Upload model + init tptt code
Browse files- .gitattributes +1 -0
- README.md +68 -0
- __init__.py +24 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +24 -0
- config.json +56 -0
- configuration_tptt.py +137 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_tptt.py +778 -0
- pipeline_tptt.py +44 -0
- runs/Jun09_19-12-59_bb326d838c91/events.out.tfevents.1749496381.bb326d838c91.35.0 +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- train_tptt.py +63 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- tptt
|
7 |
+
- peft
|
8 |
+
- trust_remote_code
|
9 |
+
---
|
10 |
+
|
11 |
+
# Titans-Qwen2.5-1.5B
|
12 |
+
|
13 |
+
Titanesque version of `Qwen/Qwen2.5-1.5B` with parallel linearized attention (TPTT 😊) and PEFT.
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
|
17 |
+
- **Architecture:** TpttModel
|
18 |
+
- **Base model:** Qwen/Qwen2.5-1.5B
|
19 |
+
- **LiZA config:** operator=delta_rule, mag=0.5
|
20 |
+
- **LoRA config:** r=8, alpha=16, dropout=0.05
|
21 |
+
- **torch_dtype:** bfloat16
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
28 |
+
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
"ffurfaro/Titans-Qwen2.5-1.5B",
|
31 |
+
trust_remote_code=True
|
32 |
+
)
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("ffurfaro/Titans-Qwen2.5-1.5B")
|
34 |
+
|
35 |
+
prompt = "Your prompt here"
|
36 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
37 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
38 |
+
print(tokenizer.decode(outputs, skip_special_tokens=True))
|
39 |
+
|
40 |
+
```
|
41 |
+
|
42 |
+
## Training
|
43 |
+
|
44 |
+
- **Dataset:** yahma/alpaca-cleaned
|
45 |
+
- **Platform:** Kaggle
|
46 |
+
- **Hardware:** NVIDIA 2xT4
|
47 |
+
- **Batch size:** 2
|
48 |
+
- **Epochs:** 1.0
|
49 |
+
- **Learning rate (final):** 0.0
|
50 |
+
- **Loss (final):** 1.4369
|
51 |
+
- **Training runtime:** 81.526 sec
|
52 |
+
- **Samples per second:** 1.227
|
53 |
+
- **Steps per second:** 0.307
|
54 |
+
- **Total FLOPs:** 201603022848000.0
|
55 |
+
- **Gradient norm (final):** 0.8238493204116821
|
56 |
+
|
57 |
+
## Evaluation
|
58 |
+
|
59 |
+
- **Metrics:** Training loss only (no eval yet, table soon : PiQA, ARC, Hella, Wino, GSM8K, MMLU)
|
60 |
+
- **Results:** Final training loss: 1.4369
|
61 |
+
|
62 |
+
|
63 |
+
## Citation & Contact
|
64 |
+
|
65 |
+
If you use TPTT in your academic work, please cite [Furfaro](https://huggingface.co/ffurfaro). For questions or support, please open an issue on the [GitHub repository](https://github.com/fabienfrfr/tptt) or contact the maintainer.
|
66 |
+
|
67 |
+
|
68 |
+
---
|
__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__version__ = "0.1.0"
|
2 |
+
|
3 |
+
from .configuration_tptt import TpttConfig, generate_model_card
|
4 |
+
from .modeling_tptt import (
|
5 |
+
AttentionOperator,
|
6 |
+
LCache,
|
7 |
+
LiZAttention,
|
8 |
+
TpttModel,
|
9 |
+
get_tptt_model,
|
10 |
+
)
|
11 |
+
from .pipeline_tptt import TpttPipeline
|
12 |
+
from .train_tptt import AdjustMaGWeightCallback
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"TpttConfig",
|
16 |
+
"TpttModel",
|
17 |
+
"TpttPipeline",
|
18 |
+
"get_tptt_model",
|
19 |
+
"AdjustMaGWeightCallback",
|
20 |
+
"LCache",
|
21 |
+
"AttentionOperator",
|
22 |
+
"LiZAttention",
|
23 |
+
"generate_model_card",
|
24 |
+
]
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5da9d8c6ef9e66a127464a1d1859a4ffd915e3012467c46bc201d48f8d0d8ab9
|
3 |
+
size 8747944
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TpttModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_tptt.TpttConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_tptt.TpttModel"
|
8 |
+
},
|
9 |
+
"base_model_name": "Qwen/Qwen2.5-1.5B",
|
10 |
+
"lora_config": {
|
11 |
+
"alpha_pattern": {},
|
12 |
+
"auto_mapping": null,
|
13 |
+
"base_model_name_or_path": null,
|
14 |
+
"bias": "none",
|
15 |
+
"eva_config": null,
|
16 |
+
"exclude_modules": null,
|
17 |
+
"fan_in_fan_out": false,
|
18 |
+
"inference_mode": false,
|
19 |
+
"init_lora_weights": true,
|
20 |
+
"layer_replication": null,
|
21 |
+
"layers_pattern": null,
|
22 |
+
"layers_to_transform": null,
|
23 |
+
"loftq_config": {},
|
24 |
+
"lora_alpha": 16,
|
25 |
+
"lora_bias": false,
|
26 |
+
"lora_dropout": 0.05,
|
27 |
+
"megatron_config": null,
|
28 |
+
"megatron_core": "megatron.core",
|
29 |
+
"modules_to_save": null,
|
30 |
+
"peft_type": "LORA",
|
31 |
+
"r": 8,
|
32 |
+
"rank_pattern": {},
|
33 |
+
"revision": null,
|
34 |
+
"target_modules": [
|
35 |
+
"v_proj",
|
36 |
+
"o_proj",
|
37 |
+
"q_proj",
|
38 |
+
"k_proj"
|
39 |
+
],
|
40 |
+
"task_type": "CAUSAL_LM",
|
41 |
+
"use_dora": false,
|
42 |
+
"use_rslora": false
|
43 |
+
},
|
44 |
+
"mag_weight": 0.5,
|
45 |
+
"max_chunk_size": 32,
|
46 |
+
"max_self_attn_length": 2048,
|
47 |
+
"model_type": "tptt",
|
48 |
+
"operator_mode": "delta_rule",
|
49 |
+
"target_modules_names": [
|
50 |
+
"attn",
|
51 |
+
"self_attn",
|
52 |
+
"attention"
|
53 |
+
],
|
54 |
+
"torch_dtype": "bfloat16",
|
55 |
+
"transformers_version": "4.49.0"
|
56 |
+
}
|
configuration_tptt.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author : Fabien FURFARO
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
|
9 |
+
from transformers import AutoConfig, PretrainedConfig
|
10 |
+
|
11 |
+
|
12 |
+
def convert_sets_to_lists(obj):
|
13 |
+
if isinstance(obj, set):
|
14 |
+
return list(obj)
|
15 |
+
elif isinstance(obj, dict):
|
16 |
+
return {k: convert_sets_to_lists(v) for k, v in obj.items()}
|
17 |
+
elif isinstance(obj, (list, tuple)):
|
18 |
+
return [convert_sets_to_lists(x) for x in obj]
|
19 |
+
else:
|
20 |
+
return obj
|
21 |
+
|
22 |
+
|
23 |
+
class TpttConfig(PretrainedConfig):
|
24 |
+
"""
|
25 |
+
Configuration class for the TPTT model.
|
26 |
+
This class merges the backbone config (e.g., Llama) with custom TPTT parameters,
|
27 |
+
"""
|
28 |
+
|
29 |
+
model_type = "tptt"
|
30 |
+
auto_map = {
|
31 |
+
"AutoModelForCausalLM": "modeling_tptt.TpttModel",
|
32 |
+
"AutoConfig": "configuration_tptt.TpttConfig",
|
33 |
+
}
|
34 |
+
architectures = ["TpttModel"]
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
base_model_config: Optional[Union[str, dict, PretrainedConfig]] = None,
|
39 |
+
base_model_name: str = "meta-llama/Llama-3.2-1B",
|
40 |
+
name_or_path: Optional[str] = None,
|
41 |
+
target_modules_names: Optional[List[str]] = None,
|
42 |
+
operator_mode: str = "delta_rule",
|
43 |
+
max_self_attn_length: int = 4096,
|
44 |
+
mag_weight: float = 0.5,
|
45 |
+
max_chunk_size: int = 64,
|
46 |
+
lora_config: Optional[dict] = None, # only serialized accepted
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
|
50 |
+
if base_model_config is not None:
|
51 |
+
if isinstance(base_model_config, str):
|
52 |
+
# Load config from Hugging Face Hub or a local path
|
53 |
+
base_model_config = AutoConfig.from_pretrained(
|
54 |
+
base_model_config
|
55 |
+
).to_dict()
|
56 |
+
elif isinstance(base_model_config, PretrainedConfig):
|
57 |
+
base_model_config = base_model_config.to_dict()
|
58 |
+
# Merge all backbone fields into this config
|
59 |
+
for k, v in base_model_config.items():
|
60 |
+
setattr(self, k, v)
|
61 |
+
|
62 |
+
self.base_model_name = base_model_name
|
63 |
+
self._name_or_path = (
|
64 |
+
name_or_path
|
65 |
+
if name_or_path is not None
|
66 |
+
else "Titans-" + base_model_name.split("/", 1)[1]
|
67 |
+
)
|
68 |
+
|
69 |
+
self.target_modules_names = target_modules_names or [
|
70 |
+
"attn",
|
71 |
+
"self_attn",
|
72 |
+
"attention",
|
73 |
+
]
|
74 |
+
self.operator_mode = operator_mode
|
75 |
+
self.mag_weight = mag_weight
|
76 |
+
self.max_chunk_size = max_chunk_size
|
77 |
+
self.max_self_attn_length = max_self_attn_length
|
78 |
+
|
79 |
+
self.lora_config = lora_config
|
80 |
+
if lora_config is not None:
|
81 |
+
if hasattr(self.lora_config.get("peft_type"), "value"):
|
82 |
+
self.lora_config["peft_type"] = self.lora_config["peft_type"].value
|
83 |
+
self.lora_config = convert_sets_to_lists(self.lora_config)
|
84 |
+
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
# Copy class attributes to instance for serialization (save dict)
|
87 |
+
self.model_type = self.__class__.model_type
|
88 |
+
self.auto_map = self.__class__.auto_map
|
89 |
+
self.architectures = self.__class__.architectures
|
90 |
+
|
91 |
+
|
92 |
+
TpttConfig.register_for_auto_class()
|
93 |
+
|
94 |
+
|
95 |
+
def extract_template_variables(template):
|
96 |
+
return set(re.findall(r"\{([^{}]+)\}", template))
|
97 |
+
|
98 |
+
|
99 |
+
def generate_model_card(path: str, config, **kwargs):
|
100 |
+
"""Generate model card from template and training metadata."""
|
101 |
+
template_path = os.path.join(os.path.dirname(__file__), "model_card_template.md")
|
102 |
+
with open(template_path, "r", encoding="utf-8") as f:
|
103 |
+
template = f.read()
|
104 |
+
|
105 |
+
# Flatten config
|
106 |
+
def flatten_config(config):
|
107 |
+
result = {}
|
108 |
+
if hasattr(config, "__dict__"):
|
109 |
+
config = config.__dict__
|
110 |
+
for k, v in config.items():
|
111 |
+
if isinstance(v, dict):
|
112 |
+
for subk, subv in v.items():
|
113 |
+
result[f"{k}_{subk}"] = subv
|
114 |
+
else:
|
115 |
+
result[k] = v
|
116 |
+
return result
|
117 |
+
|
118 |
+
variables = flatten_config(config)
|
119 |
+
variables.update(kwargs)
|
120 |
+
variables["model_id"] = os.path.basename(path)
|
121 |
+
|
122 |
+
# Extract variables from template
|
123 |
+
template_vars = extract_template_variables(template)
|
124 |
+
|
125 |
+
# Add default values for missing variables
|
126 |
+
for var in template_vars:
|
127 |
+
if var not in variables:
|
128 |
+
variables[var] = "N/A"
|
129 |
+
|
130 |
+
# Handle list conversion (optional but useful)
|
131 |
+
for k, v in variables.items():
|
132 |
+
if isinstance(v, list):
|
133 |
+
variables[k] = ", ".join(map(str, v))
|
134 |
+
|
135 |
+
model_card_content = template.format(**variables)
|
136 |
+
with open(os.path.join(path, "README.md"), "w", encoding="utf-8") as f:
|
137 |
+
f.write(model_card_content)
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.49.0"
|
4 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4baae0716ce1cff5226e6d2078a6bb2560b18d9fd6e47f1ca4caef1469f8dd75
|
3 |
+
size 3096231760
|
modeling_tptt.py
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module implements the TPTT model with linear attention (LiZA) and LoRA support.
|
3 |
+
Author : Fabien FURFARO
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import shutil
|
9 |
+
from typing import Dict, List, Optional
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from einops import rearrange
|
14 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
15 |
+
from peft import LoraConfig, get_peft_model
|
16 |
+
from safetensors import safe_open
|
17 |
+
from torch import nn
|
18 |
+
from transformers import AutoModelForCausalLM, DynamicCache, PreTrainedModel
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
|
21 |
+
from .configuration_tptt import TpttConfig
|
22 |
+
|
23 |
+
|
24 |
+
def import_fla_ops():
|
25 |
+
"""flash linear attention"""
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
try:
|
28 |
+
from fla.ops.gla import fused_chunk_gla, fused_recurrent_gla
|
29 |
+
|
30 |
+
return fused_chunk_gla, fused_recurrent_gla
|
31 |
+
except ImportError:
|
32 |
+
return None, None
|
33 |
+
return None, None
|
34 |
+
|
35 |
+
|
36 |
+
fused_chunk_gla, fused_recurrent_gla = import_fla_ops() # TODO: add all ops
|
37 |
+
|
38 |
+
|
39 |
+
class LCache:
|
40 |
+
"""
|
41 |
+
Cache for storing intermediate states of linear attention layers.
|
42 |
+
Supports a sliding window if max_length is set.
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self):
|
46 |
+
"""
|
47 |
+
Initialize the cache.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
max_length (Optional[int]): Maximum number of tokens to keep per layer (if set).
|
51 |
+
"""
|
52 |
+
self.states: List[Dict[str, torch.Tensor]] = []
|
53 |
+
self.seen_tokens = 0
|
54 |
+
|
55 |
+
def __getitem__(self, layer_idx: int) -> Optional[Dict[str, torch.Tensor]]:
|
56 |
+
"""
|
57 |
+
Retrieve the state for the given layer index, if it exists.
|
58 |
+
"""
|
59 |
+
if layer_idx < len(self.states):
|
60 |
+
return self.states[layer_idx]
|
61 |
+
return None
|
62 |
+
|
63 |
+
def update(self, layer_idx: int, **kwargs):
|
64 |
+
"""
|
65 |
+
Update the cache for a given layer.
|
66 |
+
If max_length is set, keep only the last max_length tokens in any sequence state.
|
67 |
+
"""
|
68 |
+
detached_kwargs = {}
|
69 |
+
for key, value in kwargs.items():
|
70 |
+
if isinstance(value, torch.Tensor):
|
71 |
+
value = value.detach()
|
72 |
+
detached_kwargs[key] = value
|
73 |
+
|
74 |
+
if len(self.states) <= layer_idx:
|
75 |
+
self.states.append(detached_kwargs)
|
76 |
+
else:
|
77 |
+
self.states[layer_idx].update(detached_kwargs)
|
78 |
+
|
79 |
+
def reset(self):
|
80 |
+
"""
|
81 |
+
Reset the cache and token counter.
|
82 |
+
"""
|
83 |
+
self.states.clear()
|
84 |
+
self.seen_tokens = 0
|
85 |
+
|
86 |
+
|
87 |
+
class LiZAttention(nn.Module):
|
88 |
+
"""LiZA Linear Attention module, mixing linear and vanilla attention."""
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
base_attn: nn.Module,
|
93 |
+
layer_idx: int,
|
94 |
+
base_config, # Backbone Config
|
95 |
+
linear_cache: LCache = None,
|
96 |
+
operator_mode: str = "delta_rule",
|
97 |
+
max_self_attn_length: int = 2048,
|
98 |
+
mag_weight: float = 0.5,
|
99 |
+
max_chunk_size: int = 64,
|
100 |
+
):
|
101 |
+
super().__init__()
|
102 |
+
self.base_attn = base_attn
|
103 |
+
self.base_config = base_config
|
104 |
+
self.layer_idx = layer_idx
|
105 |
+
self.max_self_attn_length = max_self_attn_length
|
106 |
+
self.mag_weight = mag_weight
|
107 |
+
self.max_chunk_size = max_chunk_size
|
108 |
+
self.linear_cache = linear_cache or LCache()
|
109 |
+
(
|
110 |
+
self.num_heads,
|
111 |
+
self.head_dim,
|
112 |
+
self.num_key_value_heads,
|
113 |
+
self.num_key_value_groups,
|
114 |
+
) = self._get_attention_parameters(base_attn, base_config)
|
115 |
+
self.operator = get_attention_operator(operator_mode)
|
116 |
+
self.pool_g = nn.AdaptiveAvgPool1d(
|
117 |
+
output_size=self.head_dim * self.num_key_value_heads
|
118 |
+
)
|
119 |
+
|
120 |
+
def _get_attention_parameters(self, base_attn, base_config):
|
121 |
+
"""Retrieve the attention parameters from the base attention module."""
|
122 |
+
# first order base attention module and second order config
|
123 |
+
num_heads = (
|
124 |
+
getattr(base_attn, "num_heads", None)
|
125 |
+
or getattr(base_attn, "num_q_heads", None)
|
126 |
+
or getattr(base_config, "num_heads", None)
|
127 |
+
or getattr(base_config, "num_attention_heads", None)
|
128 |
+
)
|
129 |
+
head_dim = getattr(base_attn, "head_dim", None) or getattr(
|
130 |
+
base_config, "head_dim", None
|
131 |
+
)
|
132 |
+
num_key_value_heads = (
|
133 |
+
getattr(base_attn, "num_kv_heads", None)
|
134 |
+
or getattr(base_attn, "num_k_heads", None)
|
135 |
+
or getattr(base_config, "num_key_value_heads", None)
|
136 |
+
or num_heads # fallback
|
137 |
+
)
|
138 |
+
num_key_value_groups = getattr(base_attn, "num_key_value_groups", None) or (
|
139 |
+
num_heads // num_key_value_heads if num_heads and num_key_value_heads else 1
|
140 |
+
)
|
141 |
+
return (
|
142 |
+
num_heads,
|
143 |
+
head_dim,
|
144 |
+
num_key_value_heads,
|
145 |
+
num_key_value_groups,
|
146 |
+
)
|
147 |
+
|
148 |
+
def _apply_projections(self, hidden_states):
|
149 |
+
base_attn = self.base_attn
|
150 |
+
if hasattr(base_attn, "q_proj"):
|
151 |
+
# LLama, OLMO and Mistral style
|
152 |
+
q = base_attn.q_proj(hidden_states)
|
153 |
+
k = base_attn.k_proj(hidden_states)
|
154 |
+
v = base_attn.v_proj(hidden_states)
|
155 |
+
out_proj = base_attn.o_proj
|
156 |
+
elif hasattr(base_attn, "qkv_proj"):
|
157 |
+
# OpenELM and GPT-Neo style : QKV fused, split on the last dimension
|
158 |
+
qkv = base_attn.qkv_proj(hidden_states)
|
159 |
+
q, k, v = split_qkv(base_attn, qkv)
|
160 |
+
out_proj = base_attn.out_proj
|
161 |
+
elif hasattr(base_attn, "c_attn") and hasattr(base_attn, "c_proj"):
|
162 |
+
# GPT-2 style
|
163 |
+
qkv = base_attn.c_attn(hidden_states)
|
164 |
+
q, k, v = qkv.chunk(3, dim=-1)
|
165 |
+
out_proj = base_attn.c_proj
|
166 |
+
else:
|
167 |
+
raise ValueError("Unsupported attention module: cannot find projections.")
|
168 |
+
# Ensure stability
|
169 |
+
q = torch.clamp(q, min=-1e4, max=1e4)
|
170 |
+
k = torch.clamp(k, min=-1e4, max=1e4)
|
171 |
+
v = torch.clamp(v, min=-1e4, max=1e4)
|
172 |
+
return q, k, v, out_proj
|
173 |
+
|
174 |
+
def _prepare_attn_input(self, q, k, v, gate_norm):
|
175 |
+
# Gating for linear attn
|
176 |
+
g = self.pool_g(k)
|
177 |
+
|
178 |
+
# Reshape for multi-head
|
179 |
+
q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads)
|
180 |
+
k = rearrange(k, "b n (h d) -> b h n d", h=self.num_key_value_heads)
|
181 |
+
v = rearrange(v, "b n (h d) -> b h n d", h=self.num_key_value_heads)
|
182 |
+
g = rearrange(g, "b n (h m) -> b h n m", h=self.num_key_value_heads)
|
183 |
+
|
184 |
+
# Repeat for GQA
|
185 |
+
k = repeat_kv(k, self.num_key_value_groups)
|
186 |
+
v = repeat_kv(v, self.num_key_value_groups)
|
187 |
+
g = repeat_kv(g, self.num_key_value_groups)
|
188 |
+
|
189 |
+
## linear part
|
190 |
+
q = torch.clamp(F.softmax(q, dim=-1), min=1e-6, max=1 - 1e-6)
|
191 |
+
k = torch.clamp(F.softmax(k, dim=-1), min=1e-6, max=1 - 1e-6)
|
192 |
+
|
193 |
+
g = F.logsigmoid(g) / gate_norm
|
194 |
+
g = torch.clamp(g, min=-gate_norm, max=gate_norm)
|
195 |
+
|
196 |
+
# Convert to float32 for numerical stability and get model dtype
|
197 |
+
q, k, v, g = (x.to(torch.float32).contiguous() for x in (q, k, v, g))
|
198 |
+
|
199 |
+
return q, k, v, g
|
200 |
+
|
201 |
+
def _process_linear_attn(self, q, k, v, g, out_proj, tensor_dtype, kwargs):
|
202 |
+
# Retrieve recurrent state from cache (inference only)
|
203 |
+
if kwargs["use_cache"]:
|
204 |
+
last_state = self.linear_cache[self.layer_idx]
|
205 |
+
recurrent_state = (
|
206 |
+
last_state["recurrent_state"]
|
207 |
+
if last_state is not None and "recurrent_state" in last_state
|
208 |
+
else None
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
recurrent_state = None
|
212 |
+
|
213 |
+
# Linear attention
|
214 |
+
o_lin, recurrent_state = self.operator(
|
215 |
+
q,
|
216 |
+
k,
|
217 |
+
v,
|
218 |
+
beta=g,
|
219 |
+
chunk_size=self.max_chunk_size,
|
220 |
+
recurrent_state=recurrent_state,
|
221 |
+
)
|
222 |
+
o_lin = rearrange(o_lin, "b h n d -> b n (h d)").to(tensor_dtype)
|
223 |
+
o_lin = out_proj(o_lin)
|
224 |
+
# Ensure stability (o_lin = soft_clamp(o_lin) ?)
|
225 |
+
o_lin = torch.clamp(o_lin, min=-1e4, max=1e4)
|
226 |
+
|
227 |
+
# Save recurrent state
|
228 |
+
if kwargs["use_cache"]:
|
229 |
+
self.linear_cache.update(self.layer_idx, recurrent_state=recurrent_state)
|
230 |
+
return o_lin
|
231 |
+
|
232 |
+
def _process_self_attn(self, hidden_states, attention_mask, kwargs):
|
233 |
+
# If cache_implementation="static" -> truncated attention
|
234 |
+
hidden_states, attention_mask = truncate_attention_mask(
|
235 |
+
hidden_states, attention_mask, self.max_self_attn_length
|
236 |
+
)
|
237 |
+
|
238 |
+
if kwargs.get("position_embeddings", None) is not None:
|
239 |
+
cos, sin = kwargs["position_embeddings"]
|
240 |
+
cos = cos[:, -self.max_self_attn_length :]
|
241 |
+
sin = sin[:, -self.max_self_attn_length :]
|
242 |
+
kwargs["position_embeddings"] = (cos, sin)
|
243 |
+
|
244 |
+
if isinstance(kwargs.get("past_key_value", None), DynamicCache):
|
245 |
+
# cache management
|
246 |
+
if len(kwargs["past_key_value"]) > self.layer_idx and self.layer_idx == 0:
|
247 |
+
kwargs["past_key_value"].crop(self.max_self_attn_length - 1)
|
248 |
+
|
249 |
+
# Standard attention (mask and rotation is applied inside)
|
250 |
+
base_attn_outputs = self.base_attn(
|
251 |
+
hidden_states,
|
252 |
+
attention_mask=attention_mask,
|
253 |
+
**kwargs,
|
254 |
+
)
|
255 |
+
|
256 |
+
if isinstance(base_attn_outputs, tuple):
|
257 |
+
if len(base_attn_outputs) == 3:
|
258 |
+
o_base, attn_weights, present_key_value = base_attn_outputs
|
259 |
+
expected_attn_mode = 3
|
260 |
+
elif len(base_attn_outputs) == 2:
|
261 |
+
o_base, attn_weights = base_attn_outputs
|
262 |
+
present_key_value, expected_attn_mode = None, 2
|
263 |
+
else:
|
264 |
+
raise ValueError(
|
265 |
+
f"Unexpected number of outputs from base_attn: {len(base_attn_outputs)}"
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
o_base = base_attn_outputs
|
269 |
+
attn_weights, present_key_value, expected_attn_mode = None, None, 1
|
270 |
+
# Ensure stability
|
271 |
+
o_base = torch.clamp(o_base, min=-1e4, max=1e4)
|
272 |
+
return o_base, attn_weights, present_key_value, expected_attn_mode
|
273 |
+
|
274 |
+
def forward(
|
275 |
+
self,
|
276 |
+
hidden_states: torch.Tensor,
|
277 |
+
attention_mask: Optional[torch.Tensor] = None,
|
278 |
+
**kwargs,
|
279 |
+
):
|
280 |
+
device = hidden_states.device
|
281 |
+
tensor_dtype = hidden_states.dtype
|
282 |
+
self.base_attn.to(device)
|
283 |
+
|
284 |
+
if self.training:
|
285 |
+
kwargs.pop("past_key_value", None)
|
286 |
+
kwargs["use_cache"] = False
|
287 |
+
else:
|
288 |
+
# Force evaluation
|
289 |
+
kwargs["use_cache"] = True
|
290 |
+
|
291 |
+
kwargs.pop("position_ids", None) # obsolete
|
292 |
+
|
293 |
+
# Apply projections to hidden states
|
294 |
+
q, k, v, out_proj = self._apply_projections(hidden_states)
|
295 |
+
|
296 |
+
# Manage attention mask (with padding)
|
297 |
+
if attention_mask is not None:
|
298 |
+
# attention_mask -> [batch, seq], v: [batch, seq, ...]
|
299 |
+
v = apply_linear_attention_mask(attention_mask, v)
|
300 |
+
|
301 |
+
# Prepare inputs tensor for linear attn
|
302 |
+
gate_norm = kwargs.get("gate_logit_normalizer", 16)
|
303 |
+
q, k, v, g = self._prepare_attn_input(q, k, v, gate_norm)
|
304 |
+
|
305 |
+
# Process linear attn from mask
|
306 |
+
o_lin = self._process_linear_attn(q, k, v, g, out_proj, tensor_dtype, kwargs)
|
307 |
+
|
308 |
+
# Process self attn with truncation
|
309 |
+
o_base, attn_weights, present_key_value, expected_attn_mode = (
|
310 |
+
self._process_self_attn(hidden_states, attention_mask, kwargs)
|
311 |
+
)
|
312 |
+
|
313 |
+
# Force cast typing
|
314 |
+
o_lin = o_lin.to(tensor_dtype)
|
315 |
+
o_base = o_base.to(tensor_dtype)
|
316 |
+
|
317 |
+
# Apply Memory as Gate in self-attention (with max length management)
|
318 |
+
if o_lin.shape[1] > o_base.shape[1]:
|
319 |
+
o_padding = torch.zeros_like(o_lin).to(tensor_dtype)
|
320 |
+
o_padding[:, -o_base.shape[1] :] = o_base
|
321 |
+
o_base = o_padding # Left PAD mask
|
322 |
+
elif o_lin.shape[1] != o_base.shape[1]: # Abnormality
|
323 |
+
left_trunc = min(o_lin.shape[1], o_base.shape[1])
|
324 |
+
o_lin, o_base = o_lin[:, -left_trunc:], o_base[:, -left_trunc:]
|
325 |
+
out = self.mag_weight * o_lin + (1 - self.mag_weight) * o_base
|
326 |
+
# Ensure stability
|
327 |
+
out = torch.clamp(out, min=-1e4, max=1e4)
|
328 |
+
|
329 |
+
# Return output following transformer convention
|
330 |
+
if expected_attn_mode == 3:
|
331 |
+
return out, attn_weights, present_key_value
|
332 |
+
elif expected_attn_mode == 2:
|
333 |
+
return out, attn_weights
|
334 |
+
else:
|
335 |
+
return out
|
336 |
+
|
337 |
+
|
338 |
+
def get_tptt_model( # pylint: disable=too-many-arguments, too-many-positional-arguments
|
339 |
+
model: nn.Module,
|
340 |
+
base_config: PretrainedConfig, # ou LlamaConfig, MistralConfig, etc.
|
341 |
+
liza_attention: LiZAttention,
|
342 |
+
target_modules: list,
|
343 |
+
linear_cache: LCache = None,
|
344 |
+
operator_mode: str = "delta_rule",
|
345 |
+
mag_weight: float = 0.5,
|
346 |
+
max_chunk_size: int = 64,
|
347 |
+
max_self_attn_length: int = 2048,
|
348 |
+
):
|
349 |
+
"""Replace target modules in a model with LiZAttention."""
|
350 |
+
linear_cache = linear_cache or LCache()
|
351 |
+
# Inject LiZAttention into the model
|
352 |
+
for name, _ in model.named_modules():
|
353 |
+
if name in target_modules:
|
354 |
+
parent = model
|
355 |
+
*path, last = name.split(".")
|
356 |
+
for p in path:
|
357 |
+
parent = getattr(parent, p)
|
358 |
+
layer_idx = extract_layer_idx(name)
|
359 |
+
setattr(
|
360 |
+
parent,
|
361 |
+
last,
|
362 |
+
liza_attention(
|
363 |
+
getattr(parent, last),
|
364 |
+
layer_idx=layer_idx,
|
365 |
+
base_config=base_config,
|
366 |
+
linear_cache=linear_cache,
|
367 |
+
operator_mode=operator_mode,
|
368 |
+
max_self_attn_length=max_self_attn_length,
|
369 |
+
mag_weight=mag_weight,
|
370 |
+
max_chunk_size=max_chunk_size,
|
371 |
+
),
|
372 |
+
)
|
373 |
+
return model, linear_cache
|
374 |
+
|
375 |
+
|
376 |
+
class TpttModel(PreTrainedModel):
|
377 |
+
"""
|
378 |
+
TPTT model wrapper with linear attention (LiZA) and LoRA support.
|
379 |
+
Handles only architecture and weights.
|
380 |
+
"""
|
381 |
+
|
382 |
+
config_class = TpttConfig
|
383 |
+
|
384 |
+
def __init__(
|
385 |
+
self,
|
386 |
+
config: TpttConfig,
|
387 |
+
**kwargs,
|
388 |
+
):
|
389 |
+
"""
|
390 |
+
Initialize TpttModel with a given config and backbone.
|
391 |
+
Injects LiZA attention modules into the backbone.
|
392 |
+
"""
|
393 |
+
super().__init__(config, **kwargs)
|
394 |
+
repo_or_path = getattr(config, "_base_path", None) or config._name_or_path
|
395 |
+
|
396 |
+
# 1. Load backbone
|
397 |
+
backbone = AutoModelForCausalLM.from_pretrained(
|
398 |
+
config.base_model_name, **kwargs
|
399 |
+
)
|
400 |
+
|
401 |
+
# 2. Inject LiZA attention
|
402 |
+
self.linear_cache = LCache()
|
403 |
+
self.backbone, self.linear_cache = self.inject_liza_attention(
|
404 |
+
backbone, config, self.linear_cache
|
405 |
+
)
|
406 |
+
# 3. Apply LoRA if present of configured
|
407 |
+
if config.lora_config is not None:
|
408 |
+
lora_config_obj = LoraConfig(**config.lora_config)
|
409 |
+
self.backbone = get_peft_model(self.backbone, lora_config_obj)
|
410 |
+
if repo_or_path:
|
411 |
+
self.load_peft_safetensors(
|
412 |
+
repo_or_path, token=kwargs.get("token", None)
|
413 |
+
)
|
414 |
+
|
415 |
+
def load_peft_safetensors(self, src, token=None):
|
416 |
+
# src: local dir or repo_id
|
417 |
+
fname = "adapter_model.safetensors"
|
418 |
+
if os.path.isdir(src):
|
419 |
+
path = os.path.join(src, fname)
|
420 |
+
if not os.path.exists(path):
|
421 |
+
return
|
422 |
+
else:
|
423 |
+
if fname not in list_repo_files(src, token=token):
|
424 |
+
return
|
425 |
+
path = hf_hub_download(src, fname, token=token)
|
426 |
+
with safe_open(path, framework="pt") as f:
|
427 |
+
self.backbone.load_state_dict(
|
428 |
+
{k: f.get_tensor(k) for k in f.keys()}, strict=False
|
429 |
+
)
|
430 |
+
|
431 |
+
@staticmethod
|
432 |
+
def inject_liza_attention(
|
433 |
+
backbone,
|
434 |
+
config,
|
435 |
+
linear_cache,
|
436 |
+
):
|
437 |
+
"""
|
438 |
+
Inject LiZAttention into the specified target modules of the base model.
|
439 |
+
"""
|
440 |
+
# Find target modules by suffix (e.g., "attn", "attention")
|
441 |
+
target_modules = [
|
442 |
+
name
|
443 |
+
for name, _ in backbone.named_modules()
|
444 |
+
if any(name.endswith(suffix) for suffix in config.target_modules_names)
|
445 |
+
]
|
446 |
+
if not target_modules:
|
447 |
+
raise ValueError(
|
448 |
+
f"Target modules '{config.target_modules_names}' not found in the model."
|
449 |
+
)
|
450 |
+
# Inject LiZAttention (external function, not shown here)
|
451 |
+
return get_tptt_model(
|
452 |
+
backbone,
|
453 |
+
base_config=backbone.config,
|
454 |
+
liza_attention=LiZAttention,
|
455 |
+
target_modules=target_modules,
|
456 |
+
linear_cache=linear_cache,
|
457 |
+
operator_mode=config.operator_mode,
|
458 |
+
max_self_attn_length=config.max_self_attn_length,
|
459 |
+
mag_weight=config.mag_weight,
|
460 |
+
max_chunk_size=config.max_chunk_size,
|
461 |
+
)
|
462 |
+
|
463 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
464 |
+
"""
|
465 |
+
Forward pass. All arguments are passed to the underlying base model.
|
466 |
+
"""
|
467 |
+
if self.training:
|
468 |
+
kwargs["use_cache"] = False
|
469 |
+
kwargs.pop("num_items_in_batch", None)
|
470 |
+
else:
|
471 |
+
kwargs["use_cache"] = True
|
472 |
+
return self.backbone(
|
473 |
+
input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs
|
474 |
+
)
|
475 |
+
|
476 |
+
def generate(self, *args, **kwargs):
|
477 |
+
# Delegate the generate call to the backbone model, which supports generation
|
478 |
+
return self.backbone.generate(*args, **kwargs)
|
479 |
+
|
480 |
+
def save_pretrained(self, path: str, **kwargs):
|
481 |
+
"""Save model weights, config, and source code to the given path."""
|
482 |
+
super().save_pretrained(path, **kwargs)
|
483 |
+
|
484 |
+
# 1. Save PEFT weights and clean adapter config
|
485 |
+
self._save_peft_weights(path, **kwargs)
|
486 |
+
# 2. Copy Python files for trust_remote_code
|
487 |
+
self._copy_source_files(path)
|
488 |
+
|
489 |
+
def _save_peft_weights(self, path: str, **kwargs):
|
490 |
+
"""Save PEFT weights and remove redundant adapter config."""
|
491 |
+
self.backbone.save_pretrained(path, **kwargs)
|
492 |
+
adapter_config_path = os.path.join(path, "adapter_config.json")
|
493 |
+
if os.path.exists(adapter_config_path):
|
494 |
+
os.remove(adapter_config_path)
|
495 |
+
|
496 |
+
def _copy_source_files(self, path: str):
|
497 |
+
"""Copy all .py files from package directory for trust_remote_code."""
|
498 |
+
src_dir = os.path.dirname(os.path.abspath(__file__))
|
499 |
+
for fname in os.listdir(src_dir):
|
500 |
+
if fname.endswith(".py"):
|
501 |
+
src = os.path.join(src_dir, fname)
|
502 |
+
dst = os.path.join(path, fname)
|
503 |
+
shutil.copy2(src, dst)
|
504 |
+
|
505 |
+
|
506 |
+
TpttModel.register_for_auto_class("AutoModelForCausalLM")
|
507 |
+
|
508 |
+
|
509 |
+
class AttentionOperator(nn.Module):
|
510 |
+
"""Base class for linear attention operators."""
|
511 |
+
|
512 |
+
def __init__(self, mode="delta_rule"):
|
513 |
+
super().__init__()
|
514 |
+
self.mode = mode
|
515 |
+
|
516 |
+
def forward(self, q, k, v, **options):
|
517 |
+
"""Forward pass for the attention operator."""
|
518 |
+
beta = options.get("beta", None)
|
519 |
+
chunk_size = options.get("chunk_size", 64)
|
520 |
+
scale = options.get("scale", 1)
|
521 |
+
recurrent_state = options.get("recurrent_state", None)
|
522 |
+
|
523 |
+
if self.mode == "delta_rule":
|
524 |
+
return self.chunk_delta_rule_forward(
|
525 |
+
q, k, v, beta, chunk_size, initial_state=recurrent_state
|
526 |
+
)
|
527 |
+
if self.mode == "gla":
|
528 |
+
return self.gla_forward(q, k, v, beta, scale, initial_state=recurrent_state)
|
529 |
+
raise ValueError(f"Unknown operator mode: {self.mode}")
|
530 |
+
|
531 |
+
@staticmethod
|
532 |
+
def chunk_delta_rule_forward(
|
533 |
+
query, key, value, beta, chunk_size, initial_state=None
|
534 |
+
):
|
535 |
+
"""
|
536 |
+
Implementation of https://arxiv.org/abs/2406.06484
|
537 |
+
query, key, value, beta: [batch, num_heads, seq_len, head_dim]
|
538 |
+
chunk_size: int
|
539 |
+
initial_state: [batch, num_heads, head_dim, head_dim] or None
|
540 |
+
"""
|
541 |
+
batch_size, num_heads, seq_len, head_dim = query.shape
|
542 |
+
chunk_size = get_valid_chunk_size(seq_len, chunk_size)
|
543 |
+
num_chunks = seq_len // chunk_size
|
544 |
+
|
545 |
+
# Reshape for chunking: [batch, num_heads, num_chunks, chunk_size, head_dim]
|
546 |
+
q_chunks = query.reshape(
|
547 |
+
batch_size, num_heads, num_chunks, chunk_size, head_dim
|
548 |
+
)
|
549 |
+
k_chunks = key.reshape(batch_size, num_heads, num_chunks, chunk_size, head_dim)
|
550 |
+
v_chunks = value.reshape(
|
551 |
+
batch_size, num_heads, num_chunks, chunk_size, head_dim
|
552 |
+
)
|
553 |
+
beta_chunks = beta.reshape(
|
554 |
+
batch_size, num_heads, num_chunks, chunk_size, head_dim
|
555 |
+
)
|
556 |
+
|
557 |
+
# Output buffer
|
558 |
+
output = torch.empty_like(q_chunks)
|
559 |
+
# State: [batch, num_heads, head_dim, head_dim]
|
560 |
+
if initial_state is not None:
|
561 |
+
state = initial_state
|
562 |
+
else:
|
563 |
+
state = torch.zeros(
|
564 |
+
batch_size,
|
565 |
+
num_heads,
|
566 |
+
head_dim,
|
567 |
+
head_dim,
|
568 |
+
device=query.device,
|
569 |
+
dtype=query.dtype,
|
570 |
+
)
|
571 |
+
|
572 |
+
def process_chunk(q, k, v, b, state):
|
573 |
+
"""
|
574 |
+
q, k, v, b: [batch, num_heads, chunk_size, head_dim]
|
575 |
+
state: [batch, num_heads, head_dim, head_dim]
|
576 |
+
Returns: (output_chunk, new_state)
|
577 |
+
"""
|
578 |
+
# Clamp to avoid numerical instabilities (not in paper)
|
579 |
+
k = torch.clamp(k, min=-1e4, max=1e4)
|
580 |
+
v = torch.clamp(v, min=-1e4, max=1e4)
|
581 |
+
b = torch.clamp(b, min=1e-6, max=1e4)
|
582 |
+
q = torch.clamp(q, min=-1e4, max=1e4)
|
583 |
+
|
584 |
+
# Eq. (10): β_t * k_t and β_t * v_t
|
585 |
+
k_beta = k * b
|
586 |
+
v_beta = v * b
|
587 |
+
|
588 |
+
# Eq. (11): Lower-triangular matrix T (with -KβK^T off-diagonal, 1 on diagonal)
|
589 |
+
# T = I - tril(KβK^T, -1)
|
590 |
+
t_matrix = -(k_beta @ k.transpose(-2, -1)).tril(-1)
|
591 |
+
t_matrix = torch.clamp(t_matrix, min=-1e4, max=1e4)
|
592 |
+
t_matrix = t_matrix + torch.eye(
|
593 |
+
q.shape[-2], device=q.device, dtype=q.dtype
|
594 |
+
).unsqueeze(0).unsqueeze(0)
|
595 |
+
|
596 |
+
# Eq. (11): W = T Kβ, U = T Vβ
|
597 |
+
w_matrix = t_matrix @ k_beta
|
598 |
+
w_matrix = torch.clamp(w_matrix, min=-1e4, max=1e4)
|
599 |
+
|
600 |
+
u_matrix = t_matrix @ v_beta
|
601 |
+
u_matrix = torch.clamp(u_matrix, min=-1e4, max=1e4)
|
602 |
+
|
603 |
+
# Eq. (12): u_i = U - W S (S = state)
|
604 |
+
u_i = u_matrix - torch.matmul(w_matrix, state)
|
605 |
+
|
606 |
+
# Eq. (12): inter-chunk output: q S
|
607 |
+
o_inter = torch.matmul(q, state)
|
608 |
+
|
609 |
+
# Eq. (12): intra-chunk attention: tril(q K^T)
|
610 |
+
a_i = (q @ k.transpose(-2, -1)).tril()
|
611 |
+
|
612 |
+
# Eq. (12): intra-chunk output: a_i u_i
|
613 |
+
o_intra = torch.matmul(a_i, u_i)
|
614 |
+
|
615 |
+
# Eq. (12): state update: S_new = S + K^T u_i
|
616 |
+
new_state = state + torch.matmul(k.transpose(-2, -1), u_i)
|
617 |
+
new_state = torch.clamp(new_state, min=-1e4, max=1e4)
|
618 |
+
|
619 |
+
# Eq. (12): output = intra + inter
|
620 |
+
return o_intra + o_inter, new_state
|
621 |
+
|
622 |
+
for chunk_idx in range(num_chunks):
|
623 |
+
q = q_chunks[:, :, chunk_idx]
|
624 |
+
k = k_chunks[:, :, chunk_idx]
|
625 |
+
v = v_chunks[:, :, chunk_idx]
|
626 |
+
b = beta_chunks[:, :, chunk_idx]
|
627 |
+
|
628 |
+
chunk_out, state = process_chunk(q, k, v, b, state)
|
629 |
+
output[:, :, chunk_idx] = chunk_out
|
630 |
+
|
631 |
+
# Reshape back to [batch, num_heads, seq_len, head_dim]
|
632 |
+
output = output.reshape(batch_size, num_heads, seq_len, head_dim)
|
633 |
+
return output, state
|
634 |
+
|
635 |
+
@staticmethod
|
636 |
+
def gla_forward(q, k, v, beta, scale, initial_state=None):
|
637 |
+
"""Forward pass for GLA attention operator."""
|
638 |
+
if fused_chunk_gla is None or fused_recurrent_gla is None:
|
639 |
+
raise RuntimeError("GLA kernels are not available: CUDA required.")
|
640 |
+
if q.shape[-2] > 1:
|
641 |
+
# Training or sequence length > 1
|
642 |
+
return fused_chunk_gla(
|
643 |
+
q,
|
644 |
+
k,
|
645 |
+
v,
|
646 |
+
beta,
|
647 |
+
scale=scale,
|
648 |
+
initial_state=initial_state,
|
649 |
+
output_final_state=True,
|
650 |
+
)
|
651 |
+
return fused_recurrent_gla(
|
652 |
+
q,
|
653 |
+
k,
|
654 |
+
v,
|
655 |
+
beta,
|
656 |
+
scale=scale,
|
657 |
+
initial_state=initial_state,
|
658 |
+
output_final_state=True,
|
659 |
+
)
|
660 |
+
|
661 |
+
|
662 |
+
def get_attention_operator(mode):
|
663 |
+
"""Factory for AttentionOperator."""
|
664 |
+
return AttentionOperator(mode=mode)
|
665 |
+
|
666 |
+
|
667 |
+
def extract_layer_idx(module_name: str) -> int:
|
668 |
+
"""
|
669 |
+
Extract the layer index from a module name string.
|
670 |
+
"""
|
671 |
+
match = re.search(r"\.(\d+)\.", module_name)
|
672 |
+
if match:
|
673 |
+
return int(match.group(1))
|
674 |
+
return -1
|
675 |
+
|
676 |
+
|
677 |
+
def soft_clamp(x, min_val=-1e4, max_val=1e4):
|
678 |
+
"""Differentiable clamping for stability"""
|
679 |
+
scale = (max_val - min_val) / 2
|
680 |
+
center = (max_val + min_val) / 2
|
681 |
+
return torch.tanh((x - center) / scale) * scale + center
|
682 |
+
|
683 |
+
|
684 |
+
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
685 |
+
"""Repeat key/value heads for grouped query attention (GQA)."""
|
686 |
+
return x.repeat_interleave(n_rep, dim=1)
|
687 |
+
|
688 |
+
|
689 |
+
def split_qkv(base_attn, qkv):
|
690 |
+
"""Split the QKV tensor into separate Q, K, and V tensors."""
|
691 |
+
num_q_heads = getattr(base_attn, "num_q_heads", None)
|
692 |
+
num_k_heads = getattr(base_attn, "num_k_heads", None)
|
693 |
+
num_v_heads = getattr(base_attn, "num_v_heads", None)
|
694 |
+
head_dim = getattr(base_attn, "head_dim", None)
|
695 |
+
|
696 |
+
q_len = num_q_heads * head_dim
|
697 |
+
k_len = num_k_heads * head_dim
|
698 |
+
v_len = num_v_heads * head_dim
|
699 |
+
|
700 |
+
q, k, v = torch.split(qkv, [q_len, k_len, v_len], dim=-1)
|
701 |
+
return q, k, v
|
702 |
+
|
703 |
+
|
704 |
+
def apply_linear_attention_mask(attention_mask, v):
|
705 |
+
# extract (if) padding mask
|
706 |
+
if attention_mask.dim() == 4 and attention_mask.shape[1] == 1:
|
707 |
+
# [batch, 1, seq, seq] -> [batch, seq]
|
708 |
+
mask = attention_mask.diagonal(dim1=-2, dim2=-1).squeeze(1)
|
709 |
+
else:
|
710 |
+
# Squeeze all singleton dims except batch (dim=0)
|
711 |
+
mask = attention_mask.squeeze(
|
712 |
+
dim=tuple(
|
713 |
+
i
|
714 |
+
for i in range(1, attention_mask.dim())
|
715 |
+
if attention_mask.shape[i] == 1
|
716 |
+
)
|
717 |
+
)
|
718 |
+
# handle left padding : mask is [batch, seq] --> Broadcast to v [batch, seq, (...)]
|
719 |
+
mask = mask[:, -v.shape[-2] :][(...,) + (None,) * (v.dim() - 2)]
|
720 |
+
return v * mask
|
721 |
+
|
722 |
+
|
723 |
+
def truncate_attention_mask(hidden_states, attention_mask, max_length):
|
724 |
+
"""
|
725 |
+
Truncate hidden_states and attention_mask to the last window of size max_length,
|
726 |
+
matching the sequence dimension of hidden_states.
|
727 |
+
"""
|
728 |
+
seq_dim = 1 # convention: (batch, seq, ...)
|
729 |
+
seq_len = hidden_states.shape[seq_dim]
|
730 |
+
if seq_len > max_length:
|
731 |
+
hidden_states = hidden_states.narrow(seq_dim, seq_len - max_length, max_length)
|
732 |
+
if attention_mask is not None:
|
733 |
+
# mask [batch, seq]
|
734 |
+
if attention_mask.dim() == 2:
|
735 |
+
attention_mask = attention_mask[:, -max_length:]
|
736 |
+
# mask [batch, seq, seq]
|
737 |
+
elif attention_mask.dim() == 3:
|
738 |
+
attention_mask = attention_mask[:, -max_length:, -max_length:]
|
739 |
+
# mask [batch, 1, seq, seq]
|
740 |
+
elif attention_mask.dim() == 4 and attention_mask.shape[1] == 1:
|
741 |
+
attention_mask = attention_mask[:, :, -max_length:, -max_length:]
|
742 |
+
else:
|
743 |
+
raise ValueError(
|
744 |
+
"No dimension in attention_mask matches sequence length of hidden_states."
|
745 |
+
)
|
746 |
+
return hidden_states, attention_mask
|
747 |
+
|
748 |
+
|
749 |
+
def get_valid_chunk_size(total_l: int, chunk_size: int) -> int:
|
750 |
+
"""
|
751 |
+
Return the largest chunk_size <= chunk_size that divides total_l.
|
752 |
+
If no chunk_size > 1 fits, return 1.
|
753 |
+
"""
|
754 |
+
for c in range(min(chunk_size, total_l), 0, -1):
|
755 |
+
if total_l % c == 0:
|
756 |
+
return c
|
757 |
+
return 1
|
758 |
+
|
759 |
+
|
760 |
+
def match_dim(x: torch.Tensor, dim: int, target_size: int) -> torch.Tensor:
|
761 |
+
"""
|
762 |
+
Match the size of tensor x along dimension dim to target_size by interpolation
|
763 |
+
or projection.
|
764 |
+
"""
|
765 |
+
src_size = x.shape[dim]
|
766 |
+
if src_size == target_size:
|
767 |
+
return x
|
768 |
+
x = torch.moveaxis(x, dim, -1)
|
769 |
+
shape = x.shape
|
770 |
+
if src_size < target_size:
|
771 |
+
x = x.reshape(-1, 1, src_size)
|
772 |
+
x = F.interpolate(x, size=target_size, mode="linear", align_corners=False)
|
773 |
+
x = x.reshape(*shape[:-1], target_size)
|
774 |
+
else:
|
775 |
+
eye = torch.eye(target_size, src_size, device=x.device, dtype=x.dtype)
|
776 |
+
x = F.linear(x, eye) # pylint: disable=not-callable
|
777 |
+
x = torch.moveaxis(x, -1, dim)
|
778 |
+
return x
|
pipeline_tptt.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Pipeline
|
3 |
+
|
4 |
+
|
5 |
+
class TpttPipeline(Pipeline):
|
6 |
+
"""Pipeline for TPTT model inference."""
|
7 |
+
|
8 |
+
def __init__(self, model, tokenizer, device=None, **kwargs):
|
9 |
+
"""
|
10 |
+
Initialize TpttPipeline.
|
11 |
+
"""
|
12 |
+
super().__init__(model=model, tokenizer=tokenizer, device=device, **kwargs)
|
13 |
+
|
14 |
+
def _sanitize_parameters(self, **kwargs):
|
15 |
+
# No special parameter handling for now
|
16 |
+
preprocess_kwargs = {}
|
17 |
+
forward_kwargs = {}
|
18 |
+
postprocess_kwargs = {}
|
19 |
+
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
|
20 |
+
|
21 |
+
def preprocess(self, prompt):
|
22 |
+
# Tokenize the input prompt
|
23 |
+
return self.tokenizer(prompt, return_tensors="pt", truncation=False)
|
24 |
+
|
25 |
+
def _forward(self, model_inputs, **forward_params):
|
26 |
+
# Move tensors to the correct device
|
27 |
+
model_inputs = {k: v.to(self.device) for k, v in model_inputs.items()}
|
28 |
+
# Use generate for text generation
|
29 |
+
with torch.no_grad():
|
30 |
+
output = self.model.generate(
|
31 |
+
**model_inputs,
|
32 |
+
max_new_tokens=forward_params.get("max_new_tokens", 50),
|
33 |
+
do_sample=forward_params.get("do_sample", False),
|
34 |
+
# cache_implementation=forward_params.get("cache_implementation", "static"),
|
35 |
+
)
|
36 |
+
return {"generated_ids": output}
|
37 |
+
|
38 |
+
def postprocess(self, model_outputs):
|
39 |
+
# Decode the generated ids into text
|
40 |
+
generated_ids = model_outputs["generated_ids"]
|
41 |
+
return [
|
42 |
+
{"generated_text": self.tokenizer.decode(ids, skip_special_tokens=True)}
|
43 |
+
for ids in generated_ids
|
44 |
+
]
|
runs/Jun09_19-12-59_bb326d838c91/events.out.tfevents.1749496381.bb326d838c91.35.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3ef1c7c8b79507c60f72d6a4983b9c857e9aa9fdc08432b69f01ec64d20697e
|
3 |
+
size 7060
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:540b7fbf60b80e8293593a86960df91d2263723d69107ffc1afc89a7c08cda12
|
3 |
+
size 11422162
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_tptt.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author : Fabien FURFARO
|
3 |
+
"""
|
4 |
+
|
5 |
+
from transformers import TrainerCallback
|
6 |
+
|
7 |
+
from .modeling_tptt import LiZAttention
|
8 |
+
|
9 |
+
|
10 |
+
class AdjustMaGWeightCallback(TrainerCallback):
|
11 |
+
"""TrainerCallback to schedule mag_weight during training."""
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self, model, initial_weight=0.01, final_weight=0.5, transition_step=500
|
15 |
+
):
|
16 |
+
self.model = model
|
17 |
+
# Ensure weights are always float scalars, not tuples/lists
|
18 |
+
if isinstance(initial_weight, (tuple, list)):
|
19 |
+
initial_weight = initial_weight[0]
|
20 |
+
if isinstance(final_weight, (tuple, list)):
|
21 |
+
final_weight = final_weight[0]
|
22 |
+
self.initial_weight = float(initial_weight)
|
23 |
+
self.final_weight = float(final_weight)
|
24 |
+
|
25 |
+
if isinstance(transition_step, (tuple, list)):
|
26 |
+
transition_step = transition_step[0]
|
27 |
+
self.transition_step = int(transition_step)
|
28 |
+
|
29 |
+
def on_step_end(self, args, state, control, **kwargs):
|
30 |
+
current_step = state.global_step
|
31 |
+
transition_step = self.transition_step
|
32 |
+
|
33 |
+
# Ensure both are plain ints (not tuple, list, tensor, numpy, etc.)
|
34 |
+
if isinstance(current_step, (tuple, list)):
|
35 |
+
current_step = current_step[0]
|
36 |
+
if hasattr(current_step, "item"):
|
37 |
+
current_step = int(current_step.item())
|
38 |
+
else:
|
39 |
+
current_step = int(current_step)
|
40 |
+
|
41 |
+
if isinstance(transition_step, (tuple, list)):
|
42 |
+
transition_step = transition_step[0]
|
43 |
+
if hasattr(transition_step, "item"):
|
44 |
+
transition_step = int(transition_step.item())
|
45 |
+
else:
|
46 |
+
transition_step = int(transition_step)
|
47 |
+
|
48 |
+
if current_step < transition_step:
|
49 |
+
weight = self.initial_weight + (self.final_weight - self.initial_weight) * (
|
50 |
+
current_step / transition_step
|
51 |
+
)
|
52 |
+
for _, module in self.model.named_modules():
|
53 |
+
if isinstance(module, LiZAttention):
|
54 |
+
module.mag_weight = weight
|
55 |
+
|
56 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
57 |
+
mag_weight = None
|
58 |
+
for _, module in self.model.named_modules():
|
59 |
+
if isinstance(module, LiZAttention):
|
60 |
+
mag_weight = getattr(module, "mag_weight", None)
|
61 |
+
break
|
62 |
+
if mag_weight is not None and logs is not None:
|
63 |
+
logs["mag_weight"] = float(mag_weight)
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|