File size: 8,084 Bytes
99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 63633dd 7bccea0 fdc3dcd 812e61b 9f76d75 99dc78a 1777b87 fdc3dcd 63633dd 1777b87 63633dd 1777b87 0cb3c3b b602f75 1777b87 f5efffe 1777b87 b602f75 1777b87 99dc78a 9f76d75 99dc78a 7358676 7401a72 dfe8842 7358676 7401a72 99dc78a fcb170e 99dc78a fcb170e 99dc78a fdc3dcd 9f76d75 99dc78a 0620311 99dc78a 8c34f1a 99dc78a 9f76d75 99dc78a 9f76d75 99dc78a 7358676 7401a72 dfe8842 7358676 7401a72 fcb170e 99dc78a fcb170e 99dc78a fcb170e 99dc78a fcb170e 99dc78a fcb170e 99dc78a fcb170e 99dc78a 9f76d75 99dc78a fcb170e 99dc78a fcb170e 99dc78a fcb170e 99dc78a fcb170e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
---
library_name: transformers
license: cc-by-4.0
datasets:
- hendrycks/ethics
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
Fine-tuned version of Phi-3-mini-4k-instruct on a subset of the hendrycks/ethics dataset
<!--
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is.
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model.
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app.
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for.
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations.
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations.
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. -->
## How to Get Started with the Model
Use the code below to get started with the model.
```markdown
Install the latest version of the following python libraries:
-torch
-accelerate
-peft
-bitsandbytes
```
Run the model
```python
from transformers import AutoModelForCausalLM
from peft import PeftModel
base_model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
peft_model_id = "fc91/phi3-mini-instruct-full_ethics-lora"
model = PeftModel.from_pretrained(base_model, peft_model_id)
```
Run the model with a quantization configuration
```python
import torch, accelerate, peft
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from peft import PeftModel
# Set up quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=getattr(torch, "float16")
)
# Load the base model with quantization
base_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
quantization_config=quantization_config,
device_map="auto",
attn_implementation='eager',
torch_dtype="auto",
trust_remote_code=True,
)
peft_model_id = "fc91/phi3-mini-instruct-full_ethics-lora"
model = PeftModel.from_pretrained(base_model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
messages = [
{"role": "system", "content": "You are a helpful AI assistant that grounds all of its replies in ethical theories."},
{"role": "user", "content": """I am driving a car, and I have to make a choice. A kid suddenly appeared in the middle of the road chasing a ball. To save the kid, I
can only swerve to the right, but this would entail crashing the car against two pedestrians on the sidewalk. What should I do?"""},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 1000,
"return_full_text": False,
"temperature": 0.5,
"do_sample": False,
}
# Run inference
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
["hendrycks/ethics"](https://huggingface.co/datasets/hendrycks/ethics)
```markdown
The following subsets of the above dataset were leveraged:
-commonsense/train (10k random samples)
-deontology/train (10k random samples)
-justice/train (10k random samples)
-utilitarianism/train (10k random samples)
```
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
<!--#### Preprocessing [optional]
[More Information Needed] -->
#### Training Hyperparameters
```python
per_device_train_batch_size=16
per_device_eval_batch_size=32
gradient_accumulation_steps=2
gradient_checkpointing=True
warmup_steps=100
num_train_epochs=1
learning_rate=0.00005
weight_decay=0.01
optim="adamw_hf"
fp16=True
```
#### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
The overall training took 3 hours and 23 minutes.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
Training Loss = 0.181700
Validation Loss = 0.119734
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
["hendrycks/ethics"](https://huggingface.co/datasets/hendrycks/ethics)
```markdown
The following subsets of the above dataset were leveraged:
-commonsense/test (2.5k random samples)
-deontology/test (2.5k random samples)
-justice/test (2.5k random samples)
-utilitarianism/test (2.5k random samples)
```
<!-- #### Factors -->
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
<!--[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
<!--[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
<!--[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
<!--Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed] -->
#### Hardware
NVIDIA A100-SXM4-40GB
<!--#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
<!--**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
<!--[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] --> |