |
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
|
50 |
|
51 |
```
|
52 |
+
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.5.tar.gz
|
53 |
+
tar -xvzf v0.4.5.tar.gz
|
54 |
+
cd auto-round-0.4.5
|
55 |
pip install -r requirements-cpu.txt --upgrade
|
56 |
```
|
57 |
|
|
|
69 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
70 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
71 |
from auto_round import AutoRound
|
72 |
+
bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False
|
73 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
74 |
autoround.quantize()
|
75 |
+
output_dir = "./AutoRound/tiiuae_Falcon3-10B-Instruct-autogptq-int8-gs128-asym"
|
76 |
autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)
|
77 |
```
|
78 |
|