Sentence Similarity
	
	
	
	
	Transformers
	
	
	
	
	Safetensors
	
	
	
		
	
	multilingual
	
	
	
	
	nllb-llm2vec
	
	
	
	
	feature-extraction
	
	
	
	
	text-embedding
	
	
	
	
	embeddings
	
	
	
	
	information-retrieval
	
	
	
	
	beir
	
	
	
	
	text-classification
	
	
	
	
	language-model
	
	
	
	
	text-clustering
	
	
	
	
	text-semantic-similarity
	
	
	
	
	text-evaluation
	
	
	
	
	text-reranking
	
	
	
	
	Sentence Similarity
	
	
	
	
	natural_questions
	
	
	
	
	ms_marco
	
	
	
	
	fever
	
	
	
	
	hotpot_qa
	
	
	
	
	mteb
	
	
	
	
	custom_code
	
	
	
		Fabian-David Schmidt
		
	commited on
		
		
					Commit 
							
							·
						
						838c37a
	
1
								Parent(s):
							
							ba88283
								
update config and modelling files
Browse files- config.json +1 -3
- configuration_nllbllm2vec.py +15 -2
- modeling_nllbllm2vec.py +243 -407
    	
        config.json
    CHANGED
    
    | @@ -1,5 +1,4 @@ | |
| 1 | 
             
            {
         | 
| 2 | 
            -
              "_name_or_path": "fdschmidt93/NLLBLLM2Vec",
         | 
| 3 | 
             
              "architectures": [
         | 
| 4 | 
             
                "NLLBLLM2Vec"
         | 
| 5 | 
             
              ],
         | 
| @@ -37,6 +36,5 @@ | |
| 37 | 
             
                "vocab_size": 256206
         | 
| 38 | 
             
              },
         | 
| 39 | 
             
              "torch_dtype": "bfloat16",
         | 
| 40 | 
            -
              "transformers_version": "4. | 
| 41 | 
             
            }
         | 
| 42 | 
            -
             | 
|  | |
| 1 | 
             
            {
         | 
|  | |
| 2 | 
             
              "architectures": [
         | 
| 3 | 
             
                "NLLBLLM2Vec"
         | 
| 4 | 
             
              ],
         | 
|  | |
| 36 | 
             
                "vocab_size": 256206
         | 
| 37 | 
             
              },
         | 
| 38 | 
             
              "torch_dtype": "bfloat16",
         | 
| 39 | 
            +
              "transformers_version": "4.45.2"
         | 
| 40 | 
             
            }
         | 
|  | 
    	
        configuration_nllbllm2vec.py
    CHANGED
    
    | @@ -1,3 +1,4 @@ | |
|  | |
| 1 | 
             
            from transformers import AutoConfig
         | 
| 2 | 
             
            from transformers.configuration_utils import PretrainedConfig
         | 
| 3 | 
             
            from transformers.models.llama.configuration_llama import LlamaConfig
         | 
| @@ -36,6 +37,7 @@ DEFAULT_M2M100_CONFIG = { | |
| 36 | 
             
                "vocab_size": 256206,
         | 
| 37 | 
             
                "tokenizer_class": "NllbTokenizer",
         | 
| 38 | 
             
                "max_length": 200,
         | 
|  | |
| 39 | 
             
            }
         | 
| 40 |  | 
| 41 | 
             
            DEFAULT_LLAMA_CONFIG = {
         | 
| @@ -61,6 +63,7 @@ DEFAULT_LLAMA_CONFIG = { | |
| 61 | 
             
                "transformers_version": "4.40.0.dev0",
         | 
| 62 | 
             
                "use_cache": False,
         | 
| 63 | 
             
                "vocab_size": 128256,
         | 
|  | |
| 64 | 
             
            }
         | 
| 65 |  | 
| 66 |  | 
| @@ -70,13 +73,23 @@ class NLLBLLM2VecConfig(PretrainedConfig): | |
| 70 |  | 
| 71 | 
             
                def __init__(
         | 
| 72 | 
             
                    self,
         | 
| 73 | 
            -
                    nllb_config:  | 
| 74 | 
            -
                    llm2vec_config:  | 
|  | |
|  | |
| 75 | 
             
                    **kwargs,
         | 
| 76 | 
             
                ):
         | 
| 77 | 
             
                    super().__init__(**kwargs)
         | 
|  | |
| 78 | 
             
                    self.nllb_config = M2M100Config(**nllb_config)
         | 
|  | |
| 79 | 
             
                    self.llm2vec_config = LlamaConfig(**llm2vec_config)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 80 |  | 
| 81 |  | 
| 82 | 
             
            AutoConfig.register(NLLBLLM2VEC_TYPE, NLLBLLM2VecConfig)
         | 
|  | |
| 1 | 
            +
            from typing import Optional, Dict
         | 
| 2 | 
             
            from transformers import AutoConfig
         | 
| 3 | 
             
            from transformers.configuration_utils import PretrainedConfig
         | 
| 4 | 
             
            from transformers.models.llama.configuration_llama import LlamaConfig
         | 
|  | |
| 37 | 
             
                "vocab_size": 256206,
         | 
| 38 | 
             
                "tokenizer_class": "NllbTokenizer",
         | 
| 39 | 
             
                "max_length": 200,
         | 
| 40 | 
            +
                "_attn_implementation": "flash_attention_2",
         | 
| 41 | 
             
            }
         | 
| 42 |  | 
| 43 | 
             
            DEFAULT_LLAMA_CONFIG = {
         | 
|  | |
| 63 | 
             
                "transformers_version": "4.40.0.dev0",
         | 
| 64 | 
             
                "use_cache": False,
         | 
| 65 | 
             
                "vocab_size": 128256,
         | 
| 66 | 
            +
                "_attn_implementation": "flash_attention_2",
         | 
| 67 | 
             
            }
         | 
| 68 |  | 
| 69 |  | 
|  | |
| 73 |  | 
| 74 | 
             
                def __init__(
         | 
| 75 | 
             
                    self,
         | 
| 76 | 
            +
                    nllb_config: Dict = DEFAULT_M2M100_CONFIG,
         | 
| 77 | 
            +
                    llm2vec_config: Dict = DEFAULT_LLAMA_CONFIG,
         | 
| 78 | 
            +
                    _attn_implementation="sdpa",
         | 
| 79 | 
            +
                    initializer_range: Optional[float] = None,
         | 
| 80 | 
             
                    **kwargs,
         | 
| 81 | 
             
                ):
         | 
| 82 | 
             
                    super().__init__(**kwargs)
         | 
| 83 | 
            +
                    self._attn_implementation = _attn_implementation
         | 
| 84 | 
             
                    self.nllb_config = M2M100Config(**nllb_config)
         | 
| 85 | 
            +
                    self.nllb_config._attn_implementation = _attn_implementation
         | 
| 86 | 
             
                    self.llm2vec_config = LlamaConfig(**llm2vec_config)
         | 
| 87 | 
            +
                    self.llm2vec_config._attn_implementation = _attn_implementation
         | 
| 88 | 
            +
                    if initializer_range is None:
         | 
| 89 | 
            +
                        self.initializer_range = self.llm2vec_config.initializer_range
         | 
| 90 | 
            +
                    else:
         | 
| 91 | 
            +
                        self.initializer_range = initializer_range
         | 
| 92 | 
            +
                        self.llm2vec_config.initializer_range
         | 
| 93 |  | 
| 94 |  | 
| 95 | 
             
            AutoConfig.register(NLLBLLM2VEC_TYPE, NLLBLLM2VecConfig)
         | 
    	
        modeling_nllbllm2vec.py
    CHANGED
    
    | @@ -1,24 +1,69 @@ | |
| 1 | 
            -
             | 
|  | |
|  | |
|  | |
| 2 |  | 
| 3 | 
             
            import torch
         | 
| 4 | 
             
            import torch.nn as nn
         | 
| 5 | 
             
            import torch.nn.functional as F
         | 
| 6 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 7 | 
             
            from transformers.modeling_outputs import (
         | 
| 8 | 
             
                BaseModelOutputWithPooling,
         | 
|  | |
| 9 | 
             
                SequenceClassifierOutputWithPast,
         | 
|  | |
| 10 | 
             
            )
         | 
| 11 | 
             
            from transformers.modeling_utils import PreTrainedModel
         | 
|  | |
| 12 | 
             
            from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
         | 
| 13 | 
            -
            from transformers. | 
| 14 |  | 
| 15 | 
             
            from .configuration_nllbllm2vec import NLLBLLM2VecConfig
         | 
| 16 | 
             
            from .modeling_llama_encoder import LlamaEncoderModel
         | 
| 17 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 18 |  | 
| 19 | 
             
            class NLLBLLM2Vec(PreTrainedModel):
         | 
| 20 | 
             
                config_class = NLLBLLM2VecConfig
         | 
| 21 | 
             
                model_type = "nllb-llm2vec"
         | 
|  | |
|  | |
| 22 | 
             
                """
         | 
| 23 | 
             
                NLLBLLM2Vec model combining NLLB and LLama encoders.
         | 
| 24 |  | 
| @@ -46,9 +91,13 @@ class NLLBLLM2Vec(PreTrainedModel): | |
| 46 |  | 
| 47 | 
             
                    if config is not None:
         | 
| 48 | 
             
                        super().__init__(config, *inputs, **kwargs)
         | 
|  | |
|  | |
|  | |
| 49 | 
             
                        self.nllb_encoder = nllb_encoder or M2M100Encoder(config.nllb_config)
         | 
| 50 | 
             
                        self.llm2vec = llm2vec or LlamaEncoderModel(config.llm2vec_config)
         | 
| 51 | 
             
                        self.config = config
         | 
|  | |
| 52 | 
             
                    else:
         | 
| 53 | 
             
                        # Both encoders are provided
         | 
| 54 | 
             
                        self.nllb_encoder = cast(M2M100Encoder, nllb_encoder)
         | 
| @@ -64,7 +113,15 @@ class NLLBLLM2Vec(PreTrainedModel): | |
| 64 | 
             
                        self.llm2vec.config.hidden_size,
         | 
| 65 | 
             
                        bias=False,
         | 
| 66 | 
             
                    )
         | 
| 67 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 68 |  | 
| 69 | 
             
                def forward(
         | 
| 70 | 
             
                    self,
         | 
| @@ -91,14 +148,12 @@ class NLLBLLM2Vec(PreTrainedModel): | |
| 91 | 
             
                    else:
         | 
| 92 | 
             
                        seq_indices, seq_offsets = indices
         | 
| 93 |  | 
| 94 | 
            -
                     | 
| 95 | 
            -
                         | 
| 96 | 
            -
             | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
             | 
| 100 | 
            -
                        nllb_last_hidden_state = self.up_proj(nllb_last_hidden_state)
         | 
| 101 | 
            -
                    nllb_last_hidden_state = nllb_last_hidden_state.detach().clone()
         | 
| 102 | 
             
                    outputs = self.llm2vec(
         | 
| 103 | 
             
                        inputs_embeds=nllb_last_hidden_state,
         | 
| 104 | 
             
                        attention_mask=attention_mask,
         | 
| @@ -133,14 +188,22 @@ class NLLBLLM2Vec(PreTrainedModel): | |
| 133 | 
             
                    self,
         | 
| 134 | 
             
                    inputs: List[str],
         | 
| 135 | 
             
                    src_lang: str = "eng_Latn",
         | 
|  | |
| 136 | 
             
                    tokenize_kwargs: Optional[Dict[str, Any]] = None,
         | 
|  | |
| 137 | 
             
                ) -> torch.Tensor:
         | 
| 138 | 
             
                    """
         | 
| 139 | 
             
                    Encode input texts into embeddings.
         | 
| 140 |  | 
| 141 | 
             
                    Args:
         | 
| 142 | 
             
                        inputs (List[str]): List of input texts.
         | 
| 143 | 
            -
                        src_lang (str): Source language code.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 144 | 
             
                        tokenize_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the tokenizer.
         | 
| 145 | 
             
                            Defaults to:
         | 
| 146 | 
             
                            >>    tokenize_kwargs = {
         | 
| @@ -149,26 +212,54 @@ class NLLBLLM2Vec(PreTrainedModel): | |
| 149 | 
             
                            >>        "max_length": 512,
         | 
| 150 | 
             
                            >>        "return_tensors": "pt",
         | 
| 151 | 
             
                            >>    }
         | 
| 152 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 153 | 
             
                    Returns:
         | 
| 154 | 
             
                        torch.Tensor: Mean-pooled sequence embeddings of the inputs.
         | 
| 155 | 
             
                    """
         | 
| 156 | 
            -
                     | 
| 157 | 
            -
             | 
| 158 | 
            -
             | 
| 159 | 
            -
                            "truncation": True,
         | 
| 160 | 
            -
                            "max_length": 512,
         | 
| 161 | 
            -
                            "return_tensors": "pt",
         | 
| 162 | 
            -
                        }
         | 
| 163 |  | 
| 164 | 
             
                    tokenizer = self.tokenizer
         | 
| 165 | 
             
                    tokenizer.src_lang = src_lang
         | 
| 166 | 
             
                    device = next(self.parameters()).device
         | 
| 167 | 
            -
                    batch = tokenizer(inputs, **tokenize_kwargs).to(device)
         | 
| 168 | 
            -
                    device_type = device.type  # e.g., 'cuda' or 'cpu'
         | 
| 169 |  | 
| 170 | 
            -
                     | 
| 171 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 172 |  | 
| 173 | 
             
                @staticmethod
         | 
| 174 | 
             
                def _get_input_offsets(
         | 
| @@ -192,12 +283,8 @@ class NLLBLLM2Vec(PreTrainedModel): | |
| 192 | 
             
                    non_padded_lengths = attention_mask.sum(
         | 
| 193 | 
             
                        dim=1
         | 
| 194 | 
             
                    )  # Count non-padded tokens per sequence
         | 
| 195 | 
            -
                    offsets =  | 
| 196 | 
            -
             | 
| 197 | 
            -
                            torch.tensor([0], device=attention_mask.device),
         | 
| 198 | 
            -
                            non_padded_lengths.cumsum(dim=0)[:-1],
         | 
| 199 | 
            -
                        ]
         | 
| 200 | 
            -
                    )
         | 
| 201 | 
             
                    return input_indices, offsets
         | 
| 202 |  | 
| 203 | 
             
                @staticmethod
         | 
| @@ -235,10 +322,13 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel): | |
| 235 | 
             
                config_class = NLLBLLM2VecConfig
         | 
| 236 | 
             
                model_type = "nllb-llm2vec"
         | 
| 237 | 
             
                base_model_prefix = "model"
         | 
|  | |
|  | |
| 238 |  | 
| 239 | 
             
                def __init__(self, config):
         | 
| 240 | 
             
                    super().__init__(config)
         | 
| 241 | 
             
                    self.num_labels = config.num_labels
         | 
|  | |
| 242 | 
             
                    self.model = NLLBLLM2Vec(config)
         | 
| 243 | 
             
                    self.score = nn.Linear(
         | 
| 244 | 
             
                        config.llm2vec_config.hidden_size, self.num_labels, bias=False
         | 
| @@ -247,114 +337,29 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel): | |
| 247 | 
             
                    # Initialize weights and apply final processing
         | 
| 248 | 
             
                    self.post_init()
         | 
| 249 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 250 | 
             
                def get_input_embeddings(self):
         | 
| 251 | 
             
                    return self.model.nllb.embed_tokens
         | 
| 252 |  | 
| 253 | 
             
                def set_input_embeddings(self, value):
         | 
| 254 | 
             
                    self.model.nllb.embed_tokens = value
         | 
| 255 | 
            -
                
         | 
| 256 | 
            -
                # We need to modify the adapter config and state dict at runtime
         | 
| 257 | 
            -
                # such that adapter weights are correctly loaded from an AutoModel-suitable
         | 
| 258 | 
            -
                # adapter_config.json and adapter_config.safetensors
         | 
| 259 | 
            -
                def load_adapter(
         | 
| 260 | 
            -
                    self,
         | 
| 261 | 
            -
                    peft_model_id: Optional[str] = None,
         | 
| 262 | 
            -
                    adapter_name: Optional[str] = None,
         | 
| 263 | 
            -
                    revision: Optional[str] = None,
         | 
| 264 | 
            -
                    token: Optional[str] = None,
         | 
| 265 | 
            -
                    device_map: Optional[str] = "auto",
         | 
| 266 | 
            -
                    max_memory: Optional[str] = None,
         | 
| 267 | 
            -
                    offload_folder: Optional[str] = None,
         | 
| 268 | 
            -
                    offload_index: Optional[int] = None,
         | 
| 269 | 
            -
                    peft_config: Optional[Dict[str, Any]] = None,
         | 
| 270 | 
            -
                    adapter_state_dict: Optional[Dict[str, "torch.Tensor"]] = None,
         | 
| 271 | 
            -
                    adapter_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 272 | 
            -
                ) -> None:
         | 
| 273 | 
            -
                    from peft import PeftConfig, load_peft_weights  # type: ignore
         | 
| 274 | 
            -
                    from transformers.utils import find_adapter_config_file
         | 
| 275 | 
            -
             | 
| 276 | 
            -
                    if adapter_kwargs is None:
         | 
| 277 | 
            -
                        adapter_kwargs = {}
         | 
| 278 | 
            -
             | 
| 279 | 
            -
                    if "device" not in adapter_kwargs:
         | 
| 280 | 
            -
                        device = (
         | 
| 281 | 
            -
                            self.device
         | 
| 282 | 
            -
                            if not hasattr(self, "hf_device_map")
         | 
| 283 | 
            -
                            else list(self.hf_device_map.values())[0]
         | 
| 284 | 
            -
                        )
         | 
| 285 | 
            -
                    else:
         | 
| 286 | 
            -
                        device = adapter_kwargs["device"]
         | 
| 287 | 
            -
                    # To avoid PEFT errors later on with safetensors.
         | 
| 288 | 
            -
                    if isinstance(device, torch.device):
         | 
| 289 | 
            -
                        device = str(device)
         | 
| 290 | 
            -
             | 
| 291 | 
            -
                    # Override token with adapter_kwargs' token
         | 
| 292 | 
            -
                    if "token" in adapter_kwargs:
         | 
| 293 | 
            -
                        token = adapter_kwargs["token"]
         | 
| 294 | 
            -
             | 
| 295 | 
            -
                    if peft_model_id is None and (
         | 
| 296 | 
            -
                        adapter_state_dict is None and peft_config is None
         | 
| 297 | 
            -
                    ):
         | 
| 298 | 
            -
                        raise ValueError(
         | 
| 299 | 
            -
                            "You should either pass a `peft_model_id` or a `peft_config` and `adapter_state_dict` to load an adapter."
         | 
| 300 | 
            -
                        )
         | 
| 301 | 
            -
             | 
| 302 | 
            -
                    if peft_config is None:
         | 
| 303 | 
            -
                        assert isinstance(peft_model_id, str)
         | 
| 304 | 
            -
                        adapter_config_file = find_adapter_config_file(
         | 
| 305 | 
            -
                            peft_model_id,
         | 
| 306 | 
            -
                            token=token,
         | 
| 307 | 
            -
                            **adapter_kwargs,
         | 
| 308 | 
            -
                        )
         | 
| 309 | 
            -
             | 
| 310 | 
            -
                        if adapter_config_file is None:
         | 
| 311 | 
            -
                            raise ValueError(
         | 
| 312 | 
            -
                                f"adapter model file not found in {peft_model_id}. Make sure you are passing the correct path to the "
         | 
| 313 | 
            -
                                "adapter model."
         | 
| 314 | 
            -
                            )
         | 
| 315 | 
            -
             | 
| 316 | 
            -
                        peft_config = cast(
         | 
| 317 | 
            -
                            Dict[str, Any],
         | 
| 318 | 
            -
                            PeftConfig.from_pretrained(
         | 
| 319 | 
            -
                                peft_model_id,
         | 
| 320 | 
            -
                                token=token,
         | 
| 321 | 
            -
                                **adapter_kwargs,
         | 
| 322 | 
            -
                            ),
         | 
| 323 | 
            -
                        )
         | 
| 324 | 
            -
                        peft_config.target_modules = [  # type: ignore
         | 
| 325 | 
            -
                            "model." + module
         | 
| 326 | 
            -
                            for module in peft_config.target_modules  # type: ignore
         | 
| 327 | 
            -
                        ]
         | 
| 328 | 
            -
             | 
| 329 | 
            -
                    if peft_model_id is not None:
         | 
| 330 | 
            -
                        adapter_state_dict = load_peft_weights(
         | 
| 331 | 
            -
                            peft_model_id, token=token, device=device, **adapter_kwargs
         | 
| 332 | 
            -
                        )
         | 
| 333 | 
            -
             | 
| 334 | 
            -
                    assert isinstance(adapter_state_dict, dict)
         | 
| 335 | 
            -
             | 
| 336 | 
            -
                    # correctly set the name
         | 
| 337 | 
            -
                    processed_adapter_state_dict = {}
         | 
| 338 | 
            -
                    prefix = "base_model."
         | 
| 339 | 
            -
                    for key, value in adapter_state_dict.items():
         | 
| 340 | 
            -
                        if key.startswith(prefix):
         | 
| 341 | 
            -
                            new_key = key[len(prefix) :]
         | 
| 342 | 
            -
                        else:
         | 
| 343 | 
            -
                            new_key = key
         | 
| 344 | 
            -
                        processed_adapter_state_dict[new_key] = value
         | 
| 345 | 
            -
                    return super().load_adapter(
         | 
| 346 | 
            -
                        peft_model_id=None,
         | 
| 347 | 
            -
                        adapter_name=adapter_name,
         | 
| 348 | 
            -
                        revision=revision,
         | 
| 349 | 
            -
                        token=token,
         | 
| 350 | 
            -
                        device_map=device_map,
         | 
| 351 | 
            -
                        max_memory=max_memory,
         | 
| 352 | 
            -
                        offload_folder=offload_folder,
         | 
| 353 | 
            -
                        offload_index=offload_index,
         | 
| 354 | 
            -
                        peft_config=peft_config,
         | 
| 355 | 
            -
                        adapter_state_dict=processed_adapter_state_dict,
         | 
| 356 | 
            -
                        adapter_kwargs=adapter_kwargs,
         | 
| 357 | 
            -
                    )
         | 
| 358 |  | 
| 359 | 
             
                def forward(
         | 
| 360 | 
             
                    self,
         | 
| @@ -420,10 +425,110 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel): | |
| 420 | 
             
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 421 | 
             
                        return ((loss,) + output) if loss is not None else output
         | 
| 422 |  | 
| 423 | 
            -
                    return  | 
| 424 | 
             
                        loss=loss,
         | 
| 425 | 
             
                        hidden_states=hidden_states,
         | 
| 426 | 
             
                        logits=pooled_logits,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 427 | 
             
                    )
         | 
| 428 |  | 
| 429 |  | 
| @@ -431,275 +536,6 @@ AutoModel.register(NLLBLLM2VecConfig, NLLBLLM2Vec) | |
| 431 | 
             
            AutoModelForSequenceClassification.register(
         | 
| 432 | 
             
                NLLBLLM2VecConfig, NLLBLLM2VecForSequenceClassification
         | 
| 433 | 
             
            )
         | 
| 434 | 
            -
             | 
| 435 | 
            -
             | 
| 436 | 
            -
             | 
| 437 | 
            -
                from transformers import AutoModel
         | 
| 438 | 
            -
             | 
| 439 | 
            -
                cfg = NLLBLLM2VecConfig()
         | 
| 440 | 
            -
                model = NLLBLLM2Vec(cfg)
         | 
| 441 | 
            -
             | 
| 442 | 
            -
                nllb = AutoModel.from_pretrained(
         | 
| 443 | 
            -
                    "facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16
         | 
| 444 | 
            -
                ).encoder
         | 
| 445 | 
            -
                # llm2vec = AutoModel.from_pretrained(
         | 
| 446 | 
            -
                #     "fdschmidt93/LLM2Vec-Meta-Llama-3.1-8B-Instruct-mntp-unsup-simcse",
         | 
| 447 | 
            -
                #     trust_remote_code=True,
         | 
| 448 | 
            -
                #     torch_dtype=torch.bfloat16,
         | 
| 449 | 
            -
                # )
         | 
| 450 | 
            -
                llama = LlamaEncoderModel.from_pretrained("../trident-nllb-llm2vec/data/model/llm2vec_llama3-1_unsupervised/", torch_dtype=torch.bfloat16)
         | 
| 451 | 
            -
                model.nllb_encoder.load_state_dict(nllb.state_dict())
         | 
| 452 | 
            -
                model.llm2vec.load_state_dict(llama.state_dict())
         | 
| 453 | 
            -
                ckpt = torch.load("./step=20000-weights.ckpt", map_location="cpu")
         | 
| 454 | 
            -
                model.up_proj.load_state_dict({"weight": ckpt["model.up_proj.weight"]})
         | 
| 455 | 
            -
             | 
| 456 | 
            -
                model.save_pretrained("../weights_new")
         | 
| 457 | 
            -
             | 
| 458 | 
            -
                from peft.mapping import get_peft_model
         | 
| 459 | 
            -
                from peft.tuners.lora.config import LoraConfig
         | 
| 460 | 
            -
             | 
| 461 | 
            -
                lora_config = LoraConfig(
         | 
| 462 | 
            -
                    r=16,
         | 
| 463 | 
            -
                    lora_alpha=32,
         | 
| 464 | 
            -
                    lora_dropout=0.0,
         | 
| 465 | 
            -
                    bias="none",
         | 
| 466 | 
            -
                    task_type="FEATURE_EXTRACTION",
         | 
| 467 | 
            -
                    target_modules=[
         | 
| 468 | 
            -
                        "llm2vec.layers.0.self_attn.q_proj",
         | 
| 469 | 
            -
                        "llm2vec.layers.0.self_attn.k_proj",
         | 
| 470 | 
            -
                        "llm2vec.layers.0.self_attn.v_proj",
         | 
| 471 | 
            -
                        "llm2vec.layers.0.self_attn.o_proj",
         | 
| 472 | 
            -
                        "llm2vec.layers.0.mlp.gate_proj",
         | 
| 473 | 
            -
                        "llm2vec.layers.0.mlp.up_proj",
         | 
| 474 | 
            -
                        "llm2vec.layers.0.mlp.down_proj",
         | 
| 475 | 
            -
                        "llm2vec.layers.1.self_attn.q_proj",
         | 
| 476 | 
            -
                        "llm2vec.layers.1.self_attn.k_proj",
         | 
| 477 | 
            -
                        "llm2vec.layers.1.self_attn.v_proj",
         | 
| 478 | 
            -
                        "llm2vec.layers.1.self_attn.o_proj",
         | 
| 479 | 
            -
                        "llm2vec.layers.1.mlp.gate_proj",
         | 
| 480 | 
            -
                        "llm2vec.layers.1.mlp.up_proj",
         | 
| 481 | 
            -
                        "llm2vec.layers.1.mlp.down_proj",
         | 
| 482 | 
            -
                        "llm2vec.layers.2.self_attn.q_proj",
         | 
| 483 | 
            -
                        "llm2vec.layers.2.self_attn.k_proj",
         | 
| 484 | 
            -
                        "llm2vec.layers.2.self_attn.v_proj",
         | 
| 485 | 
            -
                        "llm2vec.layers.2.self_attn.o_proj",
         | 
| 486 | 
            -
                        "llm2vec.layers.2.mlp.gate_proj",
         | 
| 487 | 
            -
                        "llm2vec.layers.2.mlp.up_proj",
         | 
| 488 | 
            -
                        "llm2vec.layers.2.mlp.down_proj",
         | 
| 489 | 
            -
                        "llm2vec.layers.3.self_attn.q_proj",
         | 
| 490 | 
            -
                        "llm2vec.layers.3.self_attn.k_proj",
         | 
| 491 | 
            -
                        "llm2vec.layers.3.self_attn.v_proj",
         | 
| 492 | 
            -
                        "llm2vec.layers.3.self_attn.o_proj",
         | 
| 493 | 
            -
                        "llm2vec.layers.3.mlp.gate_proj",
         | 
| 494 | 
            -
                        "llm2vec.layers.3.mlp.up_proj",
         | 
| 495 | 
            -
                        "llm2vec.layers.3.mlp.down_proj",
         | 
| 496 | 
            -
                        "llm2vec.layers.4.self_attn.q_proj",
         | 
| 497 | 
            -
                        "llm2vec.layers.4.self_attn.k_proj",
         | 
| 498 | 
            -
                        "llm2vec.layers.4.self_attn.v_proj",
         | 
| 499 | 
            -
                        "llm2vec.layers.4.self_attn.o_proj",
         | 
| 500 | 
            -
                        "llm2vec.layers.4.mlp.gate_proj",
         | 
| 501 | 
            -
                        "llm2vec.layers.4.mlp.up_proj",
         | 
| 502 | 
            -
                        "llm2vec.layers.4.mlp.down_proj",
         | 
| 503 | 
            -
                        "llm2vec.layers.5.self_attn.q_proj",
         | 
| 504 | 
            -
                        "llm2vec.layers.5.self_attn.k_proj",
         | 
| 505 | 
            -
                        "llm2vec.layers.5.self_attn.v_proj",
         | 
| 506 | 
            -
                        "llm2vec.layers.5.self_attn.o_proj",
         | 
| 507 | 
            -
                        "llm2vec.layers.5.mlp.gate_proj",
         | 
| 508 | 
            -
                        "llm2vec.layers.5.mlp.up_proj",
         | 
| 509 | 
            -
                        "llm2vec.layers.5.mlp.down_proj",
         | 
| 510 | 
            -
                        "llm2vec.layers.6.self_attn.q_proj",
         | 
| 511 | 
            -
                        "llm2vec.layers.6.self_attn.k_proj",
         | 
| 512 | 
            -
                        "llm2vec.layers.6.self_attn.v_proj",
         | 
| 513 | 
            -
                        "llm2vec.layers.6.self_attn.o_proj",
         | 
| 514 | 
            -
                        "llm2vec.layers.6.mlp.gate_proj",
         | 
| 515 | 
            -
                        "llm2vec.layers.6.mlp.up_proj",
         | 
| 516 | 
            -
                        "llm2vec.layers.6.mlp.down_proj",
         | 
| 517 | 
            -
                        "llm2vec.layers.7.self_attn.q_proj",
         | 
| 518 | 
            -
                        "llm2vec.layers.7.self_attn.k_proj",
         | 
| 519 | 
            -
                        "llm2vec.layers.7.self_attn.v_proj",
         | 
| 520 | 
            -
                        "llm2vec.layers.7.self_attn.o_proj",
         | 
| 521 | 
            -
                        "llm2vec.layers.7.mlp.gate_proj",
         | 
| 522 | 
            -
                        "llm2vec.layers.7.mlp.up_proj",
         | 
| 523 | 
            -
                        "llm2vec.layers.7.mlp.down_proj",
         | 
| 524 | 
            -
                        "llm2vec.layers.8.self_attn.q_proj",
         | 
| 525 | 
            -
                        "llm2vec.layers.8.self_attn.k_proj",
         | 
| 526 | 
            -
                        "llm2vec.layers.8.self_attn.v_proj",
         | 
| 527 | 
            -
                        "llm2vec.layers.8.self_attn.o_proj",
         | 
| 528 | 
            -
                        "llm2vec.layers.8.mlp.gate_proj",
         | 
| 529 | 
            -
                        "llm2vec.layers.8.mlp.up_proj",
         | 
| 530 | 
            -
                        "llm2vec.layers.8.mlp.down_proj",
         | 
| 531 | 
            -
                        "llm2vec.layers.9.self_attn.q_proj",
         | 
| 532 | 
            -
                        "llm2vec.layers.9.self_attn.k_proj",
         | 
| 533 | 
            -
                        "llm2vec.layers.9.self_attn.v_proj",
         | 
| 534 | 
            -
                        "llm2vec.layers.9.self_attn.o_proj",
         | 
| 535 | 
            -
                        "llm2vec.layers.9.mlp.gate_proj",
         | 
| 536 | 
            -
                        "llm2vec.layers.9.mlp.up_proj",
         | 
| 537 | 
            -
                        "llm2vec.layers.9.mlp.down_proj",
         | 
| 538 | 
            -
                        "llm2vec.layers.10.self_attn.q_proj",
         | 
| 539 | 
            -
                        "llm2vec.layers.10.self_attn.k_proj",
         | 
| 540 | 
            -
                        "llm2vec.layers.10.self_attn.v_proj",
         | 
| 541 | 
            -
                        "llm2vec.layers.10.self_attn.o_proj",
         | 
| 542 | 
            -
                        "llm2vec.layers.10.mlp.gate_proj",
         | 
| 543 | 
            -
                        "llm2vec.layers.10.mlp.up_proj",
         | 
| 544 | 
            -
                        "llm2vec.layers.10.mlp.down_proj",
         | 
| 545 | 
            -
                        "llm2vec.layers.11.self_attn.q_proj",
         | 
| 546 | 
            -
                        "llm2vec.layers.11.self_attn.k_proj",
         | 
| 547 | 
            -
                        "llm2vec.layers.11.self_attn.v_proj",
         | 
| 548 | 
            -
                        "llm2vec.layers.11.self_attn.o_proj",
         | 
| 549 | 
            -
                        "llm2vec.layers.11.mlp.gate_proj",
         | 
| 550 | 
            -
                        "llm2vec.layers.11.mlp.up_proj",
         | 
| 551 | 
            -
                        "llm2vec.layers.11.mlp.down_proj",
         | 
| 552 | 
            -
                        "llm2vec.layers.12.self_attn.q_proj",
         | 
| 553 | 
            -
                        "llm2vec.layers.12.self_attn.k_proj",
         | 
| 554 | 
            -
                        "llm2vec.layers.12.self_attn.v_proj",
         | 
| 555 | 
            -
                        "llm2vec.layers.12.self_attn.o_proj",
         | 
| 556 | 
            -
                        "llm2vec.layers.12.mlp.gate_proj",
         | 
| 557 | 
            -
                        "llm2vec.layers.12.mlp.up_proj",
         | 
| 558 | 
            -
                        "llm2vec.layers.12.mlp.down_proj",
         | 
| 559 | 
            -
                        "llm2vec.layers.13.self_attn.q_proj",
         | 
| 560 | 
            -
                        "llm2vec.layers.13.self_attn.k_proj",
         | 
| 561 | 
            -
                        "llm2vec.layers.13.self_attn.v_proj",
         | 
| 562 | 
            -
                        "llm2vec.layers.13.self_attn.o_proj",
         | 
| 563 | 
            -
                        "llm2vec.layers.13.mlp.gate_proj",
         | 
| 564 | 
            -
                        "llm2vec.layers.13.mlp.up_proj",
         | 
| 565 | 
            -
                        "llm2vec.layers.13.mlp.down_proj",
         | 
| 566 | 
            -
                        "llm2vec.layers.14.self_attn.q_proj",
         | 
| 567 | 
            -
                        "llm2vec.layers.14.self_attn.k_proj",
         | 
| 568 | 
            -
                        "llm2vec.layers.14.self_attn.v_proj",
         | 
| 569 | 
            -
                        "llm2vec.layers.14.self_attn.o_proj",
         | 
| 570 | 
            -
                        "llm2vec.layers.14.mlp.gate_proj",
         | 
| 571 | 
            -
                        "llm2vec.layers.14.mlp.up_proj",
         | 
| 572 | 
            -
                        "llm2vec.layers.14.mlp.down_proj",
         | 
| 573 | 
            -
                        "llm2vec.layers.15.self_attn.q_proj",
         | 
| 574 | 
            -
                        "llm2vec.layers.15.self_attn.k_proj",
         | 
| 575 | 
            -
                        "llm2vec.layers.15.self_attn.v_proj",
         | 
| 576 | 
            -
                        "llm2vec.layers.15.self_attn.o_proj",
         | 
| 577 | 
            -
                        "llm2vec.layers.15.mlp.gate_proj",
         | 
| 578 | 
            -
                        "llm2vec.layers.15.mlp.up_proj",
         | 
| 579 | 
            -
                        "llm2vec.layers.15.mlp.down_proj",
         | 
| 580 | 
            -
                        "llm2vec.layers.16.self_attn.q_proj",
         | 
| 581 | 
            -
                        "llm2vec.layers.16.self_attn.k_proj",
         | 
| 582 | 
            -
                        "llm2vec.layers.16.self_attn.v_proj",
         | 
| 583 | 
            -
                        "llm2vec.layers.16.self_attn.o_proj",
         | 
| 584 | 
            -
                        "llm2vec.layers.16.mlp.gate_proj",
         | 
| 585 | 
            -
                        "llm2vec.layers.16.mlp.up_proj",
         | 
| 586 | 
            -
                        "llm2vec.layers.16.mlp.down_proj",
         | 
| 587 | 
            -
                        "llm2vec.layers.17.self_attn.q_proj",
         | 
| 588 | 
            -
                        "llm2vec.layers.17.self_attn.k_proj",
         | 
| 589 | 
            -
                        "llm2vec.layers.17.self_attn.v_proj",
         | 
| 590 | 
            -
                        "llm2vec.layers.17.self_attn.o_proj",
         | 
| 591 | 
            -
                        "llm2vec.layers.17.mlp.gate_proj",
         | 
| 592 | 
            -
                        "llm2vec.layers.17.mlp.up_proj",
         | 
| 593 | 
            -
                        "llm2vec.layers.17.mlp.down_proj",
         | 
| 594 | 
            -
                        "llm2vec.layers.18.self_attn.q_proj",
         | 
| 595 | 
            -
                        "llm2vec.layers.18.self_attn.k_proj",
         | 
| 596 | 
            -
                        "llm2vec.layers.18.self_attn.v_proj",
         | 
| 597 | 
            -
                        "llm2vec.layers.18.self_attn.o_proj",
         | 
| 598 | 
            -
                        "llm2vec.layers.18.mlp.gate_proj",
         | 
| 599 | 
            -
                        "llm2vec.layers.18.mlp.up_proj",
         | 
| 600 | 
            -
                        "llm2vec.layers.18.mlp.down_proj",
         | 
| 601 | 
            -
                        "llm2vec.layers.19.self_attn.q_proj",
         | 
| 602 | 
            -
                        "llm2vec.layers.19.self_attn.k_proj",
         | 
| 603 | 
            -
                        "llm2vec.layers.19.self_attn.v_proj",
         | 
| 604 | 
            -
                        "llm2vec.layers.19.self_attn.o_proj",
         | 
| 605 | 
            -
                        "llm2vec.layers.19.mlp.gate_proj",
         | 
| 606 | 
            -
                        "llm2vec.layers.19.mlp.up_proj",
         | 
| 607 | 
            -
                        "llm2vec.layers.19.mlp.down_proj",
         | 
| 608 | 
            -
                        "llm2vec.layers.20.self_attn.q_proj",
         | 
| 609 | 
            -
                        "llm2vec.layers.20.self_attn.k_proj",
         | 
| 610 | 
            -
                        "llm2vec.layers.20.self_attn.v_proj",
         | 
| 611 | 
            -
                        "llm2vec.layers.20.self_attn.o_proj",
         | 
| 612 | 
            -
                        "llm2vec.layers.20.mlp.gate_proj",
         | 
| 613 | 
            -
                        "llm2vec.layers.20.mlp.up_proj",
         | 
| 614 | 
            -
                        "llm2vec.layers.20.mlp.down_proj",
         | 
| 615 | 
            -
                        "llm2vec.layers.21.self_attn.q_proj",
         | 
| 616 | 
            -
                        "llm2vec.layers.21.self_attn.k_proj",
         | 
| 617 | 
            -
                        "llm2vec.layers.21.self_attn.v_proj",
         | 
| 618 | 
            -
                        "llm2vec.layers.21.self_attn.o_proj",
         | 
| 619 | 
            -
                        "llm2vec.layers.21.mlp.gate_proj",
         | 
| 620 | 
            -
                        "llm2vec.layers.21.mlp.up_proj",
         | 
| 621 | 
            -
                        "llm2vec.layers.21.mlp.down_proj",
         | 
| 622 | 
            -
                        "llm2vec.layers.22.self_attn.q_proj",
         | 
| 623 | 
            -
                        "llm2vec.layers.22.self_attn.k_proj",
         | 
| 624 | 
            -
                        "llm2vec.layers.22.self_attn.v_proj",
         | 
| 625 | 
            -
                        "llm2vec.layers.22.self_attn.o_proj",
         | 
| 626 | 
            -
                        "llm2vec.layers.22.mlp.gate_proj",
         | 
| 627 | 
            -
                        "llm2vec.layers.22.mlp.up_proj",
         | 
| 628 | 
            -
                        "llm2vec.layers.22.mlp.down_proj",
         | 
| 629 | 
            -
                        "llm2vec.layers.23.self_attn.q_proj",
         | 
| 630 | 
            -
                        "llm2vec.layers.23.self_attn.k_proj",
         | 
| 631 | 
            -
                        "llm2vec.layers.23.self_attn.v_proj",
         | 
| 632 | 
            -
                        "llm2vec.layers.23.self_attn.o_proj",
         | 
| 633 | 
            -
                        "llm2vec.layers.23.mlp.gate_proj",
         | 
| 634 | 
            -
                        "llm2vec.layers.23.mlp.up_proj",
         | 
| 635 | 
            -
                        "llm2vec.layers.23.mlp.down_proj",
         | 
| 636 | 
            -
                        "llm2vec.layers.24.self_attn.q_proj",
         | 
| 637 | 
            -
                        "llm2vec.layers.24.self_attn.k_proj",
         | 
| 638 | 
            -
                        "llm2vec.layers.24.self_attn.v_proj",
         | 
| 639 | 
            -
                        "llm2vec.layers.24.self_attn.o_proj",
         | 
| 640 | 
            -
                        "llm2vec.layers.24.mlp.gate_proj",
         | 
| 641 | 
            -
                        "llm2vec.layers.24.mlp.up_proj",
         | 
| 642 | 
            -
                        "llm2vec.layers.24.mlp.down_proj",
         | 
| 643 | 
            -
                        "llm2vec.layers.25.self_attn.q_proj",
         | 
| 644 | 
            -
                        "llm2vec.layers.25.self_attn.k_proj",
         | 
| 645 | 
            -
                        "llm2vec.layers.25.self_attn.v_proj",
         | 
| 646 | 
            -
                        "llm2vec.layers.25.self_attn.o_proj",
         | 
| 647 | 
            -
                        "llm2vec.layers.25.mlp.gate_proj",
         | 
| 648 | 
            -
                        "llm2vec.layers.25.mlp.up_proj",
         | 
| 649 | 
            -
                        "llm2vec.layers.25.mlp.down_proj",
         | 
| 650 | 
            -
                        "llm2vec.layers.26.self_attn.q_proj",
         | 
| 651 | 
            -
                        "llm2vec.layers.26.self_attn.k_proj",
         | 
| 652 | 
            -
                        "llm2vec.layers.26.self_attn.v_proj",
         | 
| 653 | 
            -
                        "llm2vec.layers.26.self_attn.o_proj",
         | 
| 654 | 
            -
                        "llm2vec.layers.26.mlp.gate_proj",
         | 
| 655 | 
            -
                        "llm2vec.layers.26.mlp.up_proj",
         | 
| 656 | 
            -
                        "llm2vec.layers.26.mlp.down_proj",
         | 
| 657 | 
            -
                        "llm2vec.layers.27.self_attn.q_proj",
         | 
| 658 | 
            -
                        "llm2vec.layers.27.self_attn.k_proj",
         | 
| 659 | 
            -
                        "llm2vec.layers.27.self_attn.v_proj",
         | 
| 660 | 
            -
                        "llm2vec.layers.27.self_attn.o_proj",
         | 
| 661 | 
            -
                        "llm2vec.layers.27.mlp.gate_proj",
         | 
| 662 | 
            -
                        "llm2vec.layers.27.mlp.up_proj",
         | 
| 663 | 
            -
                        "llm2vec.layers.27.mlp.down_proj",
         | 
| 664 | 
            -
                        "llm2vec.layers.28.self_attn.q_proj",
         | 
| 665 | 
            -
                        "llm2vec.layers.28.self_attn.k_proj",
         | 
| 666 | 
            -
                        "llm2vec.layers.28.self_attn.v_proj",
         | 
| 667 | 
            -
                        "llm2vec.layers.28.self_attn.o_proj",
         | 
| 668 | 
            -
                        "llm2vec.layers.28.mlp.gate_proj",
         | 
| 669 | 
            -
                        "llm2vec.layers.28.mlp.up_proj",
         | 
| 670 | 
            -
                        "llm2vec.layers.28.mlp.down_proj",
         | 
| 671 | 
            -
                        "llm2vec.layers.29.self_attn.q_proj",
         | 
| 672 | 
            -
                        "llm2vec.layers.29.self_attn.k_proj",
         | 
| 673 | 
            -
                        "llm2vec.layers.29.self_attn.v_proj",
         | 
| 674 | 
            -
                        "llm2vec.layers.29.self_attn.o_proj",
         | 
| 675 | 
            -
                        "llm2vec.layers.29.mlp.gate_proj",
         | 
| 676 | 
            -
                        "llm2vec.layers.29.mlp.up_proj",
         | 
| 677 | 
            -
                        "llm2vec.layers.29.mlp.down_proj",
         | 
| 678 | 
            -
                        "llm2vec.layers.30.self_attn.q_proj",
         | 
| 679 | 
            -
                        "llm2vec.layers.30.self_attn.k_proj",
         | 
| 680 | 
            -
                        "llm2vec.layers.30.self_attn.v_proj",
         | 
| 681 | 
            -
                        "llm2vec.layers.30.self_attn.o_proj",
         | 
| 682 | 
            -
                        "llm2vec.layers.30.mlp.gate_proj",
         | 
| 683 | 
            -
                        "llm2vec.layers.30.mlp.up_proj",
         | 
| 684 | 
            -
                        "llm2vec.layers.30.mlp.down_proj",
         | 
| 685 | 
            -
                        "llm2vec.layers.31.self_attn.q_proj",
         | 
| 686 | 
            -
                        "llm2vec.layers.31.self_attn.k_proj",
         | 
| 687 | 
            -
                        "llm2vec.layers.31.self_attn.v_proj",
         | 
| 688 | 
            -
                        "llm2vec.layers.31.self_attn.o_proj",
         | 
| 689 | 
            -
                        "llm2vec.layers.31.mlp.gate_proj",
         | 
| 690 | 
            -
                        "llm2vec.layers.31.mlp.up_proj",
         | 
| 691 | 
            -
                        "llm2vec.layers.31.mlp.down_proj",
         | 
| 692 | 
            -
                    ],
         | 
| 693 | 
            -
                )
         | 
| 694 | 
            -
                peft_model = get_peft_model(model, lora_config)
         | 
| 695 | 
            -
                peft_model.save_pretrained("../nllb-llm2vec-saved")
         | 
| 696 | 
            -
                import json
         | 
| 697 | 
            -
             | 
| 698 | 
            -
                with open("./model.safetensors.index.json", "r") as f:
         | 
| 699 | 
            -
                    print(json.load(f))
         | 
| 700 | 
            -
             | 
| 701 | 
            -
                from transformers import AutoModelForSequenceClassification
         | 
| 702 | 
            -
             | 
| 703 | 
            -
                model = AutoModelForSequenceClassification.from_pretrained(
         | 
| 704 | 
            -
                    ".", trust_remote_code=True, device_map="cuda"
         | 
| 705 | 
            -
                )
         | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            import warnings
         | 
| 3 | 
            +
            from dataclasses import dataclass
         | 
| 4 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast
         | 
| 5 |  | 
| 6 | 
             
            import torch
         | 
| 7 | 
             
            import torch.nn as nn
         | 
| 8 | 
             
            import torch.nn.functional as F
         | 
| 9 | 
            +
            import transformers
         | 
| 10 | 
            +
            from packaging import version
         | 
| 11 | 
            +
            from torch.utils.data.dataloader import DataLoader
         | 
| 12 | 
            +
            from tqdm import tqdm
         | 
| 13 | 
            +
            from transformers.cache_utils import Cache
         | 
| 14 | 
             
            from transformers.modeling_outputs import (
         | 
| 15 | 
             
                BaseModelOutputWithPooling,
         | 
| 16 | 
            +
                ModelOutput,
         | 
| 17 | 
             
                SequenceClassifierOutputWithPast,
         | 
| 18 | 
            +
                TokenClassifierOutput,
         | 
| 19 | 
             
            )
         | 
| 20 | 
             
            from transformers.modeling_utils import PreTrainedModel
         | 
| 21 | 
            +
            from transformers.models.auto import AutoModel, AutoModelForSequenceClassification
         | 
| 22 | 
             
            from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
         | 
| 23 | 
            +
            from transformers.tokenization_utils import BatchEncoding
         | 
| 24 |  | 
| 25 | 
             
            from .configuration_nllbllm2vec import NLLBLLM2VecConfig
         | 
| 26 | 
             
            from .modeling_llama_encoder import LlamaEncoderModel
         | 
| 27 |  | 
| 28 | 
            +
            DEFAULT_TOKENIZE_KWARGS = {
         | 
| 29 | 
            +
                "padding": True,
         | 
| 30 | 
            +
                "truncation": True,
         | 
| 31 | 
            +
                "max_length": 512,
         | 
| 32 | 
            +
                "return_tensors": "pt",
         | 
| 33 | 
            +
            }
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            DEFAULT_DATALOADER_KWARGS = {
         | 
| 36 | 
            +
                "shuffle": False,
         | 
| 37 | 
            +
                "batch_size": 32,
         | 
| 38 | 
            +
                "pin_memory": True,
         | 
| 39 | 
            +
            }
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def default_collate_fn_closure(tokenizer, tokenize_kwargs) -> Callable:
         | 
| 43 | 
            +
                def collate_fn(batch: list[str]) -> BatchEncoding:
         | 
| 44 | 
            +
                    return tokenizer(batch, **tokenize_kwargs)
         | 
| 45 | 
            +
                return collate_fn
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            def defaulter(kwd_dict: Optional[Dict], default_dict: Dict) -> Dict:
         | 
| 49 | 
            +
                return default_dict if kwd_dict is None else {**default_dict, **kwd_dict}
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            @dataclass
         | 
| 53 | 
            +
            class SequenceClassifierOutputWithPastAndPooler(ModelOutput):
         | 
| 54 | 
            +
                loss: Optional[torch.FloatTensor] = None
         | 
| 55 | 
            +
                logits: torch.FloatTensor = None
         | 
| 56 | 
            +
                past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
         | 
| 57 | 
            +
                hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
         | 
| 58 | 
            +
                attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
         | 
| 59 | 
            +
                pooler_output: torch.FloatTensor = None
         | 
| 60 | 
            +
             | 
| 61 |  | 
| 62 | 
             
            class NLLBLLM2Vec(PreTrainedModel):
         | 
| 63 | 
             
                config_class = NLLBLLM2VecConfig
         | 
| 64 | 
             
                model_type = "nllb-llm2vec"
         | 
| 65 | 
            +
                _supports_flash_attn_2 = True
         | 
| 66 | 
            +
                _supports_sdpa = True
         | 
| 67 | 
             
                """
         | 
| 68 | 
             
                NLLBLLM2Vec model combining NLLB and LLama encoders.
         | 
| 69 |  | 
|  | |
| 91 |  | 
| 92 | 
             
                    if config is not None:
         | 
| 93 | 
             
                        super().__init__(config, *inputs, **kwargs)
         | 
| 94 | 
            +
                        # from_pretrained overwrites this after config instantiation, so we make sure it's correctly set
         | 
| 95 | 
            +
                        config.nllb_config._attn_implementation = config._attn_implementation
         | 
| 96 | 
            +
                        config.llm2vec_config._attn_implementation = config._attn_implementation
         | 
| 97 | 
             
                        self.nllb_encoder = nllb_encoder or M2M100Encoder(config.nllb_config)
         | 
| 98 | 
             
                        self.llm2vec = llm2vec or LlamaEncoderModel(config.llm2vec_config)
         | 
| 99 | 
             
                        self.config = config
         | 
| 100 | 
            +
             | 
| 101 | 
             
                    else:
         | 
| 102 | 
             
                        # Both encoders are provided
         | 
| 103 | 
             
                        self.nllb_encoder = cast(M2M100Encoder, nllb_encoder)
         | 
|  | |
| 113 | 
             
                        self.llm2vec.config.hidden_size,
         | 
| 114 | 
             
                        bias=False,
         | 
| 115 | 
             
                    )
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    # TODO: update this once commit is included
         | 
| 118 | 
            +
                    min_version = "4.46.0"
         | 
| 119 | 
            +
                    if self.config.nllb_config._attn_implementation == "flash_attention_2":
         | 
| 120 | 
            +
                        if version.parse(transformers.__version__) < version.parse(min_version):
         | 
| 121 | 
            +
                            warnings.warn(
         | 
| 122 | 
            +
                                f"Installed transformers version ({transformers.__version__}) never sets NLLB-encoder dropout to `False` with FlashAttention2. See https://github.com/huggingface/transformers/pull/33844 for more info. Consider upgrading to latest to {min_version} or master.",
         | 
| 123 | 
            +
                                UserWarning,
         | 
| 124 | 
            +
                            )
         | 
| 125 |  | 
| 126 | 
             
                def forward(
         | 
| 127 | 
             
                    self,
         | 
|  | |
| 148 | 
             
                    else:
         | 
| 149 | 
             
                        seq_indices, seq_offsets = indices
         | 
| 150 |  | 
| 151 | 
            +
                    nllb_outputs = self.nllb_encoder(
         | 
| 152 | 
            +
                        input_ids=input_ids,
         | 
| 153 | 
            +
                        attention_mask=attention_mask,
         | 
| 154 | 
            +
                    )
         | 
| 155 | 
            +
                    nllb_last_hidden_state = nllb_outputs.last_hidden_state
         | 
| 156 | 
            +
                    nllb_last_hidden_state = self.up_proj(nllb_last_hidden_state)
         | 
|  | |
|  | |
| 157 | 
             
                    outputs = self.llm2vec(
         | 
| 158 | 
             
                        inputs_embeds=nllb_last_hidden_state,
         | 
| 159 | 
             
                        attention_mask=attention_mask,
         | 
|  | |
| 188 | 
             
                    self,
         | 
| 189 | 
             
                    inputs: List[str],
         | 
| 190 | 
             
                    src_lang: str = "eng_Latn",
         | 
| 191 | 
            +
                    dataloader_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 192 | 
             
                    tokenize_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 193 | 
            +
                    collate_fn_closure: Optional[Callable] = None,
         | 
| 194 | 
             
                ) -> torch.Tensor:
         | 
| 195 | 
             
                    """
         | 
| 196 | 
             
                    Encode input texts into embeddings.
         | 
| 197 |  | 
| 198 | 
             
                    Args:
         | 
| 199 | 
             
                        inputs (List[str]): List of input texts.
         | 
| 200 | 
            +
                        src_lang (str): Source language code for the tokenizer (default: `"eng_Latn"`).
         | 
| 201 | 
            +
                        dataloader_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the dataloader excl. `collate_fn`.
         | 
| 202 | 
            +
                            Defaults to:
         | 
| 203 | 
            +
                            >>    dataloader_kwargs = {
         | 
| 204 | 
            +
                            >>        "shuffle": False,
         | 
| 205 | 
            +
                            >>        "pin_memory": True,
         | 
| 206 | 
            +
                            >>    }
         | 
| 207 | 
             
                        tokenize_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the tokenizer.
         | 
| 208 | 
             
                            Defaults to:
         | 
| 209 | 
             
                            >>    tokenize_kwargs = {
         | 
|  | |
| 212 | 
             
                            >>        "max_length": 512,
         | 
| 213 | 
             
                            >>        "return_tensors": "pt",
         | 
| 214 | 
             
                            >>    }
         | 
| 215 | 
            +
                        collate_fn_closure (Optional[Callable]): Closure that should return a `collate_fn`.
         | 
| 216 | 
            +
                            Defaults to:
         | 
| 217 | 
            +
                            >>    def default_collate_fn_closure(tokenizer, tokenize_kwargs) -> Callable:
         | 
| 218 | 
            +
                            >>        def collate_fn(batch: list[str]) -> BatchEncoding:
         | 
| 219 | 
            +
                            >>            return tokenizer(batch, **tokenize_kwargs)
         | 
| 220 | 
            +
                            >>        return collate_fn
         | 
| 221 | 
             
                    Returns:
         | 
| 222 | 
             
                        torch.Tensor: Mean-pooled sequence embeddings of the inputs.
         | 
| 223 | 
             
                    """
         | 
| 224 | 
            +
                    # merge user kwargs with defaults, giving priority to user kwargs
         | 
| 225 | 
            +
                    tokenize_kwargs = defaulter(tokenize_kwargs, DEFAULT_TOKENIZE_KWARGS)
         | 
| 226 | 
            +
                    dataloader_kwargs = defaulter(dataloader_kwargs, DEFAULT_DATALOADER_KWARGS)
         | 
|  | |
|  | |
|  | |
|  | |
| 227 |  | 
| 228 | 
             
                    tokenizer = self.tokenizer
         | 
| 229 | 
             
                    tokenizer.src_lang = src_lang
         | 
| 230 | 
             
                    device = next(self.parameters()).device
         | 
|  | |
|  | |
| 231 |  | 
| 232 | 
            +
                    if collate_fn_closure is None:
         | 
| 233 | 
            +
                        collate_fn = default_collate_fn_closure(tokenizer, tokenize_kwargs)
         | 
| 234 | 
            +
                    else:
         | 
| 235 | 
            +
                        collate_fn = collate_fn_closure(tokenizer, tokenize_kwargs)
         | 
| 236 | 
            +
                    assert (
         | 
| 237 | 
            +
                        "collate_fn" not in dataloader_kwargs
         | 
| 238 | 
            +
                    ), "`collate_fn` should be created via `collate_fn_closure`"
         | 
| 239 | 
            +
                    self.eval()
         | 
| 240 | 
            +
                    if len(inputs) > dataloader_kwargs.get("batch_size", 1):
         | 
| 241 | 
            +
                        dataloader = DataLoader(inputs, collate_fn=collate_fn, **dataloader_kwargs)  # type: ignore
         | 
| 242 | 
            +
                        all_embeddings = []
         | 
| 243 | 
            +
                        # Iterate through the dataloader with a progress bar and autocast
         | 
| 244 | 
            +
                        with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
         | 
| 245 | 
            +
                            for batch in tqdm(dataloader, desc="Encoding"):
         | 
| 246 | 
            +
                                # Move batch to device
         | 
| 247 | 
            +
                                batch = {k: v.to(device) for k, v in batch.items()}
         | 
| 248 | 
            +
                                # Forward pass through the model (assumes model returns embeddings)
         | 
| 249 | 
            +
                                with torch.inference_mode():
         | 
| 250 | 
            +
                                    pooled_embeddings = cast(
         | 
| 251 | 
            +
                                        SequenceClassifierOutputWithPastAndPooler, self(**batch)
         | 
| 252 | 
            +
                                    ).pooler_output  # Assuming model returns sequence embeddings
         | 
| 253 | 
            +
                                all_embeddings.append(pooled_embeddings)
         | 
| 254 | 
            +
                        # Concatenate all pooled embeddings along the batch dimension
         | 
| 255 | 
            +
                        all_embeddings = torch.cat(all_embeddings, dim=0)
         | 
| 256 | 
            +
                    else:
         | 
| 257 | 
            +
                        batch = {k: v.to(device) for k, v in collate_fn(inputs)}
         | 
| 258 | 
            +
                        with torch.inference_mode():
         | 
| 259 | 
            +
                            all_embeddings = cast(
         | 
| 260 | 
            +
                                SequenceClassifierOutputWithPastAndPooler, self(**batch)
         | 
| 261 | 
            +
                            ).pooler_output  # Assuming model returns sequence embeddings
         | 
| 262 | 
            +
                    return all_embeddings
         | 
| 263 |  | 
| 264 | 
             
                @staticmethod
         | 
| 265 | 
             
                def _get_input_offsets(
         | 
|  | |
| 283 | 
             
                    non_padded_lengths = attention_mask.sum(
         | 
| 284 | 
             
                        dim=1
         | 
| 285 | 
             
                    )  # Count non-padded tokens per sequence
         | 
| 286 | 
            +
                    offsets = non_padded_lengths.cumsum(dim=0).roll(shifts=1)
         | 
| 287 | 
            +
                    offsets[0] = 0
         | 
|  | |
|  | |
|  | |
|  | |
| 288 | 
             
                    return input_indices, offsets
         | 
| 289 |  | 
| 290 | 
             
                @staticmethod
         | 
|  | |
| 322 | 
             
                config_class = NLLBLLM2VecConfig
         | 
| 323 | 
             
                model_type = "nllb-llm2vec"
         | 
| 324 | 
             
                base_model_prefix = "model"
         | 
| 325 | 
            +
                _supports_flash_attn_2 = True
         | 
| 326 | 
            +
                _supports_sdpa = True
         | 
| 327 |  | 
| 328 | 
             
                def __init__(self, config):
         | 
| 329 | 
             
                    super().__init__(config)
         | 
| 330 | 
             
                    self.num_labels = config.num_labels
         | 
| 331 | 
            +
             | 
| 332 | 
             
                    self.model = NLLBLLM2Vec(config)
         | 
| 333 | 
             
                    self.score = nn.Linear(
         | 
| 334 | 
             
                        config.llm2vec_config.hidden_size, self.num_labels, bias=False
         | 
|  | |
| 337 | 
             
                    # Initialize weights and apply final processing
         | 
| 338 | 
             
                    self.post_init()
         | 
| 339 |  | 
| 340 | 
            +
                def _init_weights(self, module):
         | 
| 341 | 
            +
                    if module is self.score:
         | 
| 342 | 
            +
                        # INFO:
         | 
| 343 | 
            +
                        # - critical that clf head is in float32 (NusaX perf. drops funky otherwise)
         | 
| 344 | 
            +
                        # - Initialization needs to be redone, otherwise borked
         | 
| 345 | 
            +
                        #   - Use kaiming uniform, b/c Llama init (cf. `nn.Linear` below) performs worse
         | 
| 346 | 
            +
                        self.score = self.score.to(torch.float32)
         | 
| 347 | 
            +
                        torch.nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
         | 
| 348 | 
            +
                    elif isinstance(module, nn.Linear):
         | 
| 349 | 
            +
                        if isinstance(module, nn.Linear):
         | 
| 350 | 
            +
                            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 351 | 
            +
                            if module.bias is not None:
         | 
| 352 | 
            +
                                module.bias.data.zero_()
         | 
| 353 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 354 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 355 | 
            +
                        if module.padding_idx is not None:
         | 
| 356 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 357 | 
            +
             | 
| 358 | 
             
                def get_input_embeddings(self):
         | 
| 359 | 
             
                    return self.model.nllb.embed_tokens
         | 
| 360 |  | 
| 361 | 
             
                def set_input_embeddings(self, value):
         | 
| 362 | 
             
                    self.model.nllb.embed_tokens = value
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 363 |  | 
| 364 | 
             
                def forward(
         | 
| 365 | 
             
                    self,
         | 
|  | |
| 425 | 
             
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 426 | 
             
                        return ((loss,) + output) if loss is not None else output
         | 
| 427 |  | 
| 428 | 
            +
                    return SequenceClassifierOutputWithPastAndPooler(
         | 
| 429 | 
             
                        loss=loss,
         | 
| 430 | 
             
                        hidden_states=hidden_states,
         | 
| 431 | 
             
                        logits=pooled_logits,
         | 
| 432 | 
            +
                        pooler_output=transformer_outputs.pooler_output,
         | 
| 433 | 
            +
                    )
         | 
| 434 | 
            +
             | 
| 435 | 
            +
             | 
| 436 | 
            +
            class NLLBLLM2VecForTokenClassification(PreTrainedModel):
         | 
| 437 | 
            +
                config_class = NLLBLLM2VecConfig
         | 
| 438 | 
            +
                model_type = "nllb-llm2vec"
         | 
| 439 | 
            +
                base_model_prefix = "model"
         | 
| 440 | 
            +
                _supports_flash_attn_2 = True
         | 
| 441 | 
            +
                _supports_sdpa = True
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                def __init__(self, config: NLLBLLM2VecConfig):
         | 
| 444 | 
            +
                    super().__init__(config)
         | 
| 445 | 
            +
                    self.num_labels = config.num_labels
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    self.model = NLLBLLM2Vec(config)
         | 
| 448 | 
            +
                    self.classifier = nn.Linear(
         | 
| 449 | 
            +
                        config.llm2vec_config.hidden_size, self.num_labels, bias=False
         | 
| 450 | 
            +
                    )
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                    # Initialize weights and apply final processing
         | 
| 453 | 
            +
                    self.post_init()
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                def _init_weights(self, module):
         | 
| 456 | 
            +
                    if module is self.classifier:
         | 
| 457 | 
            +
                        # INFO:
         | 
| 458 | 
            +
                        # - critical that clf head is in float32 (NusaX perf. drops funky otherwise)
         | 
| 459 | 
            +
                        # - Initialization needs to be redone, otherwise borked
         | 
| 460 | 
            +
                        #   - Use kaiming uniform, b/c Llama init (cf. `nn.Linear` below) performs worse
         | 
| 461 | 
            +
                        self.classifier = self.classifier.to(torch.float32)
         | 
| 462 | 
            +
                        torch.nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
         | 
| 463 | 
            +
                    elif isinstance(module, nn.Linear):
         | 
| 464 | 
            +
                        if isinstance(module, nn.Linear):
         | 
| 465 | 
            +
                            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 466 | 
            +
                            if module.bias is not None:
         | 
| 467 | 
            +
                                module.bias.data.zero_()
         | 
| 468 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 469 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 470 | 
            +
                        if module.padding_idx is not None:
         | 
| 471 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                def get_input_embeddings(self):
         | 
| 474 | 
            +
                    return self.model.nllb.embed_tokens
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                def set_input_embeddings(self, value):
         | 
| 477 | 
            +
                    self.model.nllb.embed_tokens = value
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                # adapted from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification
         | 
| 480 | 
            +
                # - removed classifier dropout
         | 
| 481 | 
            +
                # - use F.cross_entropy
         | 
| 482 | 
            +
                def forward(
         | 
| 483 | 
            +
                    self,
         | 
| 484 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 485 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 486 | 
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         | 
| 487 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 488 | 
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         | 
| 489 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 490 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 491 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 492 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 493 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 494 | 
            +
                ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
         | 
| 495 | 
            +
                    r"""
         | 
| 496 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 497 | 
            +
                        Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
         | 
| 498 | 
            +
                    """
         | 
| 499 | 
            +
                    return_dict = (
         | 
| 500 | 
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 501 | 
            +
                    )
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                    outputs = self.model(
         | 
| 504 | 
            +
                        input_ids,
         | 
| 505 | 
            +
                        attention_mask=attention_mask,
         | 
| 506 | 
            +
                        token_type_ids=token_type_ids,
         | 
| 507 | 
            +
                        position_ids=position_ids,
         | 
| 508 | 
            +
                        head_mask=head_mask,
         | 
| 509 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 510 | 
            +
                        output_attentions=output_attentions,
         | 
| 511 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 512 | 
            +
                        return_dict=return_dict,
         | 
| 513 | 
            +
                    )
         | 
| 514 | 
            +
                    sequence_output = outputs[0]
         | 
| 515 | 
            +
                    logits = self.classifier(sequence_output)
         | 
| 516 | 
            +
             | 
| 517 | 
            +
                    loss = None
         | 
| 518 | 
            +
                    if labels is not None:
         | 
| 519 | 
            +
                        # move labels to correct device to enable model parallelism
         | 
| 520 | 
            +
                        labels = labels.to(logits.device)
         | 
| 521 | 
            +
                        loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                    if not return_dict:
         | 
| 524 | 
            +
                        output = (logits,) + outputs[2:]
         | 
| 525 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    return TokenClassifierOutput(
         | 
| 528 | 
            +
                        loss=loss,
         | 
| 529 | 
            +
                        logits=logits,
         | 
| 530 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 531 | 
            +
                        attentions=outputs.attentions,
         | 
| 532 | 
             
                    )
         | 
| 533 |  | 
| 534 |  | 
|  | |
| 536 | 
             
            AutoModelForSequenceClassification.register(
         | 
| 537 | 
             
                NLLBLLM2VecConfig, NLLBLLM2VecForSequenceClassification
         | 
| 538 | 
             
            )
         | 
| 539 | 
            +
            AutoModelForSequenceClassification.register(
         | 
| 540 | 
            +
                NLLBLLM2VecConfig, NLLBLLM2VecForTokenClassification
         | 
| 541 | 
            +
            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
