File size: 2,127 Bytes
90de0b9 f4ac843 90de0b9 0ca8c6f 90de0b9 1179d58 90de0b9 1179d58 90de0b9 1179d58 90de0b9 1179d58 90de0b9 1179d58 90de0b9 0ca8c6f 90de0b9 0ca8c6f 90de0b9 dbde74c 90de0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
{
"model_card": {
"Date & Time": "2025-07-14T03:30:40.124500",
"Model Card": [
"https://huggingface.co/fineinstructions/template_instantiator"
],
"Citation Information": [
"\n@inproceedings{Wolf_Transformers_State-of-the-Art_Natural_2020,\n author = {Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien",
"\n@Misc{peft,\n title = {PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods},\n author = {Sourab Mangrulkar and Sylvain Gugger and Lysandre Debut and Younes"
]
},
"data_card": {
"Get Template Instantiations (train)": {
"Date & Time": "2025-06-30T11:42:13.880547",
"Dataset Name": [
"fineinstructions/template_instantiator_training_v2"
],
"Dataset Card": [
"https://huggingface.co/datasets/fineinstructions/template_instantiator_training_v2"
]
},
"Filter out Low-Quality Train Instantiations": {
"Date & Time": "2025-06-30T18:20:37.854694"
},
"Create Input + Output Columns": {
"Date & Time": "2025-06-30T18:21:23.655114"
}
},
"__version__": "0.46.0",
"datetime": "2025-07-02T08:58:47.315145",
"type": "TrainHFFineTune",
"name": "Train Template Instantiator",
"version": 1.0,
"fingerprint": "dd6651aa6052f855",
"req_versions": {
"dill": "0.3.8",
"sqlitedict": "2.1.0",
"torch": "2.5.1",
"numpy": "1.26.4",
"transformers": "4.48.2",
"datasets": "3.2.0",
"huggingface_hub": "0.27.1",
"accelerate": "1.3.0",
"peft": "0.14.0",
"tiktoken": "0.7.0",
"tokenizers": "0.21.0",
"openai": "1.59.8",
"ctransformers": "0.2.27",
"optimum": "1.23.3",
"bitsandbytes": "0.45.0",
"litellm": "1.57.8",
"trl": "0.9.6",
"setfit": "1.1.1",
"vllm": "0.7.0",
"boto3": "1.38.1"
},
"interpreter": "3.11.1 (main, Apr 12 2023, 13:34:00) [GCC 7.5.0]"
} |