--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english tags: - generated_from_trainer datasets: - narad/ravdess metrics: - accuracy - precision - recall - f1 model-index: - name: wav2vec2-large-xlsr-53-english-finetuned-ravdess results: - task: name: Audio Classification type: audio-classification dataset: name: RAVDESS type: narad/ravdess config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7152777777777778 - name: Precision type: precision value: 0.7360657858765911 - name: Recall type: recall value: 0.7152777777777778 - name: F1 type: f1 value: 0.6891900402765098 --- # wav2vec2-large-xlsr-53-english-finetuned-ravdess This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the RAVDESS dataset. It achieves the following results on the evaluation set: - Loss: 1.0013 - Accuracy: 0.7153 - Precision: 0.7361 - Recall: 0.7153 - F1: 0.6892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.9323 | 1.0 | 288 | 1.9023 | 0.2917 | 0.4800 | 0.2917 | 0.2042 | | 1.4114 | 2.0 | 576 | 1.2845 | 0.6111 | 0.7423 | 0.6111 | 0.5283 | | 0.938 | 3.0 | 864 | 1.0013 | 0.7153 | 0.7361 | 0.7153 | 0.6892 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1