Upload 64 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpt/Others/MST-GCN/ntu120_xset/xset_b/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_b/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_b/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_b/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_bm/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_bm/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_bm/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_bm/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_j/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_j/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_j/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_j/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_jm/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_jm/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_jm/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xset/xset_jm/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/config.yaml +107 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/epoch1_test_score.pkl +3 -0
- ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/log.txt +631 -0
- ckpt/Others/MST-GCN/ntu60_xview/xview_b/AEMST_GCN.py +168 -0
- ckpt/Others/MST-GCN/ntu60_xview/xview_b/config.yaml +107 -0
ckpt/Others/MST-GCN/ntu120_xset/xset_b/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xset/xset_b/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xset_b.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xset_b/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xset_b
|
ckpt/Others/MST-GCN/ntu120_xset/xset_b/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ef06ec9a637932e5101e90189ee5aa4064133280b97542e0b0ef61f8e5f1ac0
|
3 |
+
size 34946665
|
ckpt/Others/MST-GCN/ntu120_xset/xset_b/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:35:36 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:35:37 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xset_b', 'model_saved_name': './runs/ntu120/xset_b/runs', 'config': 'config/ntu120/xset_b.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:35:37 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:35:37 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:40:00 2022 ] Mean training loss: 3.6086.
|
8 |
+
[ Wed Sep 7 21:40:00 2022 ] Time consumption: [Data]01%, [Network]98%
|
9 |
+
[ Wed Sep 7 21:40:00 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:40:00 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:44:23 2022 ] Mean training loss: 2.7809.
|
12 |
+
[ Wed Sep 7 21:44:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:44:23 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:44:23 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:48:46 2022 ] Mean training loss: 2.3419.
|
16 |
+
[ Wed Sep 7 21:48:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:48:46 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:48:46 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 21:53:09 2022 ] Mean training loss: 2.0429.
|
20 |
+
[ Wed Sep 7 21:53:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 21:53:09 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 21:53:09 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 21:57:32 2022 ] Mean training loss: 1.8437.
|
24 |
+
[ Wed Sep 7 21:57:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 21:57:32 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 21:57:32 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:01:55 2022 ] Mean training loss: 1.7147.
|
28 |
+
[ Wed Sep 7 22:01:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:01:55 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:01:55 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:06:17 2022 ] Mean training loss: 1.5963.
|
32 |
+
[ Wed Sep 7 22:06:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:06:17 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:06:17 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:10:40 2022 ] Mean training loss: 1.5492.
|
36 |
+
[ Wed Sep 7 22:10:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:10:40 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:10:40 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:15:03 2022 ] Mean training loss: 1.4981.
|
40 |
+
[ Wed Sep 7 22:15:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:15:03 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:15:03 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:19:25 2022 ] Mean training loss: 1.4923.
|
44 |
+
[ Wed Sep 7 22:19:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:19:25 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:19:25 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:23:48 2022 ] Mean training loss: 1.3916.
|
48 |
+
[ Wed Sep 7 22:23:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:23:48 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:23:48 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:28:11 2022 ] Mean training loss: 1.3541.
|
52 |
+
[ Wed Sep 7 22:28:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:28:11 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:28:11 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 22:32:34 2022 ] Mean training loss: 1.2929.
|
56 |
+
[ Wed Sep 7 22:32:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 22:32:34 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 22:32:34 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 22:36:57 2022 ] Mean training loss: 1.2638.
|
60 |
+
[ Wed Sep 7 22:36:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 22:36:57 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 22:36:57 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 22:41:20 2022 ] Mean training loss: 1.2265.
|
64 |
+
[ Wed Sep 7 22:41:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 22:41:20 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 22:41:20 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 22:45:42 2022 ] Mean training loss: 1.1839.
|
68 |
+
[ Wed Sep 7 22:45:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 22:45:42 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 22:45:42 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 22:50:05 2022 ] Mean training loss: 1.1774.
|
72 |
+
[ Wed Sep 7 22:50:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 22:50:05 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 22:50:05 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 22:54:28 2022 ] Mean training loss: 1.1332.
|
76 |
+
[ Wed Sep 7 22:54:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 22:54:28 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 22:54:28 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 22:58:50 2022 ] Mean training loss: 1.1246.
|
80 |
+
[ Wed Sep 7 22:58:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 22:58:50 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 22:58:50 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:03:13 2022 ] Mean training loss: 1.1059.
|
84 |
+
[ Wed Sep 7 23:03:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:03:13 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:03:13 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:07:35 2022 ] Mean training loss: 1.0691.
|
88 |
+
[ Wed Sep 7 23:07:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:07:35 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:07:35 2022 ] Learning rate: 0.15
|
91 |
+
[ Wed Sep 7 23:11:58 2022 ] Mean training loss: 1.0708.
|
92 |
+
[ Wed Sep 7 23:11:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Wed Sep 7 23:11:58 2022 ] Training epoch: 23
|
94 |
+
[ Wed Sep 7 23:11:58 2022 ] Learning rate: 0.15
|
95 |
+
[ Wed Sep 7 23:16:20 2022 ] Mean training loss: 1.0656.
|
96 |
+
[ Wed Sep 7 23:16:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Wed Sep 7 23:16:20 2022 ] Training epoch: 24
|
98 |
+
[ Wed Sep 7 23:16:20 2022 ] Learning rate: 0.15
|
99 |
+
[ Wed Sep 7 23:20:42 2022 ] Mean training loss: 1.0507.
|
100 |
+
[ Wed Sep 7 23:20:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Wed Sep 7 23:20:42 2022 ] Training epoch: 25
|
102 |
+
[ Wed Sep 7 23:20:42 2022 ] Learning rate: 0.15
|
103 |
+
[ Wed Sep 7 23:25:05 2022 ] Mean training loss: 1.0367.
|
104 |
+
[ Wed Sep 7 23:25:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Wed Sep 7 23:25:05 2022 ] Training epoch: 26
|
106 |
+
[ Wed Sep 7 23:25:05 2022 ] Learning rate: 0.15
|
107 |
+
[ Wed Sep 7 23:29:27 2022 ] Mean training loss: 1.0236.
|
108 |
+
[ Wed Sep 7 23:29:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Wed Sep 7 23:29:27 2022 ] Training epoch: 27
|
110 |
+
[ Wed Sep 7 23:29:27 2022 ] Learning rate: 0.15
|
111 |
+
[ Wed Sep 7 23:33:48 2022 ] Mean training loss: 1.0079.
|
112 |
+
[ Wed Sep 7 23:33:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Wed Sep 7 23:33:48 2022 ] Training epoch: 28
|
114 |
+
[ Wed Sep 7 23:33:48 2022 ] Learning rate: 0.15
|
115 |
+
[ Wed Sep 7 23:38:11 2022 ] Mean training loss: 0.9952.
|
116 |
+
[ Wed Sep 7 23:38:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Wed Sep 7 23:38:11 2022 ] Training epoch: 29
|
118 |
+
[ Wed Sep 7 23:38:11 2022 ] Learning rate: 0.15
|
119 |
+
[ Wed Sep 7 23:42:33 2022 ] Mean training loss: 1.0019.
|
120 |
+
[ Wed Sep 7 23:42:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Wed Sep 7 23:42:33 2022 ] Training epoch: 30
|
122 |
+
[ Wed Sep 7 23:42:33 2022 ] Learning rate: 0.15
|
123 |
+
[ Wed Sep 7 23:46:56 2022 ] Mean training loss: 0.9858.
|
124 |
+
[ Wed Sep 7 23:46:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Wed Sep 7 23:46:56 2022 ] Training epoch: 31
|
126 |
+
[ Wed Sep 7 23:46:56 2022 ] Learning rate: 0.15
|
127 |
+
[ Wed Sep 7 23:51:18 2022 ] Mean training loss: 0.9633.
|
128 |
+
[ Wed Sep 7 23:51:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Wed Sep 7 23:51:18 2022 ] Training epoch: 32
|
130 |
+
[ Wed Sep 7 23:51:18 2022 ] Learning rate: 0.15
|
131 |
+
[ Wed Sep 7 23:55:40 2022 ] Mean training loss: 0.9670.
|
132 |
+
[ Wed Sep 7 23:55:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Wed Sep 7 23:55:40 2022 ] Training epoch: 33
|
134 |
+
[ Wed Sep 7 23:55:40 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 00:00:02 2022 ] Mean training loss: 0.9783.
|
136 |
+
[ Thu Sep 8 00:00:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 00:00:02 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 00:00:02 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 00:04:24 2022 ] Mean training loss: 0.9647.
|
140 |
+
[ Thu Sep 8 00:04:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 00:04:24 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 00:04:24 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 00:08:46 2022 ] Mean training loss: 0.9546.
|
144 |
+
[ Thu Sep 8 00:08:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 00:08:46 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 00:08:46 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 00:13:08 2022 ] Mean training loss: 0.9352.
|
148 |
+
[ Thu Sep 8 00:13:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 00:13:08 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 00:13:08 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 00:17:30 2022 ] Mean training loss: 0.9385.
|
152 |
+
[ Thu Sep 8 00:17:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 00:17:30 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 00:17:30 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 00:21:52 2022 ] Mean training loss: 0.9287.
|
156 |
+
[ Thu Sep 8 00:21:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 00:21:52 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 00:21:52 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 00:26:14 2022 ] Mean training loss: 0.9366.
|
160 |
+
[ Thu Sep 8 00:26:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 00:26:14 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 00:26:14 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 00:30:37 2022 ] Mean training loss: 0.9410.
|
164 |
+
[ Thu Sep 8 00:30:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 00:30:37 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 00:30:37 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 00:34:59 2022 ] Mean training loss: 0.9381.
|
168 |
+
[ Thu Sep 8 00:34:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 00:34:59 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 00:34:59 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 00:39:21 2022 ] Mean training loss: 0.9230.
|
172 |
+
[ Thu Sep 8 00:39:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 00:39:21 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 00:39:21 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 00:43:43 2022 ] Mean training loss: 0.9217.
|
176 |
+
[ Thu Sep 8 00:43:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 00:43:43 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 00:43:43 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 00:48:05 2022 ] Mean training loss: 0.9077.
|
180 |
+
[ Thu Sep 8 00:48:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 00:48:05 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 00:48:05 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 00:52:26 2022 ] Mean training loss: 0.9124.
|
184 |
+
[ Thu Sep 8 00:52:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 00:52:26 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 00:52:26 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 00:56:48 2022 ] Mean training loss: 0.9260.
|
188 |
+
[ Thu Sep 8 00:56:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 00:56:48 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 00:56:48 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 01:01:10 2022 ] Mean training loss: 0.9053.
|
192 |
+
[ Thu Sep 8 01:01:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 01:01:10 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 01:01:10 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 01:05:33 2022 ] Mean training loss: 0.8866.
|
196 |
+
[ Thu Sep 8 01:05:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 01:05:33 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 01:05:33 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 01:09:54 2022 ] Mean training loss: 0.8913.
|
200 |
+
[ Thu Sep 8 01:09:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 01:09:54 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 01:09:54 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 01:14:15 2022 ] Mean training loss: 0.8890.
|
204 |
+
[ Thu Sep 8 01:14:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 01:14:15 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 01:14:15 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 01:18:37 2022 ] Mean training loss: 0.4241.
|
208 |
+
[ Thu Sep 8 01:18:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 01:18:37 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 01:26:33 2022 ] Epoch 51 Curr Acc: (34810/59477)58.53%
|
211 |
+
[ Thu Sep 8 01:26:33 2022 ] Epoch 51 Best Acc 58.53%
|
212 |
+
[ Thu Sep 8 01:26:33 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 01:26:33 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 01:30:54 2022 ] Mean training loss: 0.2982.
|
215 |
+
[ Thu Sep 8 01:30:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 01:30:54 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 01:38:43 2022 ] Epoch 52 Curr Acc: (35818/59477)60.22%
|
218 |
+
[ Thu Sep 8 01:38:43 2022 ] Epoch 52 Best Acc 60.22%
|
219 |
+
[ Thu Sep 8 01:38:43 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 01:38:43 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 01:43:04 2022 ] Mean training loss: 0.2447.
|
222 |
+
[ Thu Sep 8 01:43:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 01:43:04 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 01:50:52 2022 ] Epoch 53 Curr Acc: (36031/59477)60.58%
|
225 |
+
[ Thu Sep 8 01:50:52 2022 ] Epoch 53 Best Acc 60.58%
|
226 |
+
[ Thu Sep 8 01:50:52 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 01:50:52 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 01:55:14 2022 ] Mean training loss: 0.2083.
|
229 |
+
[ Thu Sep 8 01:55:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 01:55:14 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 02:03:02 2022 ] Epoch 54 Curr Acc: (35908/59477)60.37%
|
232 |
+
[ Thu Sep 8 02:03:02 2022 ] Epoch 53 Best Acc 60.58%
|
233 |
+
[ Thu Sep 8 02:03:02 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 02:03:02 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 02:07:23 2022 ] Mean training loss: 0.1723.
|
236 |
+
[ Thu Sep 8 02:07:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 02:07:23 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 02:15:11 2022 ] Epoch 55 Curr Acc: (35825/59477)60.23%
|
239 |
+
[ Thu Sep 8 02:15:11 2022 ] Epoch 53 Best Acc 60.58%
|
240 |
+
[ Thu Sep 8 02:15:11 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 02:15:11 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 02:19:32 2022 ] Mean training loss: 0.1578.
|
243 |
+
[ Thu Sep 8 02:19:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 02:19:32 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 02:27:21 2022 ] Epoch 56 Curr Acc: (35967/59477)60.47%
|
246 |
+
[ Thu Sep 8 02:27:21 2022 ] Epoch 53 Best Acc 60.58%
|
247 |
+
[ Thu Sep 8 02:27:21 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 02:27:21 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 02:31:42 2022 ] Mean training loss: 0.1368.
|
250 |
+
[ Thu Sep 8 02:31:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 02:31:42 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 02:39:30 2022 ] Epoch 57 Curr Acc: (35911/59477)60.38%
|
253 |
+
[ Thu Sep 8 02:39:30 2022 ] Epoch 53 Best Acc 60.58%
|
254 |
+
[ Thu Sep 8 02:39:30 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 02:39:30 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 02:43:52 2022 ] Mean training loss: 0.1265.
|
257 |
+
[ Thu Sep 8 02:43:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 02:43:52 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 02:51:40 2022 ] Epoch 58 Curr Acc: (35536/59477)59.75%
|
260 |
+
[ Thu Sep 8 02:51:40 2022 ] Epoch 53 Best Acc 60.58%
|
261 |
+
[ Thu Sep 8 02:51:40 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 02:51:40 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 02:56:01 2022 ] Mean training loss: 0.1084.
|
264 |
+
[ Thu Sep 8 02:56:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 02:56:01 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 03:03:49 2022 ] Epoch 59 Curr Acc: (35434/59477)59.58%
|
267 |
+
[ Thu Sep 8 03:03:49 2022 ] Epoch 53 Best Acc 60.58%
|
268 |
+
[ Thu Sep 8 03:03:49 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 03:03:49 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 03:08:11 2022 ] Mean training loss: 0.0970.
|
271 |
+
[ Thu Sep 8 03:08:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 03:08:11 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 03:15:59 2022 ] Epoch 60 Curr Acc: (35254/59477)59.27%
|
274 |
+
[ Thu Sep 8 03:15:59 2022 ] Epoch 53 Best Acc 60.58%
|
275 |
+
[ Thu Sep 8 03:15:59 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 03:15:59 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 03:20:20 2022 ] Mean training loss: 0.0871.
|
278 |
+
[ Thu Sep 8 03:20:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 03:20:20 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 03:28:08 2022 ] Epoch 61 Curr Acc: (35169/59477)59.13%
|
281 |
+
[ Thu Sep 8 03:28:08 2022 ] Epoch 53 Best Acc 60.58%
|
282 |
+
[ Thu Sep 8 03:28:08 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 03:28:08 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 03:32:29 2022 ] Mean training loss: 0.0778.
|
285 |
+
[ Thu Sep 8 03:32:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 03:32:29 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 03:40:17 2022 ] Epoch 62 Curr Acc: (35937/59477)60.42%
|
288 |
+
[ Thu Sep 8 03:40:17 2022 ] Epoch 53 Best Acc 60.58%
|
289 |
+
[ Thu Sep 8 03:40:17 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 03:40:17 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 03:44:38 2022 ] Mean training loss: 0.0739.
|
292 |
+
[ Thu Sep 8 03:44:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 03:44:38 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 03:52:26 2022 ] Epoch 63 Curr Acc: (35673/59477)59.98%
|
295 |
+
[ Thu Sep 8 03:52:26 2022 ] Epoch 53 Best Acc 60.58%
|
296 |
+
[ Thu Sep 8 03:52:26 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 03:52:26 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 03:56:47 2022 ] Mean training loss: 0.0715.
|
299 |
+
[ Thu Sep 8 03:56:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 03:56:47 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 04:04:36 2022 ] Epoch 64 Curr Acc: (35520/59477)59.72%
|
302 |
+
[ Thu Sep 8 04:04:36 2022 ] Epoch 53 Best Acc 60.58%
|
303 |
+
[ Thu Sep 8 04:04:36 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 04:04:36 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 04:08:57 2022 ] Mean training loss: 0.0650.
|
306 |
+
[ Thu Sep 8 04:08:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 04:08:57 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 04:16:45 2022 ] Epoch 65 Curr Acc: (35293/59477)59.34%
|
309 |
+
[ Thu Sep 8 04:16:45 2022 ] Epoch 53 Best Acc 60.58%
|
310 |
+
[ Thu Sep 8 04:16:45 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 04:16:45 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 04:21:06 2022 ] Mean training loss: 0.0668.
|
313 |
+
[ Thu Sep 8 04:21:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 04:21:06 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 04:28:54 2022 ] Epoch 66 Curr Acc: (35144/59477)59.09%
|
316 |
+
[ Thu Sep 8 04:28:54 2022 ] Epoch 53 Best Acc 60.58%
|
317 |
+
[ Thu Sep 8 04:28:54 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 04:28:54 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 04:33:15 2022 ] Mean training loss: 0.0558.
|
320 |
+
[ Thu Sep 8 04:33:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 04:33:16 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 04:41:04 2022 ] Epoch 67 Curr Acc: (34918/59477)58.71%
|
323 |
+
[ Thu Sep 8 04:41:04 2022 ] Epoch 53 Best Acc 60.58%
|
324 |
+
[ Thu Sep 8 04:41:04 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 04:41:04 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 04:45:25 2022 ] Mean training loss: 0.0578.
|
327 |
+
[ Thu Sep 8 04:45:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 04:45:25 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 04:53:13 2022 ] Epoch 68 Curr Acc: (35221/59477)59.22%
|
330 |
+
[ Thu Sep 8 04:53:13 2022 ] Epoch 53 Best Acc 60.58%
|
331 |
+
[ Thu Sep 8 04:53:13 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 04:53:13 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 04:57:34 2022 ] Mean training loss: 0.0592.
|
334 |
+
[ Thu Sep 8 04:57:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 04:57:34 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 05:05:22 2022 ] Epoch 69 Curr Acc: (35637/59477)59.92%
|
337 |
+
[ Thu Sep 8 05:05:22 2022 ] Epoch 53 Best Acc 60.58%
|
338 |
+
[ Thu Sep 8 05:05:22 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 05:05:22 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 05:09:42 2022 ] Mean training loss: 0.0493.
|
341 |
+
[ Thu Sep 8 05:09:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 05:09:43 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 05:17:31 2022 ] Epoch 70 Curr Acc: (34949/59477)58.76%
|
344 |
+
[ Thu Sep 8 05:17:31 2022 ] Epoch 53 Best Acc 60.58%
|
345 |
+
[ Thu Sep 8 05:17:31 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 05:17:31 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 05:21:52 2022 ] Mean training loss: 0.0381.
|
348 |
+
[ Thu Sep 8 05:21:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 05:21:52 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 05:29:40 2022 ] Epoch 71 Curr Acc: (35652/59477)59.94%
|
351 |
+
[ Thu Sep 8 05:29:40 2022 ] Epoch 53 Best Acc 60.58%
|
352 |
+
[ Thu Sep 8 05:29:40 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 05:29:40 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 05:34:01 2022 ] Mean training loss: 0.0282.
|
355 |
+
[ Thu Sep 8 05:34:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 05:34:02 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 05:41:50 2022 ] Epoch 72 Curr Acc: (35606/59477)59.87%
|
358 |
+
[ Thu Sep 8 05:41:50 2022 ] Epoch 53 Best Acc 60.58%
|
359 |
+
[ Thu Sep 8 05:41:50 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 05:41:50 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 05:46:11 2022 ] Mean training loss: 0.0261.
|
362 |
+
[ Thu Sep 8 05:46:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 05:46:11 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 05:53:59 2022 ] Epoch 73 Curr Acc: (35464/59477)59.63%
|
365 |
+
[ Thu Sep 8 05:53:59 2022 ] Epoch 53 Best Acc 60.58%
|
366 |
+
[ Thu Sep 8 05:53:59 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 05:53:59 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 05:58:20 2022 ] Mean training loss: 0.0262.
|
369 |
+
[ Thu Sep 8 05:58:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 05:58:20 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 06:06:08 2022 ] Epoch 74 Curr Acc: (35752/59477)60.11%
|
372 |
+
[ Thu Sep 8 06:06:08 2022 ] Epoch 53 Best Acc 60.58%
|
373 |
+
[ Thu Sep 8 06:06:08 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 06:06:08 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 06:10:29 2022 ] Mean training loss: 0.0240.
|
376 |
+
[ Thu Sep 8 06:10:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 06:10:29 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 06:18:17 2022 ] Epoch 75 Curr Acc: (35418/59477)59.55%
|
379 |
+
[ Thu Sep 8 06:18:17 2022 ] Epoch 53 Best Acc 60.58%
|
380 |
+
[ Thu Sep 8 06:18:17 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 06:18:17 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 06:22:38 2022 ] Mean training loss: 0.0237.
|
383 |
+
[ Thu Sep 8 06:22:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 06:22:38 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 06:30:26 2022 ] Epoch 76 Curr Acc: (35509/59477)59.70%
|
386 |
+
[ Thu Sep 8 06:30:26 2022 ] Epoch 53 Best Acc 60.58%
|
387 |
+
[ Thu Sep 8 06:30:26 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 06:30:26 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 06:34:47 2022 ] Mean training loss: 0.0215.
|
390 |
+
[ Thu Sep 8 06:34:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 06:34:47 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 06:42:35 2022 ] Epoch 77 Curr Acc: (35933/59477)60.41%
|
393 |
+
[ Thu Sep 8 06:42:35 2022 ] Epoch 53 Best Acc 60.58%
|
394 |
+
[ Thu Sep 8 06:42:35 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 06:42:35 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 06:46:56 2022 ] Mean training loss: 0.0203.
|
397 |
+
[ Thu Sep 8 06:46:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 06:46:56 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 06:54:44 2022 ] Epoch 78 Curr Acc: (35729/59477)60.07%
|
400 |
+
[ Thu Sep 8 06:54:44 2022 ] Epoch 53 Best Acc 60.58%
|
401 |
+
[ Thu Sep 8 06:54:44 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 06:54:44 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 06:59:04 2022 ] Mean training loss: 0.0199.
|
404 |
+
[ Thu Sep 8 06:59:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 06:59:04 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 07:06:52 2022 ] Epoch 79 Curr Acc: (35253/59477)59.27%
|
407 |
+
[ Thu Sep 8 07:06:52 2022 ] Epoch 53 Best Acc 60.58%
|
408 |
+
[ Thu Sep 8 07:06:52 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 07:06:52 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 07:11:13 2022 ] Mean training loss: 0.0214.
|
411 |
+
[ Thu Sep 8 07:11:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 07:11:13 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 07:19:01 2022 ] Epoch 80 Curr Acc: (35619/59477)59.89%
|
414 |
+
[ Thu Sep 8 07:19:01 2022 ] Epoch 53 Best Acc 60.58%
|
415 |
+
[ Thu Sep 8 07:19:01 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 07:19:01 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 07:23:22 2022 ] Mean training loss: 0.0198.
|
418 |
+
[ Thu Sep 8 07:23:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 07:23:22 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 07:31:10 2022 ] Epoch 81 Curr Acc: (35872/59477)60.31%
|
421 |
+
[ Thu Sep 8 07:31:10 2022 ] Epoch 53 Best Acc 60.58%
|
422 |
+
[ Thu Sep 8 07:31:10 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 07:31:10 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 07:35:31 2022 ] Mean training loss: 0.0198.
|
425 |
+
[ Thu Sep 8 07:35:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 07:35:31 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 07:43:19 2022 ] Epoch 82 Curr Acc: (35989/59477)60.51%
|
428 |
+
[ Thu Sep 8 07:43:19 2022 ] Epoch 53 Best Acc 60.58%
|
429 |
+
[ Thu Sep 8 07:43:19 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 07:43:19 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 07:47:41 2022 ] Mean training loss: 0.0192.
|
432 |
+
[ Thu Sep 8 07:47:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 07:47:41 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 07:55:29 2022 ] Epoch 83 Curr Acc: (35826/59477)60.24%
|
435 |
+
[ Thu Sep 8 07:55:29 2022 ] Epoch 53 Best Acc 60.58%
|
436 |
+
[ Thu Sep 8 07:55:29 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 07:55:29 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 07:59:49 2022 ] Mean training loss: 0.0196.
|
439 |
+
[ Thu Sep 8 07:59:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 07:59:49 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 08:07:37 2022 ] Epoch 84 Curr Acc: (35643/59477)59.93%
|
442 |
+
[ Thu Sep 8 08:07:37 2022 ] Epoch 53 Best Acc 60.58%
|
443 |
+
[ Thu Sep 8 08:07:37 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 08:07:37 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 08:11:57 2022 ] Mean training loss: 0.0183.
|
446 |
+
[ Thu Sep 8 08:11:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 08:11:57 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 08:19:45 2022 ] Epoch 85 Curr Acc: (35881/59477)60.33%
|
449 |
+
[ Thu Sep 8 08:19:45 2022 ] Epoch 53 Best Acc 60.58%
|
450 |
+
[ Thu Sep 8 08:19:45 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 08:19:45 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 08:24:05 2022 ] Mean training loss: 0.0176.
|
453 |
+
[ Thu Sep 8 08:24:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 08:24:05 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 08:31:53 2022 ] Epoch 86 Curr Acc: (35653/59477)59.94%
|
456 |
+
[ Thu Sep 8 08:31:53 2022 ] Epoch 53 Best Acc 60.58%
|
457 |
+
[ Thu Sep 8 08:31:53 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 08:31:53 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 08:36:13 2022 ] Mean training loss: 0.0165.
|
460 |
+
[ Thu Sep 8 08:36:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 08:36:13 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 08:44:01 2022 ] Epoch 87 Curr Acc: (35749/59477)60.11%
|
463 |
+
[ Thu Sep 8 08:44:01 2022 ] Epoch 53 Best Acc 60.58%
|
464 |
+
[ Thu Sep 8 08:44:01 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 08:44:01 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 08:48:21 2022 ] Mean training loss: 0.0172.
|
467 |
+
[ Thu Sep 8 08:48:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 08:48:21 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 08:56:09 2022 ] Epoch 88 Curr Acc: (35747/59477)60.10%
|
470 |
+
[ Thu Sep 8 08:56:09 2022 ] Epoch 53 Best Acc 60.58%
|
471 |
+
[ Thu Sep 8 08:56:09 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 08:56:09 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 09:00:29 2022 ] Mean training loss: 0.0170.
|
474 |
+
[ Thu Sep 8 09:00:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 09:00:29 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 09:08:17 2022 ] Epoch 89 Curr Acc: (35815/59477)60.22%
|
477 |
+
[ Thu Sep 8 09:08:17 2022 ] Epoch 53 Best Acc 60.58%
|
478 |
+
[ Thu Sep 8 09:08:17 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 09:08:17 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 09:12:38 2022 ] Mean training loss: 0.0171.
|
481 |
+
[ Thu Sep 8 09:12:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 09:12:38 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 09:20:26 2022 ] Epoch 90 Curr Acc: (35771/59477)60.14%
|
484 |
+
[ Thu Sep 8 09:20:26 2022 ] Epoch 53 Best Acc 60.58%
|
485 |
+
[ Thu Sep 8 09:20:26 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 09:20:26 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 09:24:47 2022 ] Mean training loss: 0.0170.
|
488 |
+
[ Thu Sep 8 09:24:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 09:24:47 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 09:32:35 2022 ] Epoch 91 Curr Acc: (35898/59477)60.36%
|
491 |
+
[ Thu Sep 8 09:32:35 2022 ] Epoch 53 Best Acc 60.58%
|
492 |
+
[ Thu Sep 8 09:32:35 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 09:32:35 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 09:36:56 2022 ] Mean training loss: 0.0163.
|
495 |
+
[ Thu Sep 8 09:36:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 09:36:56 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 09:44:44 2022 ] Epoch 92 Curr Acc: (35934/59477)60.42%
|
498 |
+
[ Thu Sep 8 09:44:44 2022 ] Epoch 53 Best Acc 60.58%
|
499 |
+
[ Thu Sep 8 09:44:44 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 09:44:44 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 09:49:06 2022 ] Mean training loss: 0.0174.
|
502 |
+
[ Thu Sep 8 09:49:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 09:49:06 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 09:56:54 2022 ] Epoch 93 Curr Acc: (35876/59477)60.32%
|
505 |
+
[ Thu Sep 8 09:56:54 2022 ] Epoch 53 Best Acc 60.58%
|
506 |
+
[ Thu Sep 8 09:56:54 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 09:56:54 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 10:01:16 2022 ] Mean training loss: 0.0173.
|
509 |
+
[ Thu Sep 8 10:01:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 10:01:16 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 10:09:04 2022 ] Epoch 94 Curr Acc: (35933/59477)60.41%
|
512 |
+
[ Thu Sep 8 10:09:04 2022 ] Epoch 53 Best Acc 60.58%
|
513 |
+
[ Thu Sep 8 10:09:04 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 10:09:04 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 10:13:25 2022 ] Mean training loss: 0.0171.
|
516 |
+
[ Thu Sep 8 10:13:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 10:13:26 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 10:21:13 2022 ] Epoch 95 Curr Acc: (35639/59477)59.92%
|
519 |
+
[ Thu Sep 8 10:21:13 2022 ] Epoch 53 Best Acc 60.58%
|
520 |
+
[ Thu Sep 8 10:21:13 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 10:21:13 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 10:25:34 2022 ] Mean training loss: 0.0186.
|
523 |
+
[ Thu Sep 8 10:25:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 10:25:34 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 10:33:22 2022 ] Epoch 96 Curr Acc: (35774/59477)60.15%
|
526 |
+
[ Thu Sep 8 10:33:22 2022 ] Epoch 53 Best Acc 60.58%
|
527 |
+
[ Thu Sep 8 10:33:22 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 10:33:22 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 10:37:44 2022 ] Mean training loss: 0.0168.
|
530 |
+
[ Thu Sep 8 10:37:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 10:37:44 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 10:45:32 2022 ] Epoch 97 Curr Acc: (35688/59477)60.00%
|
533 |
+
[ Thu Sep 8 10:45:32 2022 ] Epoch 53 Best Acc 60.58%
|
534 |
+
[ Thu Sep 8 10:45:32 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 10:45:32 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 10:49:54 2022 ] Mean training loss: 0.0166.
|
537 |
+
[ Thu Sep 8 10:49:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 10:49:54 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 10:57:43 2022 ] Epoch 98 Curr Acc: (35811/59477)60.21%
|
540 |
+
[ Thu Sep 8 10:57:43 2022 ] Epoch 53 Best Acc 60.58%
|
541 |
+
[ Thu Sep 8 10:57:43 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 10:57:43 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 11:02:05 2022 ] Mean training loss: 0.0165.
|
544 |
+
[ Thu Sep 8 11:02:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 11:02:05 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 11:09:54 2022 ] Epoch 99 Curr Acc: (36018/59477)60.56%
|
547 |
+
[ Thu Sep 8 11:09:54 2022 ] Epoch 53 Best Acc 60.58%
|
548 |
+
[ Thu Sep 8 11:09:54 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 11:09:54 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 11:14:15 2022 ] Mean training loss: 0.0160.
|
551 |
+
[ Thu Sep 8 11:14:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 11:14:15 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 11:22:04 2022 ] Epoch 100 Curr Acc: (35906/59477)60.37%
|
554 |
+
[ Thu Sep 8 11:22:04 2022 ] Epoch 53 Best Acc 60.58%
|
555 |
+
[ Thu Sep 8 11:22:04 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 11:22:04 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 11:26:26 2022 ] Mean training loss: 0.0159.
|
558 |
+
[ Thu Sep 8 11:26:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 11:26:26 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 11:34:15 2022 ] Epoch 101 Curr Acc: (35758/59477)60.12%
|
561 |
+
[ Thu Sep 8 11:34:15 2022 ] Epoch 53 Best Acc 60.58%
|
562 |
+
[ Thu Sep 8 11:34:15 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 11:34:15 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 11:38:38 2022 ] Mean training loss: 0.0157.
|
565 |
+
[ Thu Sep 8 11:38:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 11:38:38 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 11:46:27 2022 ] Epoch 102 Curr Acc: (35932/59477)60.41%
|
568 |
+
[ Thu Sep 8 11:46:27 2022 ] Epoch 53 Best Acc 60.58%
|
569 |
+
[ Thu Sep 8 11:46:27 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 11:46:27 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 11:50:49 2022 ] Mean training loss: 0.0176.
|
572 |
+
[ Thu Sep 8 11:50:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 11:50:49 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 11:58:38 2022 ] Epoch 103 Curr Acc: (35839/59477)60.26%
|
575 |
+
[ Thu Sep 8 11:58:38 2022 ] Epoch 53 Best Acc 60.58%
|
576 |
+
[ Thu Sep 8 11:58:38 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 11:58:38 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 12:03:00 2022 ] Mean training loss: 0.0184.
|
579 |
+
[ Thu Sep 8 12:03:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 12:03:00 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 12:10:49 2022 ] Epoch 104 Curr Acc: (35819/59477)60.22%
|
582 |
+
[ Thu Sep 8 12:10:49 2022 ] Epoch 53 Best Acc 60.58%
|
583 |
+
[ Thu Sep 8 12:10:49 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 12:10:49 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 12:15:11 2022 ] Mean training loss: 0.0157.
|
586 |
+
[ Thu Sep 8 12:15:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 12:15:11 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 12:23:00 2022 ] Epoch 105 Curr Acc: (35630/59477)59.91%
|
589 |
+
[ Thu Sep 8 12:23:00 2022 ] Epoch 53 Best Acc 60.58%
|
590 |
+
[ Thu Sep 8 12:23:00 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 12:23:00 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 12:27:23 2022 ] Mean training loss: 0.0172.
|
593 |
+
[ Thu Sep 8 12:27:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 12:27:23 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 12:35:11 2022 ] Epoch 106 Curr Acc: (35892/59477)60.35%
|
596 |
+
[ Thu Sep 8 12:35:11 2022 ] Epoch 53 Best Acc 60.58%
|
597 |
+
[ Thu Sep 8 12:35:12 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 12:35:12 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 12:39:34 2022 ] Mean training loss: 0.0157.
|
600 |
+
[ Thu Sep 8 12:39:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 12:39:34 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 12:47:23 2022 ] Epoch 107 Curr Acc: (35688/59477)60.00%
|
603 |
+
[ Thu Sep 8 12:47:23 2022 ] Epoch 53 Best Acc 60.58%
|
604 |
+
[ Thu Sep 8 12:47:23 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 12:47:23 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 12:51:46 2022 ] Mean training loss: 0.0163.
|
607 |
+
[ Thu Sep 8 12:51:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 12:51:46 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 12:59:34 2022 ] Epoch 108 Curr Acc: (35900/59477)60.36%
|
610 |
+
[ Thu Sep 8 12:59:34 2022 ] Epoch 53 Best Acc 60.58%
|
611 |
+
[ Thu Sep 8 12:59:34 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 12:59:34 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 13:03:57 2022 ] Mean training loss: 0.0162.
|
614 |
+
[ Thu Sep 8 13:03:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 13:03:57 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 13:11:46 2022 ] Epoch 109 Curr Acc: (35867/59477)60.30%
|
617 |
+
[ Thu Sep 8 13:11:46 2022 ] Epoch 53 Best Acc 60.58%
|
618 |
+
[ Thu Sep 8 13:11:46 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 13:11:46 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 13:16:09 2022 ] Mean training loss: 0.0158.
|
621 |
+
[ Thu Sep 8 13:16:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 13:16:09 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 13:23:58 2022 ] Epoch 110 Curr Acc: (35741/59477)60.09%
|
624 |
+
[ Thu Sep 8 13:23:58 2022 ] Epoch 53 Best Acc 60.58%
|
625 |
+
[ Thu Sep 8 13:23:58 2022 ] epoch: 53, best accuracy: 0.6057971989172285
|
626 |
+
[ Thu Sep 8 13:23:58 2022 ] Experiment: ./work_dir/ntu120/xset_b
|
627 |
+
[ Thu Sep 8 13:23:58 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 13:23:58 2022 ] Load weights from ./runs/ntu120/xset_b/runs-52-68741.pt.
|
629 |
+
[ Thu Sep 8 13:23:58 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 13:31:47 2022 ] Epoch 1 Curr Acc: (36031/59477)60.58%
|
631 |
+
[ Thu Sep 8 13:31:47 2022 ] Epoch 53 Best Acc 60.58%
|
ckpt/Others/MST-GCN/ntu120_xset/xset_bm/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xset/xset_bm/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xset_bm.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xset_bm/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone_motion.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone_motion.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xset_bm
|
ckpt/Others/MST-GCN/ntu120_xset/xset_bm/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4623e5e955d6059c5eea10e3c6bbcc860f03e1765f0a7b768011e8bd6aada7a4
|
3 |
+
size 34946665
|
ckpt/Others/MST-GCN/ntu120_xset/xset_bm/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:35:43 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:35:43 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xset_bm', 'model_saved_name': './runs/ntu120/xset_bm/runs', 'config': 'config/ntu120/xset_bm.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:35:43 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:35:43 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:40:09 2022 ] Mean training loss: 3.7616.
|
8 |
+
[ Wed Sep 7 21:40:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
9 |
+
[ Wed Sep 7 21:40:09 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:40:09 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:44:32 2022 ] Mean training loss: 2.8929.
|
12 |
+
[ Wed Sep 7 21:44:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:44:32 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:44:32 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:48:57 2022 ] Mean training loss: 2.3294.
|
16 |
+
[ Wed Sep 7 21:48:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:48:57 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:48:57 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 21:53:21 2022 ] Mean training loss: 1.9961.
|
20 |
+
[ Wed Sep 7 21:53:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 21:53:21 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 21:53:21 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 21:57:45 2022 ] Mean training loss: 1.7605.
|
24 |
+
[ Wed Sep 7 21:57:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 21:57:45 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 21:57:45 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:02:10 2022 ] Mean training loss: 1.6430.
|
28 |
+
[ Wed Sep 7 22:02:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:02:10 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:02:10 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:06:34 2022 ] Mean training loss: 1.5372.
|
32 |
+
[ Wed Sep 7 22:06:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:06:34 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:06:34 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:10:58 2022 ] Mean training loss: 1.4878.
|
36 |
+
[ Wed Sep 7 22:10:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:10:58 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:10:58 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:15:22 2022 ] Mean training loss: 1.4265.
|
40 |
+
[ Wed Sep 7 22:15:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:15:22 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:15:22 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:19:46 2022 ] Mean training loss: 1.4175.
|
44 |
+
[ Wed Sep 7 22:19:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:19:46 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:19:46 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:24:11 2022 ] Mean training loss: 1.3220.
|
48 |
+
[ Wed Sep 7 22:24:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:24:11 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:24:11 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:28:35 2022 ] Mean training loss: 1.3016.
|
52 |
+
[ Wed Sep 7 22:28:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:28:35 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:28:35 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 22:32:59 2022 ] Mean training loss: 1.2391.
|
56 |
+
[ Wed Sep 7 22:32:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 22:32:59 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 22:32:59 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 22:37:24 2022 ] Mean training loss: 1.1996.
|
60 |
+
[ Wed Sep 7 22:37:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 22:37:24 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 22:37:24 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 22:41:48 2022 ] Mean training loss: 1.1829.
|
64 |
+
[ Wed Sep 7 22:41:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 22:41:48 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 22:41:48 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 22:46:13 2022 ] Mean training loss: 1.1456.
|
68 |
+
[ Wed Sep 7 22:46:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 22:46:13 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 22:46:13 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 22:50:38 2022 ] Mean training loss: 1.1325.
|
72 |
+
[ Wed Sep 7 22:50:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 22:50:38 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 22:50:38 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 22:55:02 2022 ] Mean training loss: 1.1006.
|
76 |
+
[ Wed Sep 7 22:55:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 22:55:02 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 22:55:02 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 22:59:26 2022 ] Mean training loss: 1.0961.
|
80 |
+
[ Wed Sep 7 22:59:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 22:59:26 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 22:59:26 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:03:51 2022 ] Mean training loss: 1.0554.
|
84 |
+
[ Wed Sep 7 23:03:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:03:51 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:03:51 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:08:15 2022 ] Mean training loss: 1.0497.
|
88 |
+
[ Wed Sep 7 23:08:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:08:15 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:08:15 2022 ] Learning rate: 0.15
|
91 |
+
[ Wed Sep 7 23:12:39 2022 ] Mean training loss: 1.0341.
|
92 |
+
[ Wed Sep 7 23:12:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Wed Sep 7 23:12:39 2022 ] Training epoch: 23
|
94 |
+
[ Wed Sep 7 23:12:39 2022 ] Learning rate: 0.15
|
95 |
+
[ Wed Sep 7 23:17:04 2022 ] Mean training loss: 1.0167.
|
96 |
+
[ Wed Sep 7 23:17:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Wed Sep 7 23:17:04 2022 ] Training epoch: 24
|
98 |
+
[ Wed Sep 7 23:17:04 2022 ] Learning rate: 0.15
|
99 |
+
[ Wed Sep 7 23:21:29 2022 ] Mean training loss: 1.0323.
|
100 |
+
[ Wed Sep 7 23:21:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Wed Sep 7 23:21:29 2022 ] Training epoch: 25
|
102 |
+
[ Wed Sep 7 23:21:29 2022 ] Learning rate: 0.15
|
103 |
+
[ Wed Sep 7 23:25:54 2022 ] Mean training loss: 1.0009.
|
104 |
+
[ Wed Sep 7 23:25:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Wed Sep 7 23:25:54 2022 ] Training epoch: 26
|
106 |
+
[ Wed Sep 7 23:25:54 2022 ] Learning rate: 0.15
|
107 |
+
[ Wed Sep 7 23:30:19 2022 ] Mean training loss: 1.0010.
|
108 |
+
[ Wed Sep 7 23:30:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Wed Sep 7 23:30:19 2022 ] Training epoch: 27
|
110 |
+
[ Wed Sep 7 23:30:19 2022 ] Learning rate: 0.15
|
111 |
+
[ Wed Sep 7 23:34:43 2022 ] Mean training loss: 0.9783.
|
112 |
+
[ Wed Sep 7 23:34:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Wed Sep 7 23:34:43 2022 ] Training epoch: 28
|
114 |
+
[ Wed Sep 7 23:34:43 2022 ] Learning rate: 0.15
|
115 |
+
[ Wed Sep 7 23:39:08 2022 ] Mean training loss: 0.9682.
|
116 |
+
[ Wed Sep 7 23:39:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Wed Sep 7 23:39:08 2022 ] Training epoch: 29
|
118 |
+
[ Wed Sep 7 23:39:08 2022 ] Learning rate: 0.15
|
119 |
+
[ Wed Sep 7 23:43:32 2022 ] Mean training loss: 0.9655.
|
120 |
+
[ Wed Sep 7 23:43:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Wed Sep 7 23:43:32 2022 ] Training epoch: 30
|
122 |
+
[ Wed Sep 7 23:43:32 2022 ] Learning rate: 0.15
|
123 |
+
[ Wed Sep 7 23:47:57 2022 ] Mean training loss: 0.9336.
|
124 |
+
[ Wed Sep 7 23:47:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Wed Sep 7 23:47:57 2022 ] Training epoch: 31
|
126 |
+
[ Wed Sep 7 23:47:57 2022 ] Learning rate: 0.15
|
127 |
+
[ Wed Sep 7 23:52:22 2022 ] Mean training loss: 0.9539.
|
128 |
+
[ Wed Sep 7 23:52:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Wed Sep 7 23:52:22 2022 ] Training epoch: 32
|
130 |
+
[ Wed Sep 7 23:52:22 2022 ] Learning rate: 0.15
|
131 |
+
[ Wed Sep 7 23:56:47 2022 ] Mean training loss: 0.9466.
|
132 |
+
[ Wed Sep 7 23:56:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Wed Sep 7 23:56:47 2022 ] Training epoch: 33
|
134 |
+
[ Wed Sep 7 23:56:47 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 00:01:12 2022 ] Mean training loss: 0.9424.
|
136 |
+
[ Thu Sep 8 00:01:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 00:01:12 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 00:01:12 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 00:05:36 2022 ] Mean training loss: 0.9185.
|
140 |
+
[ Thu Sep 8 00:05:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 00:05:36 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 00:05:36 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 00:10:01 2022 ] Mean training loss: 0.9306.
|
144 |
+
[ Thu Sep 8 00:10:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 00:10:01 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 00:10:01 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 00:14:26 2022 ] Mean training loss: 0.9035.
|
148 |
+
[ Thu Sep 8 00:14:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 00:14:26 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 00:14:26 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 00:18:50 2022 ] Mean training loss: 0.9184.
|
152 |
+
[ Thu Sep 8 00:18:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 00:18:50 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 00:18:50 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 00:23:14 2022 ] Mean training loss: 0.9169.
|
156 |
+
[ Thu Sep 8 00:23:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 00:23:14 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 00:23:14 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 00:27:39 2022 ] Mean training loss: 0.9008.
|
160 |
+
[ Thu Sep 8 00:27:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 00:27:39 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 00:27:39 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 00:32:03 2022 ] Mean training loss: 0.9175.
|
164 |
+
[ Thu Sep 8 00:32:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 00:32:03 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 00:32:03 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 00:36:27 2022 ] Mean training loss: 0.8860.
|
168 |
+
[ Thu Sep 8 00:36:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 00:36:27 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 00:36:27 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 00:40:52 2022 ] Mean training loss: 0.9037.
|
172 |
+
[ Thu Sep 8 00:40:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 00:40:52 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 00:40:52 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 00:45:15 2022 ] Mean training loss: 0.8643.
|
176 |
+
[ Thu Sep 8 00:45:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 00:45:15 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 00:45:15 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 00:49:39 2022 ] Mean training loss: 0.8888.
|
180 |
+
[ Thu Sep 8 00:49:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 00:49:39 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 00:49:39 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 00:54:03 2022 ] Mean training loss: 0.8861.
|
184 |
+
[ Thu Sep 8 00:54:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 00:54:03 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 00:54:03 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 00:58:25 2022 ] Mean training loss: 0.9013.
|
188 |
+
[ Thu Sep 8 00:58:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 00:58:25 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 00:58:25 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 01:02:49 2022 ] Mean training loss: 0.8633.
|
192 |
+
[ Thu Sep 8 01:02:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 01:02:49 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 01:02:49 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 01:07:12 2022 ] Mean training loss: 0.8594.
|
196 |
+
[ Thu Sep 8 01:07:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 01:07:12 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 01:07:12 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 01:11:37 2022 ] Mean training loss: 0.8595.
|
200 |
+
[ Thu Sep 8 01:11:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 01:11:37 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 01:11:37 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 01:16:01 2022 ] Mean training loss: 0.8746.
|
204 |
+
[ Thu Sep 8 01:16:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 01:16:01 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 01:16:01 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 01:20:24 2022 ] Mean training loss: 0.4132.
|
208 |
+
[ Thu Sep 8 01:20:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 01:20:24 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 01:28:23 2022 ] Epoch 51 Curr Acc: (32764/59477)55.09%
|
211 |
+
[ Thu Sep 8 01:28:23 2022 ] Epoch 51 Best Acc 55.09%
|
212 |
+
[ Thu Sep 8 01:28:23 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 01:28:23 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 01:32:48 2022 ] Mean training loss: 0.2703.
|
215 |
+
[ Thu Sep 8 01:32:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 01:32:48 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 01:40:37 2022 ] Epoch 52 Curr Acc: (33744/59477)56.73%
|
218 |
+
[ Thu Sep 8 01:40:37 2022 ] Epoch 52 Best Acc 56.73%
|
219 |
+
[ Thu Sep 8 01:40:37 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 01:40:37 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 01:45:02 2022 ] Mean training loss: 0.2134.
|
222 |
+
[ Thu Sep 8 01:45:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 01:45:02 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 01:52:50 2022 ] Epoch 53 Curr Acc: (34759/59477)58.44%
|
225 |
+
[ Thu Sep 8 01:52:50 2022 ] Epoch 53 Best Acc 58.44%
|
226 |
+
[ Thu Sep 8 01:52:50 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 01:52:50 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 01:57:15 2022 ] Mean training loss: 0.1782.
|
229 |
+
[ Thu Sep 8 01:57:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 01:57:15 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 02:05:04 2022 ] Epoch 54 Curr Acc: (34526/59477)58.05%
|
232 |
+
[ Thu Sep 8 02:05:04 2022 ] Epoch 53 Best Acc 58.44%
|
233 |
+
[ Thu Sep 8 02:05:04 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 02:05:04 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 02:09:28 2022 ] Mean training loss: 0.1372.
|
236 |
+
[ Thu Sep 8 02:09:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 02:09:28 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 02:17:17 2022 ] Epoch 55 Curr Acc: (34180/59477)57.47%
|
239 |
+
[ Thu Sep 8 02:17:17 2022 ] Epoch 53 Best Acc 58.44%
|
240 |
+
[ Thu Sep 8 02:17:17 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 02:17:17 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 02:21:41 2022 ] Mean training loss: 0.1177.
|
243 |
+
[ Thu Sep 8 02:21:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 02:21:41 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 02:29:30 2022 ] Epoch 56 Curr Acc: (33575/59477)56.45%
|
246 |
+
[ Thu Sep 8 02:29:30 2022 ] Epoch 53 Best Acc 58.44%
|
247 |
+
[ Thu Sep 8 02:29:30 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 02:29:30 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 02:33:55 2022 ] Mean training loss: 0.0980.
|
250 |
+
[ Thu Sep 8 02:33:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 02:33:55 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 02:41:44 2022 ] Epoch 57 Curr Acc: (34946/59477)58.76%
|
253 |
+
[ Thu Sep 8 02:41:44 2022 ] Epoch 57 Best Acc 58.76%
|
254 |
+
[ Thu Sep 8 02:41:44 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 02:41:44 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 02:46:07 2022 ] Mean training loss: 0.0823.
|
257 |
+
[ Thu Sep 8 02:46:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 02:46:07 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 02:53:56 2022 ] Epoch 58 Curr Acc: (34670/59477)58.29%
|
260 |
+
[ Thu Sep 8 02:53:56 2022 ] Epoch 57 Best Acc 58.76%
|
261 |
+
[ Thu Sep 8 02:53:56 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 02:53:56 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 02:58:20 2022 ] Mean training loss: 0.0653.
|
264 |
+
[ Thu Sep 8 02:58:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 02:58:20 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 03:06:08 2022 ] Epoch 59 Curr Acc: (34472/59477)57.96%
|
267 |
+
[ Thu Sep 8 03:06:08 2022 ] Epoch 57 Best Acc 58.76%
|
268 |
+
[ Thu Sep 8 03:06:08 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 03:06:08 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 03:10:31 2022 ] Mean training loss: 0.0597.
|
271 |
+
[ Thu Sep 8 03:10:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 03:10:31 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 03:18:19 2022 ] Epoch 60 Curr Acc: (34501/59477)58.01%
|
274 |
+
[ Thu Sep 8 03:18:19 2022 ] Epoch 57 Best Acc 58.76%
|
275 |
+
[ Thu Sep 8 03:18:19 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 03:18:19 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 03:22:42 2022 ] Mean training loss: 0.0531.
|
278 |
+
[ Thu Sep 8 03:22:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 03:22:42 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 03:30:30 2022 ] Epoch 61 Curr Acc: (33065/59477)55.59%
|
281 |
+
[ Thu Sep 8 03:30:30 2022 ] Epoch 57 Best Acc 58.76%
|
282 |
+
[ Thu Sep 8 03:30:30 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 03:30:30 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 03:34:52 2022 ] Mean training loss: 0.0472.
|
285 |
+
[ Thu Sep 8 03:34:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 03:34:52 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 03:42:40 2022 ] Epoch 62 Curr Acc: (34525/59477)58.05%
|
288 |
+
[ Thu Sep 8 03:42:40 2022 ] Epoch 57 Best Acc 58.76%
|
289 |
+
[ Thu Sep 8 03:42:40 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 03:42:40 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 03:47:01 2022 ] Mean training loss: 0.0389.
|
292 |
+
[ Thu Sep 8 03:47:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 03:47:02 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 03:54:50 2022 ] Epoch 63 Curr Acc: (34550/59477)58.09%
|
295 |
+
[ Thu Sep 8 03:54:50 2022 ] Epoch 57 Best Acc 58.76%
|
296 |
+
[ Thu Sep 8 03:54:50 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 03:54:50 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 03:59:11 2022 ] Mean training loss: 0.0394.
|
299 |
+
[ Thu Sep 8 03:59:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 03:59:11 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 04:06:59 2022 ] Epoch 64 Curr Acc: (34375/59477)57.80%
|
302 |
+
[ Thu Sep 8 04:06:59 2022 ] Epoch 57 Best Acc 58.76%
|
303 |
+
[ Thu Sep 8 04:06:59 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 04:06:59 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 04:11:20 2022 ] Mean training loss: 0.0407.
|
306 |
+
[ Thu Sep 8 04:11:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 04:11:20 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 04:19:08 2022 ] Epoch 65 Curr Acc: (34053/59477)57.25%
|
309 |
+
[ Thu Sep 8 04:19:08 2022 ] Epoch 57 Best Acc 58.76%
|
310 |
+
[ Thu Sep 8 04:19:08 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 04:19:08 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 04:23:30 2022 ] Mean training loss: 0.0376.
|
313 |
+
[ Thu Sep 8 04:23:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 04:23:30 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 04:31:18 2022 ] Epoch 66 Curr Acc: (34359/59477)57.77%
|
316 |
+
[ Thu Sep 8 04:31:18 2022 ] Epoch 57 Best Acc 58.76%
|
317 |
+
[ Thu Sep 8 04:31:18 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 04:31:18 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 04:35:40 2022 ] Mean training loss: 0.0326.
|
320 |
+
[ Thu Sep 8 04:35:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 04:35:40 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 04:43:29 2022 ] Epoch 67 Curr Acc: (34243/59477)57.57%
|
323 |
+
[ Thu Sep 8 04:43:29 2022 ] Epoch 57 Best Acc 58.76%
|
324 |
+
[ Thu Sep 8 04:43:29 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 04:43:29 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 04:47:50 2022 ] Mean training loss: 0.0375.
|
327 |
+
[ Thu Sep 8 04:47:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 04:47:50 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 04:55:38 2022 ] Epoch 68 Curr Acc: (33569/59477)56.44%
|
330 |
+
[ Thu Sep 8 04:55:38 2022 ] Epoch 57 Best Acc 58.76%
|
331 |
+
[ Thu Sep 8 04:55:38 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 04:55:38 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 05:00:00 2022 ] Mean training loss: 0.0333.
|
334 |
+
[ Thu Sep 8 05:00:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 05:00:00 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 05:07:48 2022 ] Epoch 69 Curr Acc: (34417/59477)57.87%
|
337 |
+
[ Thu Sep 8 05:07:48 2022 ] Epoch 57 Best Acc 58.76%
|
338 |
+
[ Thu Sep 8 05:07:48 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 05:07:48 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 05:12:11 2022 ] Mean training loss: 0.0329.
|
341 |
+
[ Thu Sep 8 05:12:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 05:12:11 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 05:19:58 2022 ] Epoch 70 Curr Acc: (33863/59477)56.93%
|
344 |
+
[ Thu Sep 8 05:19:58 2022 ] Epoch 57 Best Acc 58.76%
|
345 |
+
[ Thu Sep 8 05:19:58 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 05:19:58 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 05:24:20 2022 ] Mean training loss: 0.0224.
|
348 |
+
[ Thu Sep 8 05:24:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 05:24:20 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 05:32:08 2022 ] Epoch 71 Curr Acc: (34442/59477)57.91%
|
351 |
+
[ Thu Sep 8 05:32:08 2022 ] Epoch 57 Best Acc 58.76%
|
352 |
+
[ Thu Sep 8 05:32:08 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 05:32:08 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 05:36:30 2022 ] Mean training loss: 0.0190.
|
355 |
+
[ Thu Sep 8 05:36:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 05:36:30 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 05:44:17 2022 ] Epoch 72 Curr Acc: (34665/59477)58.28%
|
358 |
+
[ Thu Sep 8 05:44:17 2022 ] Epoch 57 Best Acc 58.76%
|
359 |
+
[ Thu Sep 8 05:44:17 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 05:44:17 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 05:48:39 2022 ] Mean training loss: 0.0169.
|
362 |
+
[ Thu Sep 8 05:48:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 05:48:39 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 05:56:27 2022 ] Epoch 73 Curr Acc: (34484/59477)57.98%
|
365 |
+
[ Thu Sep 8 05:56:27 2022 ] Epoch 57 Best Acc 58.76%
|
366 |
+
[ Thu Sep 8 05:56:27 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 05:56:27 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 06:00:48 2022 ] Mean training loss: 0.0175.
|
369 |
+
[ Thu Sep 8 06:00:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 06:00:48 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 06:08:36 2022 ] Epoch 74 Curr Acc: (34740/59477)58.41%
|
372 |
+
[ Thu Sep 8 06:08:36 2022 ] Epoch 57 Best Acc 58.76%
|
373 |
+
[ Thu Sep 8 06:08:36 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 06:08:36 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 06:12:58 2022 ] Mean training loss: 0.0159.
|
376 |
+
[ Thu Sep 8 06:12:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 06:12:58 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 06:20:45 2022 ] Epoch 75 Curr Acc: (34399/59477)57.84%
|
379 |
+
[ Thu Sep 8 06:20:45 2022 ] Epoch 57 Best Acc 58.76%
|
380 |
+
[ Thu Sep 8 06:20:45 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 06:20:45 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 06:25:07 2022 ] Mean training loss: 0.0149.
|
383 |
+
[ Thu Sep 8 06:25:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 06:25:07 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 06:32:54 2022 ] Epoch 76 Curr Acc: (34653/59477)58.26%
|
386 |
+
[ Thu Sep 8 06:32:54 2022 ] Epoch 57 Best Acc 58.76%
|
387 |
+
[ Thu Sep 8 06:32:54 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 06:32:54 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 06:37:16 2022 ] Mean training loss: 0.0167.
|
390 |
+
[ Thu Sep 8 06:37:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 06:37:16 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 06:45:03 2022 ] Epoch 77 Curr Acc: (34762/59477)58.45%
|
393 |
+
[ Thu Sep 8 06:45:03 2022 ] Epoch 57 Best Acc 58.76%
|
394 |
+
[ Thu Sep 8 06:45:03 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 06:45:03 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 06:49:25 2022 ] Mean training loss: 0.0148.
|
397 |
+
[ Thu Sep 8 06:49:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 06:49:25 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 06:57:13 2022 ] Epoch 78 Curr Acc: (34756/59477)58.44%
|
400 |
+
[ Thu Sep 8 06:57:13 2022 ] Epoch 57 Best Acc 58.76%
|
401 |
+
[ Thu Sep 8 06:57:13 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 06:57:13 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 07:01:34 2022 ] Mean training loss: 0.0150.
|
404 |
+
[ Thu Sep 8 07:01:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 07:01:34 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 07:09:21 2022 ] Epoch 79 Curr Acc: (33861/59477)56.93%
|
407 |
+
[ Thu Sep 8 07:09:21 2022 ] Epoch 57 Best Acc 58.76%
|
408 |
+
[ Thu Sep 8 07:09:21 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 07:09:21 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 07:13:44 2022 ] Mean training loss: 0.0138.
|
411 |
+
[ Thu Sep 8 07:13:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 07:13:44 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 07:21:31 2022 ] Epoch 80 Curr Acc: (34681/59477)58.31%
|
414 |
+
[ Thu Sep 8 07:21:31 2022 ] Epoch 57 Best Acc 58.76%
|
415 |
+
[ Thu Sep 8 07:21:31 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 07:21:31 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 07:25:54 2022 ] Mean training loss: 0.0137.
|
418 |
+
[ Thu Sep 8 07:25:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 07:25:54 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 07:33:41 2022 ] Epoch 81 Curr Acc: (34671/59477)58.29%
|
421 |
+
[ Thu Sep 8 07:33:41 2022 ] Epoch 57 Best Acc 58.76%
|
422 |
+
[ Thu Sep 8 07:33:41 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 07:33:41 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 07:38:03 2022 ] Mean training loss: 0.0154.
|
425 |
+
[ Thu Sep 8 07:38:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 07:38:03 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 07:45:51 2022 ] Epoch 82 Curr Acc: (34766/59477)58.45%
|
428 |
+
[ Thu Sep 8 07:45:51 2022 ] Epoch 57 Best Acc 58.76%
|
429 |
+
[ Thu Sep 8 07:45:51 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 07:45:51 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 07:50:13 2022 ] Mean training loss: 0.0134.
|
432 |
+
[ Thu Sep 8 07:50:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 07:50:13 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 07:58:00 2022 ] Epoch 83 Curr Acc: (34705/59477)58.35%
|
435 |
+
[ Thu Sep 8 07:58:00 2022 ] Epoch 57 Best Acc 58.76%
|
436 |
+
[ Thu Sep 8 07:58:00 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 07:58:00 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 08:02:22 2022 ] Mean training loss: 0.0133.
|
439 |
+
[ Thu Sep 8 08:02:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 08:02:22 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 08:10:09 2022 ] Epoch 84 Curr Acc: (34637/59477)58.24%
|
442 |
+
[ Thu Sep 8 08:10:09 2022 ] Epoch 57 Best Acc 58.76%
|
443 |
+
[ Thu Sep 8 08:10:10 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 08:10:10 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 08:14:31 2022 ] Mean training loss: 0.0128.
|
446 |
+
[ Thu Sep 8 08:14:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 08:14:31 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 08:22:19 2022 ] Epoch 85 Curr Acc: (34649/59477)58.26%
|
449 |
+
[ Thu Sep 8 08:22:19 2022 ] Epoch 57 Best Acc 58.76%
|
450 |
+
[ Thu Sep 8 08:22:19 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 08:22:19 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 08:26:40 2022 ] Mean training loss: 0.0135.
|
453 |
+
[ Thu Sep 8 08:26:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 08:26:40 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 08:34:28 2022 ] Epoch 86 Curr Acc: (34534/59477)58.06%
|
456 |
+
[ Thu Sep 8 08:34:28 2022 ] Epoch 57 Best Acc 58.76%
|
457 |
+
[ Thu Sep 8 08:34:28 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 08:34:28 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 08:38:49 2022 ] Mean training loss: 0.0114.
|
460 |
+
[ Thu Sep 8 08:38:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 08:38:50 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 08:46:37 2022 ] Epoch 87 Curr Acc: (34684/59477)58.31%
|
463 |
+
[ Thu Sep 8 08:46:37 2022 ] Epoch 57 Best Acc 58.76%
|
464 |
+
[ Thu Sep 8 08:46:37 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 08:46:37 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 08:50:59 2022 ] Mean training loss: 0.0127.
|
467 |
+
[ Thu Sep 8 08:50:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 08:50:59 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 08:58:46 2022 ] Epoch 88 Curr Acc: (33591/59477)56.48%
|
470 |
+
[ Thu Sep 8 08:58:46 2022 ] Epoch 57 Best Acc 58.76%
|
471 |
+
[ Thu Sep 8 08:58:47 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 08:58:47 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 09:03:09 2022 ] Mean training loss: 0.0123.
|
474 |
+
[ Thu Sep 8 09:03:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 09:03:09 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 09:10:56 2022 ] Epoch 89 Curr Acc: (34079/59477)57.30%
|
477 |
+
[ Thu Sep 8 09:10:56 2022 ] Epoch 57 Best Acc 58.76%
|
478 |
+
[ Thu Sep 8 09:10:56 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 09:10:56 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 09:15:18 2022 ] Mean training loss: 0.0137.
|
481 |
+
[ Thu Sep 8 09:15:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 09:15:18 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 09:23:05 2022 ] Epoch 90 Curr Acc: (34595/59477)58.17%
|
484 |
+
[ Thu Sep 8 09:23:05 2022 ] Epoch 57 Best Acc 58.76%
|
485 |
+
[ Thu Sep 8 09:23:05 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 09:23:05 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 09:27:27 2022 ] Mean training loss: 0.0133.
|
488 |
+
[ Thu Sep 8 09:27:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 09:27:27 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 09:35:14 2022 ] Epoch 91 Curr Acc: (34765/59477)58.45%
|
491 |
+
[ Thu Sep 8 09:35:14 2022 ] Epoch 57 Best Acc 58.76%
|
492 |
+
[ Thu Sep 8 09:35:14 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 09:35:14 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 09:39:36 2022 ] Mean training loss: 0.0131.
|
495 |
+
[ Thu Sep 8 09:39:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 09:39:36 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 09:47:24 2022 ] Epoch 92 Curr Acc: (34956/59477)58.77%
|
498 |
+
[ Thu Sep 8 09:47:24 2022 ] Epoch 92 Best Acc 58.77%
|
499 |
+
[ Thu Sep 8 09:47:24 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 09:47:24 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 09:51:45 2022 ] Mean training loss: 0.0126.
|
502 |
+
[ Thu Sep 8 09:51:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 09:51:45 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 09:59:33 2022 ] Epoch 93 Curr Acc: (34953/59477)58.77%
|
505 |
+
[ Thu Sep 8 09:59:33 2022 ] Epoch 92 Best Acc 58.77%
|
506 |
+
[ Thu Sep 8 09:59:33 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 09:59:33 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 10:03:54 2022 ] Mean training loss: 0.0135.
|
509 |
+
[ Thu Sep 8 10:03:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 10:03:54 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 10:11:42 2022 ] Epoch 94 Curr Acc: (35044/59477)58.92%
|
512 |
+
[ Thu Sep 8 10:11:42 2022 ] Epoch 94 Best Acc 58.92%
|
513 |
+
[ Thu Sep 8 10:11:42 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 10:11:42 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 10:16:03 2022 ] Mean training loss: 0.0117.
|
516 |
+
[ Thu Sep 8 10:16:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 10:16:03 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 10:23:51 2022 ] Epoch 95 Curr Acc: (33790/59477)56.81%
|
519 |
+
[ Thu Sep 8 10:23:51 2022 ] Epoch 94 Best Acc 58.92%
|
520 |
+
[ Thu Sep 8 10:23:51 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 10:23:51 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 10:28:13 2022 ] Mean training loss: 0.0124.
|
523 |
+
[ Thu Sep 8 10:28:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 10:28:13 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 10:36:00 2022 ] Epoch 96 Curr Acc: (34878/59477)58.64%
|
526 |
+
[ Thu Sep 8 10:36:00 2022 ] Epoch 94 Best Acc 58.92%
|
527 |
+
[ Thu Sep 8 10:36:00 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 10:36:00 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 10:40:24 2022 ] Mean training loss: 0.0122.
|
530 |
+
[ Thu Sep 8 10:40:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 10:40:24 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 10:48:12 2022 ] Epoch 97 Curr Acc: (34601/59477)58.18%
|
533 |
+
[ Thu Sep 8 10:48:12 2022 ] Epoch 94 Best Acc 58.92%
|
534 |
+
[ Thu Sep 8 10:48:12 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 10:48:12 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 10:52:34 2022 ] Mean training loss: 0.0127.
|
537 |
+
[ Thu Sep 8 10:52:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 10:52:34 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 11:00:22 2022 ] Epoch 98 Curr Acc: (34640/59477)58.24%
|
540 |
+
[ Thu Sep 8 11:00:22 2022 ] Epoch 94 Best Acc 58.92%
|
541 |
+
[ Thu Sep 8 11:00:22 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 11:00:22 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 11:04:45 2022 ] Mean training loss: 0.0119.
|
544 |
+
[ Thu Sep 8 11:04:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 11:04:45 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 11:12:32 2022 ] Epoch 99 Curr Acc: (34937/59477)58.74%
|
547 |
+
[ Thu Sep 8 11:12:32 2022 ] Epoch 94 Best Acc 58.92%
|
548 |
+
[ Thu Sep 8 11:12:33 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 11:12:33 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 11:16:55 2022 ] Mean training loss: 0.0120.
|
551 |
+
[ Thu Sep 8 11:16:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 11:16:55 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 11:24:43 2022 ] Epoch 100 Curr Acc: (34501/59477)58.01%
|
554 |
+
[ Thu Sep 8 11:24:43 2022 ] Epoch 94 Best Acc 58.92%
|
555 |
+
[ Thu Sep 8 11:24:43 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 11:24:43 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 11:29:05 2022 ] Mean training loss: 0.0122.
|
558 |
+
[ Thu Sep 8 11:29:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 11:29:05 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 11:36:54 2022 ] Epoch 101 Curr Acc: (34881/59477)58.65%
|
561 |
+
[ Thu Sep 8 11:36:54 2022 ] Epoch 94 Best Acc 58.92%
|
562 |
+
[ Thu Sep 8 11:36:54 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 11:36:54 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 11:41:16 2022 ] Mean training loss: 0.0118.
|
565 |
+
[ Thu Sep 8 11:41:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 11:41:16 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 11:49:04 2022 ] Epoch 102 Curr Acc: (35078/59477)58.98%
|
568 |
+
[ Thu Sep 8 11:49:04 2022 ] Epoch 102 Best Acc 58.98%
|
569 |
+
[ Thu Sep 8 11:49:04 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 11:49:04 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 11:53:27 2022 ] Mean training loss: 0.0119.
|
572 |
+
[ Thu Sep 8 11:53:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 11:53:27 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 12:01:15 2022 ] Epoch 103 Curr Acc: (34416/59477)57.86%
|
575 |
+
[ Thu Sep 8 12:01:15 2022 ] Epoch 102 Best Acc 58.98%
|
576 |
+
[ Thu Sep 8 12:01:15 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 12:01:15 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 12:05:38 2022 ] Mean training loss: 0.0125.
|
579 |
+
[ Thu Sep 8 12:05:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 12:05:38 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 12:13:26 2022 ] Epoch 104 Curr Acc: (34796/59477)58.50%
|
582 |
+
[ Thu Sep 8 12:13:26 2022 ] Epoch 102 Best Acc 58.98%
|
583 |
+
[ Thu Sep 8 12:13:26 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 12:13:26 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 12:17:48 2022 ] Mean training loss: 0.0115.
|
586 |
+
[ Thu Sep 8 12:17:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 12:17:49 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 12:25:37 2022 ] Epoch 105 Curr Acc: (34704/59477)58.35%
|
589 |
+
[ Thu Sep 8 12:25:37 2022 ] Epoch 102 Best Acc 58.98%
|
590 |
+
[ Thu Sep 8 12:25:37 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 12:25:37 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 12:29:59 2022 ] Mean training loss: 0.0128.
|
593 |
+
[ Thu Sep 8 12:29:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 12:29:59 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 12:37:47 2022 ] Epoch 106 Curr Acc: (34773/59477)58.46%
|
596 |
+
[ Thu Sep 8 12:37:47 2022 ] Epoch 102 Best Acc 58.98%
|
597 |
+
[ Thu Sep 8 12:37:47 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 12:37:47 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 12:42:09 2022 ] Mean training loss: 0.0120.
|
600 |
+
[ Thu Sep 8 12:42:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 12:42:09 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 12:49:58 2022 ] Epoch 107 Curr Acc: (34658/59477)58.27%
|
603 |
+
[ Thu Sep 8 12:49:58 2022 ] Epoch 102 Best Acc 58.98%
|
604 |
+
[ Thu Sep 8 12:49:58 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 12:49:58 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 12:54:19 2022 ] Mean training loss: 0.0108.
|
607 |
+
[ Thu Sep 8 12:54:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 12:54:19 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 13:02:07 2022 ] Epoch 108 Curr Acc: (34883/59477)58.65%
|
610 |
+
[ Thu Sep 8 13:02:07 2022 ] Epoch 102 Best Acc 58.98%
|
611 |
+
[ Thu Sep 8 13:02:07 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 13:02:07 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 13:06:29 2022 ] Mean training loss: 0.0124.
|
614 |
+
[ Thu Sep 8 13:06:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 13:06:29 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 13:14:17 2022 ] Epoch 109 Curr Acc: (34702/59477)58.35%
|
617 |
+
[ Thu Sep 8 13:14:17 2022 ] Epoch 102 Best Acc 58.98%
|
618 |
+
[ Thu Sep 8 13:14:17 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 13:14:17 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 13:18:38 2022 ] Mean training loss: 0.0120.
|
621 |
+
[ Thu Sep 8 13:18:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 13:18:38 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 13:26:27 2022 ] Epoch 110 Curr Acc: (34520/59477)58.04%
|
624 |
+
[ Thu Sep 8 13:26:27 2022 ] Epoch 102 Best Acc 58.98%
|
625 |
+
[ Thu Sep 8 13:26:27 2022 ] epoch: 102, best accuracy: 0.5897741984296451
|
626 |
+
[ Thu Sep 8 13:26:27 2022 ] Experiment: ./work_dir/ntu120/xset_bm
|
627 |
+
[ Thu Sep 8 13:26:27 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 13:26:27 2022 ] Load weights from ./runs/ntu120/xset_bm/runs-101-132294.pt.
|
629 |
+
[ Thu Sep 8 13:26:27 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 13:34:15 2022 ] Epoch 1 Curr Acc: (35078/59477)58.98%
|
631 |
+
[ Thu Sep 8 13:34:15 2022 ] Epoch 102 Best Acc 58.98%
|
ckpt/Others/MST-GCN/ntu120_xset/xset_j/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xset/xset_j/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xset_j.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xset_j/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xset_j
|
ckpt/Others/MST-GCN/ntu120_xset/xset_j/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07508146e0acf0d9152cf573420ce523856f97de6dad49a42ab2bd14d86cebbe
|
3 |
+
size 34946665
|
ckpt/Others/MST-GCN/ntu120_xset/xset_j/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:35:51 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:35:51 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xset_j', 'model_saved_name': './runs/ntu120/xset_j/runs', 'config': 'config/ntu120/xset_j.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:35:51 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:35:51 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:40:17 2022 ] Mean training loss: 3.6800.
|
8 |
+
[ Wed Sep 7 21:40:17 2022 ] Time consumption: [Data]01%, [Network]98%
|
9 |
+
[ Wed Sep 7 21:40:17 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:40:17 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:44:42 2022 ] Mean training loss: 2.8223.
|
12 |
+
[ Wed Sep 7 21:44:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:44:42 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:44:42 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:49:05 2022 ] Mean training loss: 2.3654.
|
16 |
+
[ Wed Sep 7 21:49:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:49:05 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:49:05 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 21:53:27 2022 ] Mean training loss: 2.0752.
|
20 |
+
[ Wed Sep 7 21:53:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 21:53:27 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 21:53:27 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 21:57:50 2022 ] Mean training loss: 1.8883.
|
24 |
+
[ Wed Sep 7 21:57:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 21:57:50 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 21:57:50 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:02:13 2022 ] Mean training loss: 1.7515.
|
28 |
+
[ Wed Sep 7 22:02:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:02:13 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:02:13 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:06:35 2022 ] Mean training loss: 1.6382.
|
32 |
+
[ Wed Sep 7 22:06:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:06:35 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:06:35 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:10:58 2022 ] Mean training loss: 1.5736.
|
36 |
+
[ Wed Sep 7 22:10:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:10:58 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:10:58 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:15:20 2022 ] Mean training loss: 1.5032.
|
40 |
+
[ Wed Sep 7 22:15:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:15:20 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:15:20 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:19:43 2022 ] Mean training loss: 1.4871.
|
44 |
+
[ Wed Sep 7 22:19:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:19:43 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:19:43 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:24:05 2022 ] Mean training loss: 1.3952.
|
48 |
+
[ Wed Sep 7 22:24:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:24:05 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:24:05 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:28:28 2022 ] Mean training loss: 1.3432.
|
52 |
+
[ Wed Sep 7 22:28:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:28:28 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:28:28 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 22:32:51 2022 ] Mean training loss: 1.2907.
|
56 |
+
[ Wed Sep 7 22:32:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 22:32:51 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 22:32:51 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 22:37:13 2022 ] Mean training loss: 1.2527.
|
60 |
+
[ Wed Sep 7 22:37:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 22:37:13 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 22:37:13 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 22:41:36 2022 ] Mean training loss: 1.2237.
|
64 |
+
[ Wed Sep 7 22:41:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 22:41:36 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 22:41:36 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 22:45:59 2022 ] Mean training loss: 1.1655.
|
68 |
+
[ Wed Sep 7 22:45:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 22:45:59 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 22:45:59 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 22:50:23 2022 ] Mean training loss: 1.1655.
|
72 |
+
[ Wed Sep 7 22:50:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 22:50:23 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 22:50:23 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 22:54:46 2022 ] Mean training loss: 1.1225.
|
76 |
+
[ Wed Sep 7 22:54:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 22:54:46 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 22:54:46 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 22:59:09 2022 ] Mean training loss: 1.1175.
|
80 |
+
[ Wed Sep 7 22:59:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 22:59:09 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 22:59:09 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:03:32 2022 ] Mean training loss: 1.0823.
|
84 |
+
[ Wed Sep 7 23:03:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:03:32 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:03:32 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:07:55 2022 ] Mean training loss: 1.0720.
|
88 |
+
[ Wed Sep 7 23:07:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:07:55 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:07:55 2022 ] Learning rate: 0.15
|
91 |
+
[ Wed Sep 7 23:12:18 2022 ] Mean training loss: 1.0578.
|
92 |
+
[ Wed Sep 7 23:12:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Wed Sep 7 23:12:18 2022 ] Training epoch: 23
|
94 |
+
[ Wed Sep 7 23:12:18 2022 ] Learning rate: 0.15
|
95 |
+
[ Wed Sep 7 23:16:42 2022 ] Mean training loss: 1.0478.
|
96 |
+
[ Wed Sep 7 23:16:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Wed Sep 7 23:16:42 2022 ] Training epoch: 24
|
98 |
+
[ Wed Sep 7 23:16:42 2022 ] Learning rate: 0.15
|
99 |
+
[ Wed Sep 7 23:21:06 2022 ] Mean training loss: 1.0217.
|
100 |
+
[ Wed Sep 7 23:21:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Wed Sep 7 23:21:06 2022 ] Training epoch: 25
|
102 |
+
[ Wed Sep 7 23:21:06 2022 ] Learning rate: 0.15
|
103 |
+
[ Wed Sep 7 23:25:29 2022 ] Mean training loss: 1.0131.
|
104 |
+
[ Wed Sep 7 23:25:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Wed Sep 7 23:25:29 2022 ] Training epoch: 26
|
106 |
+
[ Wed Sep 7 23:25:29 2022 ] Learning rate: 0.15
|
107 |
+
[ Wed Sep 7 23:29:53 2022 ] Mean training loss: 0.9915.
|
108 |
+
[ Wed Sep 7 23:29:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Wed Sep 7 23:29:53 2022 ] Training epoch: 27
|
110 |
+
[ Wed Sep 7 23:29:53 2022 ] Learning rate: 0.15
|
111 |
+
[ Wed Sep 7 23:34:17 2022 ] Mean training loss: 0.9798.
|
112 |
+
[ Wed Sep 7 23:34:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Wed Sep 7 23:34:17 2022 ] Training epoch: 28
|
114 |
+
[ Wed Sep 7 23:34:17 2022 ] Learning rate: 0.15
|
115 |
+
[ Wed Sep 7 23:38:40 2022 ] Mean training loss: 0.9867.
|
116 |
+
[ Wed Sep 7 23:38:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Wed Sep 7 23:38:40 2022 ] Training epoch: 29
|
118 |
+
[ Wed Sep 7 23:38:40 2022 ] Learning rate: 0.15
|
119 |
+
[ Wed Sep 7 23:43:03 2022 ] Mean training loss: 0.9692.
|
120 |
+
[ Wed Sep 7 23:43:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Wed Sep 7 23:43:03 2022 ] Training epoch: 30
|
122 |
+
[ Wed Sep 7 23:43:03 2022 ] Learning rate: 0.15
|
123 |
+
[ Wed Sep 7 23:47:27 2022 ] Mean training loss: 0.9718.
|
124 |
+
[ Wed Sep 7 23:47:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Wed Sep 7 23:47:27 2022 ] Training epoch: 31
|
126 |
+
[ Wed Sep 7 23:47:27 2022 ] Learning rate: 0.15
|
127 |
+
[ Wed Sep 7 23:51:50 2022 ] Mean training loss: 0.9417.
|
128 |
+
[ Wed Sep 7 23:51:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Wed Sep 7 23:51:50 2022 ] Training epoch: 32
|
130 |
+
[ Wed Sep 7 23:51:50 2022 ] Learning rate: 0.15
|
131 |
+
[ Wed Sep 7 23:56:14 2022 ] Mean training loss: 0.9465.
|
132 |
+
[ Wed Sep 7 23:56:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Wed Sep 7 23:56:14 2022 ] Training epoch: 33
|
134 |
+
[ Wed Sep 7 23:56:14 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 00:00:37 2022 ] Mean training loss: 0.9442.
|
136 |
+
[ Thu Sep 8 00:00:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 00:00:37 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 00:00:37 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 00:05:00 2022 ] Mean training loss: 0.9245.
|
140 |
+
[ Thu Sep 8 00:05:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 00:05:00 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 00:05:00 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 00:09:24 2022 ] Mean training loss: 0.9371.
|
144 |
+
[ Thu Sep 8 00:09:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 00:09:24 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 00:09:24 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 00:13:47 2022 ] Mean training loss: 0.9328.
|
148 |
+
[ Thu Sep 8 00:13:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 00:13:47 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 00:13:47 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 00:18:11 2022 ] Mean training loss: 0.9232.
|
152 |
+
[ Thu Sep 8 00:18:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 00:18:11 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 00:18:11 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 00:22:35 2022 ] Mean training loss: 0.9113.
|
156 |
+
[ Thu Sep 8 00:22:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 00:22:35 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 00:22:35 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 00:26:58 2022 ] Mean training loss: 0.9030.
|
160 |
+
[ Thu Sep 8 00:26:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 00:26:58 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 00:26:58 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 00:31:22 2022 ] Mean training loss: 0.9017.
|
164 |
+
[ Thu Sep 8 00:31:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 00:31:22 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 00:31:22 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 00:35:45 2022 ] Mean training loss: 0.8869.
|
168 |
+
[ Thu Sep 8 00:35:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 00:35:45 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 00:35:45 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 00:40:08 2022 ] Mean training loss: 0.8835.
|
172 |
+
[ Thu Sep 8 00:40:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 00:40:08 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 00:40:08 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 00:44:31 2022 ] Mean training loss: 0.8969.
|
176 |
+
[ Thu Sep 8 00:44:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 00:44:31 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 00:44:31 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 00:48:55 2022 ] Mean training loss: 0.8744.
|
180 |
+
[ Thu Sep 8 00:48:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 00:48:55 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 00:48:55 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 00:53:18 2022 ] Mean training loss: 0.8795.
|
184 |
+
[ Thu Sep 8 00:53:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 00:53:18 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 00:53:18 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 00:57:42 2022 ] Mean training loss: 0.8780.
|
188 |
+
[ Thu Sep 8 00:57:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 00:57:42 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 00:57:42 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 01:02:05 2022 ] Mean training loss: 0.8804.
|
192 |
+
[ Thu Sep 8 01:02:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 01:02:05 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 01:02:05 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 01:06:28 2022 ] Mean training loss: 0.8462.
|
196 |
+
[ Thu Sep 8 01:06:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 01:06:28 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 01:06:28 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 01:10:51 2022 ] Mean training loss: 0.8762.
|
200 |
+
[ Thu Sep 8 01:10:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 01:10:51 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 01:10:51 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 01:15:14 2022 ] Mean training loss: 0.8819.
|
204 |
+
[ Thu Sep 8 01:15:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 01:15:14 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 01:15:14 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 01:19:37 2022 ] Mean training loss: 0.4295.
|
208 |
+
[ Thu Sep 8 01:19:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 01:19:37 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 01:27:35 2022 ] Epoch 51 Curr Acc: (34662/59477)58.28%
|
211 |
+
[ Thu Sep 8 01:27:35 2022 ] Epoch 51 Best Acc 58.28%
|
212 |
+
[ Thu Sep 8 01:27:36 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 01:27:36 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 01:31:58 2022 ] Mean training loss: 0.2936.
|
215 |
+
[ Thu Sep 8 01:31:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 01:31:58 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 01:39:49 2022 ] Epoch 52 Curr Acc: (36032/59477)60.58%
|
218 |
+
[ Thu Sep 8 01:39:49 2022 ] Epoch 52 Best Acc 60.58%
|
219 |
+
[ Thu Sep 8 01:39:49 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 01:39:49 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 01:44:12 2022 ] Mean training loss: 0.2383.
|
222 |
+
[ Thu Sep 8 01:44:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 01:44:12 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 01:52:03 2022 ] Epoch 53 Curr Acc: (36164/59477)60.80%
|
225 |
+
[ Thu Sep 8 01:52:03 2022 ] Epoch 53 Best Acc 60.80%
|
226 |
+
[ Thu Sep 8 01:52:03 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 01:52:03 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 01:56:25 2022 ] Mean training loss: 0.2054.
|
229 |
+
[ Thu Sep 8 01:56:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 01:56:25 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 02:04:16 2022 ] Epoch 54 Curr Acc: (36324/59477)61.07%
|
232 |
+
[ Thu Sep 8 02:04:16 2022 ] Epoch 54 Best Acc 61.07%
|
233 |
+
[ Thu Sep 8 02:04:16 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 02:04:16 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 02:08:40 2022 ] Mean training loss: 0.1660.
|
236 |
+
[ Thu Sep 8 02:08:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 02:08:40 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 02:16:31 2022 ] Epoch 55 Curr Acc: (36200/59477)60.86%
|
239 |
+
[ Thu Sep 8 02:16:31 2022 ] Epoch 54 Best Acc 61.07%
|
240 |
+
[ Thu Sep 8 02:16:31 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 02:16:31 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 02:20:54 2022 ] Mean training loss: 0.1457.
|
243 |
+
[ Thu Sep 8 02:20:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 02:20:54 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 02:28:45 2022 ] Epoch 56 Curr Acc: (36422/59477)61.24%
|
246 |
+
[ Thu Sep 8 02:28:45 2022 ] Epoch 56 Best Acc 61.24%
|
247 |
+
[ Thu Sep 8 02:28:45 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 02:28:45 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 02:33:08 2022 ] Mean training loss: 0.1336.
|
250 |
+
[ Thu Sep 8 02:33:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 02:33:08 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 02:40:59 2022 ] Epoch 57 Curr Acc: (36565/59477)61.48%
|
253 |
+
[ Thu Sep 8 02:40:59 2022 ] Epoch 57 Best Acc 61.48%
|
254 |
+
[ Thu Sep 8 02:40:59 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 02:40:59 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 02:45:22 2022 ] Mean training loss: 0.1069.
|
257 |
+
[ Thu Sep 8 02:45:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 02:45:23 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 02:53:13 2022 ] Epoch 58 Curr Acc: (35997/59477)60.52%
|
260 |
+
[ Thu Sep 8 02:53:13 2022 ] Epoch 57 Best Acc 61.48%
|
261 |
+
[ Thu Sep 8 02:53:13 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 02:53:13 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 02:57:36 2022 ] Mean training loss: 0.0936.
|
264 |
+
[ Thu Sep 8 02:57:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 02:57:36 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 03:05:27 2022 ] Epoch 59 Curr Acc: (36102/59477)60.70%
|
267 |
+
[ Thu Sep 8 03:05:27 2022 ] Epoch 57 Best Acc 61.48%
|
268 |
+
[ Thu Sep 8 03:05:27 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 03:05:27 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 03:09:50 2022 ] Mean training loss: 0.0901.
|
271 |
+
[ Thu Sep 8 03:09:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 03:09:50 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 03:17:41 2022 ] Epoch 60 Curr Acc: (36186/59477)60.84%
|
274 |
+
[ Thu Sep 8 03:17:41 2022 ] Epoch 57 Best Acc 61.48%
|
275 |
+
[ Thu Sep 8 03:17:41 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 03:17:41 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 03:22:05 2022 ] Mean training loss: 0.0733.
|
278 |
+
[ Thu Sep 8 03:22:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 03:22:05 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 03:29:55 2022 ] Epoch 61 Curr Acc: (35863/59477)60.30%
|
281 |
+
[ Thu Sep 8 03:29:55 2022 ] Epoch 57 Best Acc 61.48%
|
282 |
+
[ Thu Sep 8 03:29:55 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 03:29:55 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 03:34:18 2022 ] Mean training loss: 0.0733.
|
285 |
+
[ Thu Sep 8 03:34:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 03:34:19 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 03:42:09 2022 ] Epoch 62 Curr Acc: (36012/59477)60.55%
|
288 |
+
[ Thu Sep 8 03:42:09 2022 ] Epoch 57 Best Acc 61.48%
|
289 |
+
[ Thu Sep 8 03:42:09 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 03:42:09 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 03:46:31 2022 ] Mean training loss: 0.0674.
|
292 |
+
[ Thu Sep 8 03:46:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 03:46:31 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 03:54:22 2022 ] Epoch 63 Curr Acc: (35929/59477)60.41%
|
295 |
+
[ Thu Sep 8 03:54:22 2022 ] Epoch 57 Best Acc 61.48%
|
296 |
+
[ Thu Sep 8 03:54:22 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 03:54:22 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 03:58:45 2022 ] Mean training loss: 0.0624.
|
299 |
+
[ Thu Sep 8 03:58:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 03:58:45 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 04:06:36 2022 ] Epoch 64 Curr Acc: (35778/59477)60.15%
|
302 |
+
[ Thu Sep 8 04:06:36 2022 ] Epoch 57 Best Acc 61.48%
|
303 |
+
[ Thu Sep 8 04:06:36 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 04:06:36 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 04:11:00 2022 ] Mean training loss: 0.0549.
|
306 |
+
[ Thu Sep 8 04:11:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 04:11:00 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 04:18:50 2022 ] Epoch 65 Curr Acc: (36043/59477)60.60%
|
309 |
+
[ Thu Sep 8 04:18:50 2022 ] Epoch 57 Best Acc 61.48%
|
310 |
+
[ Thu Sep 8 04:18:50 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 04:18:50 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 04:23:13 2022 ] Mean training loss: 0.0514.
|
313 |
+
[ Thu Sep 8 04:23:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 04:23:13 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 04:31:04 2022 ] Epoch 66 Curr Acc: (35771/59477)60.14%
|
316 |
+
[ Thu Sep 8 04:31:04 2022 ] Epoch 57 Best Acc 61.48%
|
317 |
+
[ Thu Sep 8 04:31:04 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 04:31:04 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 04:35:28 2022 ] Mean training loss: 0.0475.
|
320 |
+
[ Thu Sep 8 04:35:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 04:35:28 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 04:43:19 2022 ] Epoch 67 Curr Acc: (35898/59477)60.36%
|
323 |
+
[ Thu Sep 8 04:43:19 2022 ] Epoch 57 Best Acc 61.48%
|
324 |
+
[ Thu Sep 8 04:43:19 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 04:43:19 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 04:47:42 2022 ] Mean training loss: 0.0568.
|
327 |
+
[ Thu Sep 8 04:47:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 04:47:42 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 04:55:33 2022 ] Epoch 68 Curr Acc: (35158/59477)59.11%
|
330 |
+
[ Thu Sep 8 04:55:33 2022 ] Epoch 57 Best Acc 61.48%
|
331 |
+
[ Thu Sep 8 04:55:33 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 04:55:33 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 04:59:55 2022 ] Mean training loss: 0.0533.
|
334 |
+
[ Thu Sep 8 04:59:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 04:59:55 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 05:07:46 2022 ] Epoch 69 Curr Acc: (35877/59477)60.32%
|
337 |
+
[ Thu Sep 8 05:07:46 2022 ] Epoch 57 Best Acc 61.48%
|
338 |
+
[ Thu Sep 8 05:07:46 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 05:07:46 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 05:12:07 2022 ] Mean training loss: 0.0444.
|
341 |
+
[ Thu Sep 8 05:12:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 05:12:07 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 05:19:58 2022 ] Epoch 70 Curr Acc: (35739/59477)60.09%
|
344 |
+
[ Thu Sep 8 05:19:58 2022 ] Epoch 57 Best Acc 61.48%
|
345 |
+
[ Thu Sep 8 05:19:58 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 05:19:58 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 05:24:20 2022 ] Mean training loss: 0.0331.
|
348 |
+
[ Thu Sep 8 05:24:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 05:24:20 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 05:32:11 2022 ] Epoch 71 Curr Acc: (36238/59477)60.93%
|
351 |
+
[ Thu Sep 8 05:32:11 2022 ] Epoch 57 Best Acc 61.48%
|
352 |
+
[ Thu Sep 8 05:32:11 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 05:32:11 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 05:36:32 2022 ] Mean training loss: 0.0255.
|
355 |
+
[ Thu Sep 8 05:36:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 05:36:32 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 05:44:23 2022 ] Epoch 72 Curr Acc: (36186/59477)60.84%
|
358 |
+
[ Thu Sep 8 05:44:23 2022 ] Epoch 57 Best Acc 61.48%
|
359 |
+
[ Thu Sep 8 05:44:23 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 05:44:23 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 05:48:44 2022 ] Mean training loss: 0.0223.
|
362 |
+
[ Thu Sep 8 05:48:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 05:48:45 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 05:56:35 2022 ] Epoch 73 Curr Acc: (36274/59477)60.99%
|
365 |
+
[ Thu Sep 8 05:56:35 2022 ] Epoch 57 Best Acc 61.48%
|
366 |
+
[ Thu Sep 8 05:56:35 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 05:56:35 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 06:00:58 2022 ] Mean training loss: 0.0225.
|
369 |
+
[ Thu Sep 8 06:00:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 06:00:58 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 06:08:48 2022 ] Epoch 74 Curr Acc: (36436/59477)61.26%
|
372 |
+
[ Thu Sep 8 06:08:48 2022 ] Epoch 57 Best Acc 61.48%
|
373 |
+
[ Thu Sep 8 06:08:48 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 06:08:48 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 06:13:09 2022 ] Mean training loss: 0.0216.
|
376 |
+
[ Thu Sep 8 06:13:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 06:13:10 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 06:21:00 2022 ] Epoch 75 Curr Acc: (35925/59477)60.40%
|
379 |
+
[ Thu Sep 8 06:21:00 2022 ] Epoch 57 Best Acc 61.48%
|
380 |
+
[ Thu Sep 8 06:21:00 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 06:21:00 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 06:25:23 2022 ] Mean training loss: 0.0199.
|
383 |
+
[ Thu Sep 8 06:25:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 06:25:23 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 06:33:13 2022 ] Epoch 76 Curr Acc: (36147/59477)60.77%
|
386 |
+
[ Thu Sep 8 06:33:13 2022 ] Epoch 57 Best Acc 61.48%
|
387 |
+
[ Thu Sep 8 06:33:13 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 06:33:13 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 06:37:36 2022 ] Mean training loss: 0.0186.
|
390 |
+
[ Thu Sep 8 06:37:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 06:37:36 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 06:45:27 2022 ] Epoch 77 Curr Acc: (36519/59477)61.40%
|
393 |
+
[ Thu Sep 8 06:45:27 2022 ] Epoch 57 Best Acc 61.48%
|
394 |
+
[ Thu Sep 8 06:45:27 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 06:45:27 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 06:49:50 2022 ] Mean training loss: 0.0201.
|
397 |
+
[ Thu Sep 8 06:49:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 06:49:50 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 06:57:41 2022 ] Epoch 78 Curr Acc: (36282/59477)61.00%
|
400 |
+
[ Thu Sep 8 06:57:41 2022 ] Epoch 57 Best Acc 61.48%
|
401 |
+
[ Thu Sep 8 06:57:41 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 06:57:41 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 07:02:04 2022 ] Mean training loss: 0.0191.
|
404 |
+
[ Thu Sep 8 07:02:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 07:02:04 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 07:09:55 2022 ] Epoch 79 Curr Acc: (35872/59477)60.31%
|
407 |
+
[ Thu Sep 8 07:09:55 2022 ] Epoch 57 Best Acc 61.48%
|
408 |
+
[ Thu Sep 8 07:09:55 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 07:09:55 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 07:14:17 2022 ] Mean training loss: 0.0175.
|
411 |
+
[ Thu Sep 8 07:14:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 07:14:17 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 07:22:08 2022 ] Epoch 80 Curr Acc: (36153/59477)60.78%
|
414 |
+
[ Thu Sep 8 07:22:08 2022 ] Epoch 57 Best Acc 61.48%
|
415 |
+
[ Thu Sep 8 07:22:08 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 07:22:08 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 07:26:32 2022 ] Mean training loss: 0.0167.
|
418 |
+
[ Thu Sep 8 07:26:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 07:26:32 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 07:34:22 2022 ] Epoch 81 Curr Acc: (36225/59477)60.91%
|
421 |
+
[ Thu Sep 8 07:34:22 2022 ] Epoch 57 Best Acc 61.48%
|
422 |
+
[ Thu Sep 8 07:34:22 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 07:34:22 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 07:38:45 2022 ] Mean training loss: 0.0176.
|
425 |
+
[ Thu Sep 8 07:38:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 07:38:45 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 07:46:35 2022 ] Epoch 82 Curr Acc: (36389/59477)61.18%
|
428 |
+
[ Thu Sep 8 07:46:35 2022 ] Epoch 57 Best Acc 61.48%
|
429 |
+
[ Thu Sep 8 07:46:35 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 07:46:35 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 07:50:58 2022 ] Mean training loss: 0.0177.
|
432 |
+
[ Thu Sep 8 07:50:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 07:50:58 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 07:58:48 2022 ] Epoch 83 Curr Acc: (35930/59477)60.41%
|
435 |
+
[ Thu Sep 8 07:58:48 2022 ] Epoch 57 Best Acc 61.48%
|
436 |
+
[ Thu Sep 8 07:58:48 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 07:58:48 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 08:03:11 2022 ] Mean training loss: 0.0180.
|
439 |
+
[ Thu Sep 8 08:03:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 08:03:11 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 08:11:00 2022 ] Epoch 84 Curr Acc: (36213/59477)60.89%
|
442 |
+
[ Thu Sep 8 08:11:00 2022 ] Epoch 57 Best Acc 61.48%
|
443 |
+
[ Thu Sep 8 08:11:00 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 08:11:00 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 08:15:23 2022 ] Mean training loss: 0.0158.
|
446 |
+
[ Thu Sep 8 08:15:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 08:15:23 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 08:23:13 2022 ] Epoch 85 Curr Acc: (36517/59477)61.40%
|
449 |
+
[ Thu Sep 8 08:23:13 2022 ] Epoch 57 Best Acc 61.48%
|
450 |
+
[ Thu Sep 8 08:23:13 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 08:23:13 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 08:27:36 2022 ] Mean training loss: 0.0171.
|
453 |
+
[ Thu Sep 8 08:27:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 08:27:36 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 08:35:25 2022 ] Epoch 86 Curr Acc: (36145/59477)60.77%
|
456 |
+
[ Thu Sep 8 08:35:25 2022 ] Epoch 57 Best Acc 61.48%
|
457 |
+
[ Thu Sep 8 08:35:25 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 08:35:25 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 08:39:48 2022 ] Mean training loss: 0.0155.
|
460 |
+
[ Thu Sep 8 08:39:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 08:39:48 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 08:47:38 2022 ] Epoch 87 Curr Acc: (36236/59477)60.92%
|
463 |
+
[ Thu Sep 8 08:47:38 2022 ] Epoch 57 Best Acc 61.48%
|
464 |
+
[ Thu Sep 8 08:47:38 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 08:47:38 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 08:52:01 2022 ] Mean training loss: 0.0173.
|
467 |
+
[ Thu Sep 8 08:52:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 08:52:01 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 08:59:51 2022 ] Epoch 88 Curr Acc: (36280/59477)61.00%
|
470 |
+
[ Thu Sep 8 08:59:51 2022 ] Epoch 57 Best Acc 61.48%
|
471 |
+
[ Thu Sep 8 08:59:51 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 08:59:51 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 09:04:13 2022 ] Mean training loss: 0.0153.
|
474 |
+
[ Thu Sep 8 09:04:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 09:04:13 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 09:12:03 2022 ] Epoch 89 Curr Acc: (36354/59477)61.12%
|
477 |
+
[ Thu Sep 8 09:12:03 2022 ] Epoch 57 Best Acc 61.48%
|
478 |
+
[ Thu Sep 8 09:12:03 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 09:12:03 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 09:16:26 2022 ] Mean training loss: 0.0148.
|
481 |
+
[ Thu Sep 8 09:16:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 09:16:26 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 09:24:16 2022 ] Epoch 90 Curr Acc: (36149/59477)60.78%
|
484 |
+
[ Thu Sep 8 09:24:16 2022 ] Epoch 57 Best Acc 61.48%
|
485 |
+
[ Thu Sep 8 09:24:16 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 09:24:16 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 09:28:39 2022 ] Mean training loss: 0.0165.
|
488 |
+
[ Thu Sep 8 09:28:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 09:28:39 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 09:36:29 2022 ] Epoch 91 Curr Acc: (36326/59477)61.08%
|
491 |
+
[ Thu Sep 8 09:36:29 2022 ] Epoch 57 Best Acc 61.48%
|
492 |
+
[ Thu Sep 8 09:36:29 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 09:36:29 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 09:40:52 2022 ] Mean training loss: 0.0171.
|
495 |
+
[ Thu Sep 8 09:40:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 09:40:52 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 09:48:43 2022 ] Epoch 92 Curr Acc: (36436/59477)61.26%
|
498 |
+
[ Thu Sep 8 09:48:43 2022 ] Epoch 57 Best Acc 61.48%
|
499 |
+
[ Thu Sep 8 09:48:43 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 09:48:43 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 09:53:06 2022 ] Mean training loss: 0.0143.
|
502 |
+
[ Thu Sep 8 09:53:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 09:53:06 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 10:00:57 2022 ] Epoch 93 Curr Acc: (36333/59477)61.09%
|
505 |
+
[ Thu Sep 8 10:00:57 2022 ] Epoch 57 Best Acc 61.48%
|
506 |
+
[ Thu Sep 8 10:00:57 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 10:00:57 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 10:05:19 2022 ] Mean training loss: 0.0159.
|
509 |
+
[ Thu Sep 8 10:05:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 10:05:19 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 10:13:10 2022 ] Epoch 94 Curr Acc: (36458/59477)61.30%
|
512 |
+
[ Thu Sep 8 10:13:10 2022 ] Epoch 57 Best Acc 61.48%
|
513 |
+
[ Thu Sep 8 10:13:10 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 10:13:10 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 10:17:32 2022 ] Mean training loss: 0.0151.
|
516 |
+
[ Thu Sep 8 10:17:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 10:17:32 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 10:25:23 2022 ] Epoch 95 Curr Acc: (36264/59477)60.97%
|
519 |
+
[ Thu Sep 8 10:25:23 2022 ] Epoch 57 Best Acc 61.48%
|
520 |
+
[ Thu Sep 8 10:25:23 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 10:25:23 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 10:29:46 2022 ] Mean training loss: 0.0157.
|
523 |
+
[ Thu Sep 8 10:29:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 10:29:46 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 10:37:37 2022 ] Epoch 96 Curr Acc: (36347/59477)61.11%
|
526 |
+
[ Thu Sep 8 10:37:37 2022 ] Epoch 57 Best Acc 61.48%
|
527 |
+
[ Thu Sep 8 10:37:37 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 10:37:37 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 10:42:00 2022 ] Mean training loss: 0.0149.
|
530 |
+
[ Thu Sep 8 10:42:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 10:42:00 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 10:49:51 2022 ] Epoch 97 Curr Acc: (36200/59477)60.86%
|
533 |
+
[ Thu Sep 8 10:49:51 2022 ] Epoch 57 Best Acc 61.48%
|
534 |
+
[ Thu Sep 8 10:49:51 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 10:49:51 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 10:54:14 2022 ] Mean training loss: 0.0158.
|
537 |
+
[ Thu Sep 8 10:54:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 10:54:14 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 11:02:05 2022 ] Epoch 98 Curr Acc: (36354/59477)61.12%
|
540 |
+
[ Thu Sep 8 11:02:05 2022 ] Epoch 57 Best Acc 61.48%
|
541 |
+
[ Thu Sep 8 11:02:05 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 11:02:05 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 11:06:29 2022 ] Mean training loss: 0.0161.
|
544 |
+
[ Thu Sep 8 11:06:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 11:06:29 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 11:14:20 2022 ] Epoch 99 Curr Acc: (36426/59477)61.24%
|
547 |
+
[ Thu Sep 8 11:14:20 2022 ] Epoch 57 Best Acc 61.48%
|
548 |
+
[ Thu Sep 8 11:14:20 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 11:14:20 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 11:18:42 2022 ] Mean training loss: 0.0150.
|
551 |
+
[ Thu Sep 8 11:18:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 11:18:43 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 11:26:34 2022 ] Epoch 100 Curr Acc: (36627/59477)61.58%
|
554 |
+
[ Thu Sep 8 11:26:34 2022 ] Epoch 100 Best Acc 61.58%
|
555 |
+
[ Thu Sep 8 11:26:34 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 11:26:34 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 11:30:57 2022 ] Mean training loss: 0.0143.
|
558 |
+
[ Thu Sep 8 11:30:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 11:30:57 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 11:38:48 2022 ] Epoch 101 Curr Acc: (36316/59477)61.06%
|
561 |
+
[ Thu Sep 8 11:38:48 2022 ] Epoch 100 Best Acc 61.58%
|
562 |
+
[ Thu Sep 8 11:38:48 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 11:38:48 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 11:43:11 2022 ] Mean training loss: 0.0143.
|
565 |
+
[ Thu Sep 8 11:43:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 11:43:11 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 11:51:02 2022 ] Epoch 102 Curr Acc: (36425/59477)61.24%
|
568 |
+
[ Thu Sep 8 11:51:02 2022 ] Epoch 100 Best Acc 61.58%
|
569 |
+
[ Thu Sep 8 11:51:02 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 11:51:02 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 11:55:25 2022 ] Mean training loss: 0.0154.
|
572 |
+
[ Thu Sep 8 11:55:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 11:55:25 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 12:03:16 2022 ] Epoch 103 Curr Acc: (36413/59477)61.22%
|
575 |
+
[ Thu Sep 8 12:03:16 2022 ] Epoch 100 Best Acc 61.58%
|
576 |
+
[ Thu Sep 8 12:03:16 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 12:03:16 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 12:07:39 2022 ] Mean training loss: 0.0147.
|
579 |
+
[ Thu Sep 8 12:07:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 12:07:39 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 12:15:31 2022 ] Epoch 104 Curr Acc: (36372/59477)61.15%
|
582 |
+
[ Thu Sep 8 12:15:31 2022 ] Epoch 100 Best Acc 61.58%
|
583 |
+
[ Thu Sep 8 12:15:31 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 12:15:31 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 12:19:52 2022 ] Mean training loss: 0.0152.
|
586 |
+
[ Thu Sep 8 12:19:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 12:19:52 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 12:27:43 2022 ] Epoch 105 Curr Acc: (36226/59477)60.91%
|
589 |
+
[ Thu Sep 8 12:27:43 2022 ] Epoch 100 Best Acc 61.58%
|
590 |
+
[ Thu Sep 8 12:27:43 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 12:27:43 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 12:32:06 2022 ] Mean training loss: 0.0142.
|
593 |
+
[ Thu Sep 8 12:32:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 12:32:06 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 12:39:58 2022 ] Epoch 106 Curr Acc: (36352/59477)61.12%
|
596 |
+
[ Thu Sep 8 12:39:58 2022 ] Epoch 100 Best Acc 61.58%
|
597 |
+
[ Thu Sep 8 12:39:58 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 12:39:58 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 12:44:21 2022 ] Mean training loss: 0.0143.
|
600 |
+
[ Thu Sep 8 12:44:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 12:44:21 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 12:52:12 2022 ] Epoch 107 Curr Acc: (36122/59477)60.73%
|
603 |
+
[ Thu Sep 8 12:52:12 2022 ] Epoch 100 Best Acc 61.58%
|
604 |
+
[ Thu Sep 8 12:52:12 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 12:52:12 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 12:56:35 2022 ] Mean training loss: 0.0145.
|
607 |
+
[ Thu Sep 8 12:56:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 12:56:36 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 13:04:27 2022 ] Epoch 108 Curr Acc: (36278/59477)61.00%
|
610 |
+
[ Thu Sep 8 13:04:27 2022 ] Epoch 100 Best Acc 61.58%
|
611 |
+
[ Thu Sep 8 13:04:27 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 13:04:27 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 13:08:50 2022 ] Mean training loss: 0.0153.
|
614 |
+
[ Thu Sep 8 13:08:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 13:08:50 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 13:16:41 2022 ] Epoch 109 Curr Acc: (36406/59477)61.21%
|
617 |
+
[ Thu Sep 8 13:16:41 2022 ] Epoch 100 Best Acc 61.58%
|
618 |
+
[ Thu Sep 8 13:16:41 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 13:16:41 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 13:21:05 2022 ] Mean training loss: 0.0155.
|
621 |
+
[ Thu Sep 8 13:21:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 13:21:05 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 13:28:56 2022 ] Epoch 110 Curr Acc: (36290/59477)61.02%
|
624 |
+
[ Thu Sep 8 13:28:56 2022 ] Epoch 100 Best Acc 61.58%
|
625 |
+
[ Thu Sep 8 13:28:56 2022 ] epoch: 100, best accuracy: 0.6158178791801873
|
626 |
+
[ Thu Sep 8 13:28:56 2022 ] Experiment: ./work_dir/ntu120/xset_j
|
627 |
+
[ Thu Sep 8 13:28:56 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 13:28:56 2022 ] Load weights from ./runs/ntu120/xset_j/runs-99-129700.pt.
|
629 |
+
[ Thu Sep 8 13:28:57 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 13:36:47 2022 ] Epoch 1 Curr Acc: (36627/59477)61.58%
|
631 |
+
[ Thu Sep 8 13:36:47 2022 ] Epoch 100 Best Acc 61.58%
|
ckpt/Others/MST-GCN/ntu120_xset/xset_jm/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xset/xset_jm/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xset_jm.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xset_jm/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint_motion.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint_motion.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xset_jm
|
ckpt/Others/MST-GCN/ntu120_xset/xset_jm/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7933a777dd27a03db074d25e7aa8607a961bc65883dbcfcfae7fb523d2ac29f
|
3 |
+
size 34946665
|
ckpt/Others/MST-GCN/ntu120_xset/xset_jm/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:35:56 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:35:57 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xset_jm', 'model_saved_name': './runs/ntu120/xset_jm/runs', 'config': 'config/ntu120/xset_jm.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:35:57 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:35:57 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:40:23 2022 ] Mean training loss: 3.7301.
|
8 |
+
[ Wed Sep 7 21:40:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
9 |
+
[ Wed Sep 7 21:40:23 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:40:23 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:44:51 2022 ] Mean training loss: 2.7842.
|
12 |
+
[ Wed Sep 7 21:44:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:44:51 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:44:51 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:49:19 2022 ] Mean training loss: 2.2637.
|
16 |
+
[ Wed Sep 7 21:49:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:49:19 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:49:19 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 21:53:47 2022 ] Mean training loss: 1.9632.
|
20 |
+
[ Wed Sep 7 21:53:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 21:53:47 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 21:53:47 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 21:58:16 2022 ] Mean training loss: 1.7516.
|
24 |
+
[ Wed Sep 7 21:58:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 21:58:16 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 21:58:16 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:02:44 2022 ] Mean training loss: 1.6499.
|
28 |
+
[ Wed Sep 7 22:02:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:02:44 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:02:44 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:07:13 2022 ] Mean training loss: 1.5352.
|
32 |
+
[ Wed Sep 7 22:07:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:07:13 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:07:13 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:11:41 2022 ] Mean training loss: 1.4923.
|
36 |
+
[ Wed Sep 7 22:11:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:11:41 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:11:41 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:16:10 2022 ] Mean training loss: 1.4588.
|
40 |
+
[ Wed Sep 7 22:16:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:16:10 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:16:10 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:20:37 2022 ] Mean training loss: 1.4317.
|
44 |
+
[ Wed Sep 7 22:20:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:20:37 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:20:37 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:25:06 2022 ] Mean training loss: 1.3728.
|
48 |
+
[ Wed Sep 7 22:25:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:25:06 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:25:06 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:29:34 2022 ] Mean training loss: 1.3204.
|
52 |
+
[ Wed Sep 7 22:29:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:29:34 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:29:34 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 22:34:01 2022 ] Mean training loss: 1.2679.
|
56 |
+
[ Wed Sep 7 22:34:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 22:34:01 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 22:34:01 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 22:38:29 2022 ] Mean training loss: 1.2497.
|
60 |
+
[ Wed Sep 7 22:38:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 22:38:29 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 22:38:29 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 22:42:56 2022 ] Mean training loss: 1.2155.
|
64 |
+
[ Wed Sep 7 22:42:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 22:42:56 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 22:42:56 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 22:47:23 2022 ] Mean training loss: 1.1775.
|
68 |
+
[ Wed Sep 7 22:47:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 22:47:23 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 22:47:23 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 22:51:52 2022 ] Mean training loss: 1.1661.
|
72 |
+
[ Wed Sep 7 22:51:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 22:51:52 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 22:51:52 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 22:56:19 2022 ] Mean training loss: 1.1315.
|
76 |
+
[ Wed Sep 7 22:56:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 22:56:19 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 22:56:19 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 23:00:47 2022 ] Mean training loss: 1.1277.
|
80 |
+
[ Wed Sep 7 23:00:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 23:00:47 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 23:00:47 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:05:14 2022 ] Mean training loss: 1.1047.
|
84 |
+
[ Wed Sep 7 23:05:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:05:14 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:05:14 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:09:42 2022 ] Mean training loss: 1.0754.
|
88 |
+
[ Wed Sep 7 23:09:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:09:42 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:09:42 2022 ] Learning rate: 0.15
|
91 |
+
[ Wed Sep 7 23:14:10 2022 ] Mean training loss: 1.0693.
|
92 |
+
[ Wed Sep 7 23:14:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Wed Sep 7 23:14:10 2022 ] Training epoch: 23
|
94 |
+
[ Wed Sep 7 23:14:10 2022 ] Learning rate: 0.15
|
95 |
+
[ Wed Sep 7 23:18:37 2022 ] Mean training loss: 1.0565.
|
96 |
+
[ Wed Sep 7 23:18:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Wed Sep 7 23:18:37 2022 ] Training epoch: 24
|
98 |
+
[ Wed Sep 7 23:18:37 2022 ] Learning rate: 0.15
|
99 |
+
[ Wed Sep 7 23:23:05 2022 ] Mean training loss: 1.0643.
|
100 |
+
[ Wed Sep 7 23:23:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Wed Sep 7 23:23:05 2022 ] Training epoch: 25
|
102 |
+
[ Wed Sep 7 23:23:05 2022 ] Learning rate: 0.15
|
103 |
+
[ Wed Sep 7 23:27:33 2022 ] Mean training loss: 1.0342.
|
104 |
+
[ Wed Sep 7 23:27:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Wed Sep 7 23:27:33 2022 ] Training epoch: 26
|
106 |
+
[ Wed Sep 7 23:27:33 2022 ] Learning rate: 0.15
|
107 |
+
[ Wed Sep 7 23:32:01 2022 ] Mean training loss: 1.0300.
|
108 |
+
[ Wed Sep 7 23:32:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Wed Sep 7 23:32:01 2022 ] Training epoch: 27
|
110 |
+
[ Wed Sep 7 23:32:01 2022 ] Learning rate: 0.15
|
111 |
+
[ Wed Sep 7 23:36:30 2022 ] Mean training loss: 1.0195.
|
112 |
+
[ Wed Sep 7 23:36:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Wed Sep 7 23:36:30 2022 ] Training epoch: 28
|
114 |
+
[ Wed Sep 7 23:36:30 2022 ] Learning rate: 0.15
|
115 |
+
[ Wed Sep 7 23:40:58 2022 ] Mean training loss: 1.0123.
|
116 |
+
[ Wed Sep 7 23:40:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Wed Sep 7 23:40:58 2022 ] Training epoch: 29
|
118 |
+
[ Wed Sep 7 23:40:58 2022 ] Learning rate: 0.15
|
119 |
+
[ Wed Sep 7 23:45:26 2022 ] Mean training loss: 0.9886.
|
120 |
+
[ Wed Sep 7 23:45:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Wed Sep 7 23:45:26 2022 ] Training epoch: 30
|
122 |
+
[ Wed Sep 7 23:45:26 2022 ] Learning rate: 0.15
|
123 |
+
[ Wed Sep 7 23:49:54 2022 ] Mean training loss: 0.9750.
|
124 |
+
[ Wed Sep 7 23:49:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Wed Sep 7 23:49:54 2022 ] Training epoch: 31
|
126 |
+
[ Wed Sep 7 23:49:54 2022 ] Learning rate: 0.15
|
127 |
+
[ Wed Sep 7 23:54:22 2022 ] Mean training loss: 0.9614.
|
128 |
+
[ Wed Sep 7 23:54:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Wed Sep 7 23:54:22 2022 ] Training epoch: 32
|
130 |
+
[ Wed Sep 7 23:54:22 2022 ] Learning rate: 0.15
|
131 |
+
[ Wed Sep 7 23:58:50 2022 ] Mean training loss: 0.9800.
|
132 |
+
[ Wed Sep 7 23:58:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Wed Sep 7 23:58:50 2022 ] Training epoch: 33
|
134 |
+
[ Wed Sep 7 23:58:50 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 00:03:18 2022 ] Mean training loss: 0.9875.
|
136 |
+
[ Thu Sep 8 00:03:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 00:03:18 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 00:03:18 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 00:07:45 2022 ] Mean training loss: 0.9604.
|
140 |
+
[ Thu Sep 8 00:07:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 00:07:45 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 00:07:45 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 00:12:12 2022 ] Mean training loss: 0.9519.
|
144 |
+
[ Thu Sep 8 00:12:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 00:12:12 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 00:12:12 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 00:16:39 2022 ] Mean training loss: 0.9461.
|
148 |
+
[ Thu Sep 8 00:16:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 00:16:39 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 00:16:39 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 00:21:05 2022 ] Mean training loss: 0.9580.
|
152 |
+
[ Thu Sep 8 00:21:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 00:21:05 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 00:21:05 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 00:25:32 2022 ] Mean training loss: 0.9211.
|
156 |
+
[ Thu Sep 8 00:25:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 00:25:32 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 00:25:32 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 00:29:59 2022 ] Mean training loss: 0.9380.
|
160 |
+
[ Thu Sep 8 00:29:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 00:29:59 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 00:29:59 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 00:34:26 2022 ] Mean training loss: 0.9347.
|
164 |
+
[ Thu Sep 8 00:34:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 00:34:26 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 00:34:26 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 00:38:53 2022 ] Mean training loss: 0.9027.
|
168 |
+
[ Thu Sep 8 00:38:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 00:38:53 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 00:38:53 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 00:43:20 2022 ] Mean training loss: 0.9365.
|
172 |
+
[ Thu Sep 8 00:43:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 00:43:20 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 00:43:20 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 00:47:48 2022 ] Mean training loss: 0.9236.
|
176 |
+
[ Thu Sep 8 00:47:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 00:47:48 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 00:47:48 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 00:52:16 2022 ] Mean training loss: 0.9109.
|
180 |
+
[ Thu Sep 8 00:52:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 00:52:16 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 00:52:16 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 00:56:44 2022 ] Mean training loss: 0.9087.
|
184 |
+
[ Thu Sep 8 00:56:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 00:56:44 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 00:56:44 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 01:01:11 2022 ] Mean training loss: 0.9218.
|
188 |
+
[ Thu Sep 8 01:01:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 01:01:11 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 01:01:11 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 01:05:39 2022 ] Mean training loss: 0.8873.
|
192 |
+
[ Thu Sep 8 01:05:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 01:05:39 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 01:05:39 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 01:10:07 2022 ] Mean training loss: 0.8890.
|
196 |
+
[ Thu Sep 8 01:10:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 01:10:07 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 01:10:07 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 01:14:35 2022 ] Mean training loss: 0.8973.
|
200 |
+
[ Thu Sep 8 01:14:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 01:14:35 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 01:14:35 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 01:19:02 2022 ] Mean training loss: 0.9033.
|
204 |
+
[ Thu Sep 8 01:19:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 01:19:02 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 01:19:02 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 01:23:31 2022 ] Mean training loss: 0.4222.
|
208 |
+
[ Thu Sep 8 01:23:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 01:23:31 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 01:31:34 2022 ] Epoch 51 Curr Acc: (32813/59477)55.17%
|
211 |
+
[ Thu Sep 8 01:31:34 2022 ] Epoch 51 Best Acc 55.17%
|
212 |
+
[ Thu Sep 8 01:31:34 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 01:31:34 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 01:36:01 2022 ] Mean training loss: 0.2876.
|
215 |
+
[ Thu Sep 8 01:36:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 01:36:01 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 01:43:52 2022 ] Epoch 52 Curr Acc: (33442/59477)56.23%
|
218 |
+
[ Thu Sep 8 01:43:52 2022 ] Epoch 52 Best Acc 56.23%
|
219 |
+
[ Thu Sep 8 01:43:52 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 01:43:52 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 01:48:19 2022 ] Mean training loss: 0.2285.
|
222 |
+
[ Thu Sep 8 01:48:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 01:48:19 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 01:56:10 2022 ] Epoch 53 Curr Acc: (34407/59477)57.85%
|
225 |
+
[ Thu Sep 8 01:56:10 2022 ] Epoch 53 Best Acc 57.85%
|
226 |
+
[ Thu Sep 8 01:56:10 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 01:56:10 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 02:00:37 2022 ] Mean training loss: 0.1980.
|
229 |
+
[ Thu Sep 8 02:00:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 02:00:37 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 02:08:28 2022 ] Epoch 54 Curr Acc: (33565/59477)56.43%
|
232 |
+
[ Thu Sep 8 02:08:28 2022 ] Epoch 53 Best Acc 57.85%
|
233 |
+
[ Thu Sep 8 02:08:28 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 02:08:28 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 02:12:55 2022 ] Mean training loss: 0.1544.
|
236 |
+
[ Thu Sep 8 02:12:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 02:12:55 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 02:20:46 2022 ] Epoch 55 Curr Acc: (33778/59477)56.79%
|
239 |
+
[ Thu Sep 8 02:20:46 2022 ] Epoch 53 Best Acc 57.85%
|
240 |
+
[ Thu Sep 8 02:20:46 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 02:20:46 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 02:25:13 2022 ] Mean training loss: 0.1342.
|
243 |
+
[ Thu Sep 8 02:25:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 02:25:13 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 02:33:04 2022 ] Epoch 56 Curr Acc: (32699/59477)54.98%
|
246 |
+
[ Thu Sep 8 02:33:04 2022 ] Epoch 53 Best Acc 57.85%
|
247 |
+
[ Thu Sep 8 02:33:04 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 02:33:04 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 02:37:30 2022 ] Mean training loss: 0.1154.
|
250 |
+
[ Thu Sep 8 02:37:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 02:37:30 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 02:45:21 2022 ] Epoch 57 Curr Acc: (34318/59477)57.70%
|
253 |
+
[ Thu Sep 8 02:45:21 2022 ] Epoch 53 Best Acc 57.85%
|
254 |
+
[ Thu Sep 8 02:45:21 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 02:45:21 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 02:49:49 2022 ] Mean training loss: 0.0991.
|
257 |
+
[ Thu Sep 8 02:49:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 02:49:49 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 02:57:40 2022 ] Epoch 58 Curr Acc: (33961/59477)57.10%
|
260 |
+
[ Thu Sep 8 02:57:40 2022 ] Epoch 53 Best Acc 57.85%
|
261 |
+
[ Thu Sep 8 02:57:40 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 02:57:40 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 03:02:07 2022 ] Mean training loss: 0.0811.
|
264 |
+
[ Thu Sep 8 03:02:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 03:02:07 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 03:09:59 2022 ] Epoch 59 Curr Acc: (34302/59477)57.67%
|
267 |
+
[ Thu Sep 8 03:09:59 2022 ] Epoch 53 Best Acc 57.85%
|
268 |
+
[ Thu Sep 8 03:09:59 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 03:09:59 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 03:14:26 2022 ] Mean training loss: 0.0705.
|
271 |
+
[ Thu Sep 8 03:14:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 03:14:26 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 03:22:17 2022 ] Epoch 60 Curr Acc: (33822/59477)56.87%
|
274 |
+
[ Thu Sep 8 03:22:17 2022 ] Epoch 53 Best Acc 57.85%
|
275 |
+
[ Thu Sep 8 03:22:17 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 03:22:17 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 03:26:43 2022 ] Mean training loss: 0.0648.
|
278 |
+
[ Thu Sep 8 03:26:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 03:26:43 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 03:34:34 2022 ] Epoch 61 Curr Acc: (31688/59477)53.28%
|
281 |
+
[ Thu Sep 8 03:34:34 2022 ] Epoch 53 Best Acc 57.85%
|
282 |
+
[ Thu Sep 8 03:34:34 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 03:34:34 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 03:39:00 2022 ] Mean training loss: 0.0592.
|
285 |
+
[ Thu Sep 8 03:39:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 03:39:00 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 03:46:51 2022 ] Epoch 62 Curr Acc: (33950/59477)57.08%
|
288 |
+
[ Thu Sep 8 03:46:51 2022 ] Epoch 53 Best Acc 57.85%
|
289 |
+
[ Thu Sep 8 03:46:51 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 03:46:51 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 03:51:18 2022 ] Mean training loss: 0.0518.
|
292 |
+
[ Thu Sep 8 03:51:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 03:51:18 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 03:59:09 2022 ] Epoch 63 Curr Acc: (34179/59477)57.47%
|
295 |
+
[ Thu Sep 8 03:59:09 2022 ] Epoch 53 Best Acc 57.85%
|
296 |
+
[ Thu Sep 8 03:59:09 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 03:59:09 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 04:03:36 2022 ] Mean training loss: 0.0489.
|
299 |
+
[ Thu Sep 8 04:03:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 04:03:36 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 04:11:26 2022 ] Epoch 64 Curr Acc: (34018/59477)57.20%
|
302 |
+
[ Thu Sep 8 04:11:26 2022 ] Epoch 53 Best Acc 57.85%
|
303 |
+
[ Thu Sep 8 04:11:26 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 04:11:26 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 04:15:53 2022 ] Mean training loss: 0.0428.
|
306 |
+
[ Thu Sep 8 04:15:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 04:15:53 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 04:23:44 2022 ] Epoch 65 Curr Acc: (32835/59477)55.21%
|
309 |
+
[ Thu Sep 8 04:23:44 2022 ] Epoch 53 Best Acc 57.85%
|
310 |
+
[ Thu Sep 8 04:23:44 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 04:23:44 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 04:28:10 2022 ] Mean training loss: 0.0445.
|
313 |
+
[ Thu Sep 8 04:28:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 04:28:11 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 04:36:01 2022 ] Epoch 66 Curr Acc: (33433/59477)56.21%
|
316 |
+
[ Thu Sep 8 04:36:01 2022 ] Epoch 53 Best Acc 57.85%
|
317 |
+
[ Thu Sep 8 04:36:01 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 04:36:01 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 04:40:27 2022 ] Mean training loss: 0.0374.
|
320 |
+
[ Thu Sep 8 04:40:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 04:40:27 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 04:48:18 2022 ] Epoch 67 Curr Acc: (33614/59477)56.52%
|
323 |
+
[ Thu Sep 8 04:48:18 2022 ] Epoch 53 Best Acc 57.85%
|
324 |
+
[ Thu Sep 8 04:48:18 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 04:48:18 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 04:52:44 2022 ] Mean training loss: 0.0423.
|
327 |
+
[ Thu Sep 8 04:52:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 04:52:44 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 05:00:34 2022 ] Epoch 68 Curr Acc: (33131/59477)55.70%
|
330 |
+
[ Thu Sep 8 05:00:34 2022 ] Epoch 53 Best Acc 57.85%
|
331 |
+
[ Thu Sep 8 05:00:35 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 05:00:35 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 05:05:00 2022 ] Mean training loss: 0.0395.
|
334 |
+
[ Thu Sep 8 05:05:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 05:05:00 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 05:12:51 2022 ] Epoch 69 Curr Acc: (33446/59477)56.23%
|
337 |
+
[ Thu Sep 8 05:12:51 2022 ] Epoch 53 Best Acc 57.85%
|
338 |
+
[ Thu Sep 8 05:12:51 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 05:12:51 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 05:17:17 2022 ] Mean training loss: 0.0333.
|
341 |
+
[ Thu Sep 8 05:17:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 05:17:17 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 05:25:07 2022 ] Epoch 70 Curr Acc: (33792/59477)56.82%
|
344 |
+
[ Thu Sep 8 05:25:07 2022 ] Epoch 53 Best Acc 57.85%
|
345 |
+
[ Thu Sep 8 05:25:08 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 05:25:08 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 05:29:33 2022 ] Mean training loss: 0.0233.
|
348 |
+
[ Thu Sep 8 05:29:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 05:29:33 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 05:37:24 2022 ] Epoch 71 Curr Acc: (33925/59477)57.04%
|
351 |
+
[ Thu Sep 8 05:37:24 2022 ] Epoch 53 Best Acc 57.85%
|
352 |
+
[ Thu Sep 8 05:37:24 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 05:37:24 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 05:41:49 2022 ] Mean training loss: 0.0224.
|
355 |
+
[ Thu Sep 8 05:41:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 05:41:49 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 05:49:40 2022 ] Epoch 72 Curr Acc: (34114/59477)57.36%
|
358 |
+
[ Thu Sep 8 05:49:40 2022 ] Epoch 53 Best Acc 57.85%
|
359 |
+
[ Thu Sep 8 05:49:40 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 05:49:40 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 05:54:06 2022 ] Mean training loss: 0.0193.
|
362 |
+
[ Thu Sep 8 05:54:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 05:54:06 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 06:01:57 2022 ] Epoch 73 Curr Acc: (33739/59477)56.73%
|
365 |
+
[ Thu Sep 8 06:01:57 2022 ] Epoch 53 Best Acc 57.85%
|
366 |
+
[ Thu Sep 8 06:01:57 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 06:01:57 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 06:06:23 2022 ] Mean training loss: 0.0176.
|
369 |
+
[ Thu Sep 8 06:06:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 06:06:23 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 06:14:13 2022 ] Epoch 74 Curr Acc: (34195/59477)57.49%
|
372 |
+
[ Thu Sep 8 06:14:13 2022 ] Epoch 53 Best Acc 57.85%
|
373 |
+
[ Thu Sep 8 06:14:13 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 06:14:13 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 06:18:39 2022 ] Mean training loss: 0.0177.
|
376 |
+
[ Thu Sep 8 06:18:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 06:18:39 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 06:26:30 2022 ] Epoch 75 Curr Acc: (34027/59477)57.21%
|
379 |
+
[ Thu Sep 8 06:26:30 2022 ] Epoch 53 Best Acc 57.85%
|
380 |
+
[ Thu Sep 8 06:26:30 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 06:26:30 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 06:30:56 2022 ] Mean training loss: 0.0164.
|
383 |
+
[ Thu Sep 8 06:30:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 06:30:56 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 06:38:47 2022 ] Epoch 76 Curr Acc: (34208/59477)57.51%
|
386 |
+
[ Thu Sep 8 06:38:47 2022 ] Epoch 53 Best Acc 57.85%
|
387 |
+
[ Thu Sep 8 06:38:47 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 06:38:47 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 06:43:13 2022 ] Mean training loss: 0.0160.
|
390 |
+
[ Thu Sep 8 06:43:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 06:43:13 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 06:51:03 2022 ] Epoch 77 Curr Acc: (34368/59477)57.78%
|
393 |
+
[ Thu Sep 8 06:51:03 2022 ] Epoch 53 Best Acc 57.85%
|
394 |
+
[ Thu Sep 8 06:51:03 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 06:51:03 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 06:55:29 2022 ] Mean training loss: 0.0170.
|
397 |
+
[ Thu Sep 8 06:55:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 06:55:29 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 07:03:20 2022 ] Epoch 78 Curr Acc: (34327/59477)57.71%
|
400 |
+
[ Thu Sep 8 07:03:20 2022 ] Epoch 53 Best Acc 57.85%
|
401 |
+
[ Thu Sep 8 07:03:20 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 07:03:20 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 07:07:45 2022 ] Mean training loss: 0.0164.
|
404 |
+
[ Thu Sep 8 07:07:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 07:07:45 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 07:15:36 2022 ] Epoch 79 Curr Acc: (33012/59477)55.50%
|
407 |
+
[ Thu Sep 8 07:15:36 2022 ] Epoch 53 Best Acc 57.85%
|
408 |
+
[ Thu Sep 8 07:15:36 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 07:15:36 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 07:20:01 2022 ] Mean training loss: 0.0164.
|
411 |
+
[ Thu Sep 8 07:20:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 07:20:01 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 07:27:52 2022 ] Epoch 80 Curr Acc: (34292/59477)57.66%
|
414 |
+
[ Thu Sep 8 07:27:52 2022 ] Epoch 53 Best Acc 57.85%
|
415 |
+
[ Thu Sep 8 07:27:52 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 07:27:52 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 07:32:18 2022 ] Mean training loss: 0.0143.
|
418 |
+
[ Thu Sep 8 07:32:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 07:32:18 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 07:40:09 2022 ] Epoch 81 Curr Acc: (34228/59477)57.55%
|
421 |
+
[ Thu Sep 8 07:40:09 2022 ] Epoch 53 Best Acc 57.85%
|
422 |
+
[ Thu Sep 8 07:40:09 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 07:40:09 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 07:44:35 2022 ] Mean training loss: 0.0158.
|
425 |
+
[ Thu Sep 8 07:44:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 07:44:35 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 07:52:25 2022 ] Epoch 82 Curr Acc: (34370/59477)57.79%
|
428 |
+
[ Thu Sep 8 07:52:25 2022 ] Epoch 53 Best Acc 57.85%
|
429 |
+
[ Thu Sep 8 07:52:25 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 07:52:25 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 07:56:50 2022 ] Mean training loss: 0.0141.
|
432 |
+
[ Thu Sep 8 07:56:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 07:56:50 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 08:04:41 2022 ] Epoch 83 Curr Acc: (34255/59477)57.59%
|
435 |
+
[ Thu Sep 8 08:04:41 2022 ] Epoch 53 Best Acc 57.85%
|
436 |
+
[ Thu Sep 8 08:04:41 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 08:04:41 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 08:09:06 2022 ] Mean training loss: 0.0151.
|
439 |
+
[ Thu Sep 8 08:09:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 08:09:06 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 08:16:57 2022 ] Epoch 84 Curr Acc: (34008/59477)57.18%
|
442 |
+
[ Thu Sep 8 08:16:57 2022 ] Epoch 53 Best Acc 57.85%
|
443 |
+
[ Thu Sep 8 08:16:57 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 08:16:57 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 08:21:22 2022 ] Mean training loss: 0.0156.
|
446 |
+
[ Thu Sep 8 08:21:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 08:21:22 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 08:29:13 2022 ] Epoch 85 Curr Acc: (33965/59477)57.11%
|
449 |
+
[ Thu Sep 8 08:29:13 2022 ] Epoch 53 Best Acc 57.85%
|
450 |
+
[ Thu Sep 8 08:29:13 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 08:29:13 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 08:33:37 2022 ] Mean training loss: 0.0137.
|
453 |
+
[ Thu Sep 8 08:33:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 08:33:37 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 08:41:28 2022 ] Epoch 86 Curr Acc: (34226/59477)57.54%
|
456 |
+
[ Thu Sep 8 08:41:28 2022 ] Epoch 53 Best Acc 57.85%
|
457 |
+
[ Thu Sep 8 08:41:28 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 08:41:28 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 08:45:54 2022 ] Mean training loss: 0.0140.
|
460 |
+
[ Thu Sep 8 08:45:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 08:45:54 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 08:53:44 2022 ] Epoch 87 Curr Acc: (34184/59477)57.47%
|
463 |
+
[ Thu Sep 8 08:53:44 2022 ] Epoch 53 Best Acc 57.85%
|
464 |
+
[ Thu Sep 8 08:53:44 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 08:53:44 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 08:58:10 2022 ] Mean training loss: 0.0153.
|
467 |
+
[ Thu Sep 8 08:58:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 08:58:10 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 09:06:01 2022 ] Epoch 88 Curr Acc: (32881/59477)55.28%
|
470 |
+
[ Thu Sep 8 09:06:01 2022 ] Epoch 53 Best Acc 57.85%
|
471 |
+
[ Thu Sep 8 09:06:01 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 09:06:01 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 09:10:27 2022 ] Mean training loss: 0.0135.
|
474 |
+
[ Thu Sep 8 09:10:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 09:10:27 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 09:18:18 2022 ] Epoch 89 Curr Acc: (33262/59477)55.92%
|
477 |
+
[ Thu Sep 8 09:18:18 2022 ] Epoch 53 Best Acc 57.85%
|
478 |
+
[ Thu Sep 8 09:18:18 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 09:18:18 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 09:22:44 2022 ] Mean training loss: 0.0137.
|
481 |
+
[ Thu Sep 8 09:22:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 09:22:44 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 09:30:35 2022 ] Epoch 90 Curr Acc: (33971/59477)57.12%
|
484 |
+
[ Thu Sep 8 09:30:35 2022 ] Epoch 53 Best Acc 57.85%
|
485 |
+
[ Thu Sep 8 09:30:35 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 09:30:35 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 09:35:01 2022 ] Mean training loss: 0.0136.
|
488 |
+
[ Thu Sep 8 09:35:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 09:35:01 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 09:42:51 2022 ] Epoch 91 Curr Acc: (34256/59477)57.60%
|
491 |
+
[ Thu Sep 8 09:42:51 2022 ] Epoch 53 Best Acc 57.85%
|
492 |
+
[ Thu Sep 8 09:42:51 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 09:42:51 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 09:47:17 2022 ] Mean training loss: 0.0141.
|
495 |
+
[ Thu Sep 8 09:47:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 09:47:17 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 09:55:08 2022 ] Epoch 92 Curr Acc: (34344/59477)57.74%
|
498 |
+
[ Thu Sep 8 09:55:08 2022 ] Epoch 53 Best Acc 57.85%
|
499 |
+
[ Thu Sep 8 09:55:08 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 09:55:08 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 09:59:34 2022 ] Mean training loss: 0.0136.
|
502 |
+
[ Thu Sep 8 09:59:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 09:59:34 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 10:07:25 2022 ] Epoch 93 Curr Acc: (34425/59477)57.88%
|
505 |
+
[ Thu Sep 8 10:07:25 2022 ] Epoch 93 Best Acc 57.88%
|
506 |
+
[ Thu Sep 8 10:07:25 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 10:07:25 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 10:11:52 2022 ] Mean training loss: 0.0139.
|
509 |
+
[ Thu Sep 8 10:11:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 10:11:52 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 10:19:43 2022 ] Epoch 94 Curr Acc: (34310/59477)57.69%
|
512 |
+
[ Thu Sep 8 10:19:43 2022 ] Epoch 93 Best Acc 57.88%
|
513 |
+
[ Thu Sep 8 10:19:43 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 10:19:43 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 10:24:09 2022 ] Mean training loss: 0.0134.
|
516 |
+
[ Thu Sep 8 10:24:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 10:24:09 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 10:32:00 2022 ] Epoch 95 Curr Acc: (32562/59477)54.75%
|
519 |
+
[ Thu Sep 8 10:32:00 2022 ] Epoch 93 Best Acc 57.88%
|
520 |
+
[ Thu Sep 8 10:32:00 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 10:32:00 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 10:36:26 2022 ] Mean training loss: 0.0124.
|
523 |
+
[ Thu Sep 8 10:36:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 10:36:26 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 10:44:17 2022 ] Epoch 96 Curr Acc: (34062/59477)57.27%
|
526 |
+
[ Thu Sep 8 10:44:17 2022 ] Epoch 93 Best Acc 57.88%
|
527 |
+
[ Thu Sep 8 10:44:17 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 10:44:17 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 10:48:43 2022 ] Mean training loss: 0.0130.
|
530 |
+
[ Thu Sep 8 10:48:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 10:48:43 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 10:56:34 2022 ] Epoch 97 Curr Acc: (34155/59477)57.43%
|
533 |
+
[ Thu Sep 8 10:56:34 2022 ] Epoch 93 Best Acc 57.88%
|
534 |
+
[ Thu Sep 8 10:56:34 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 10:56:34 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 11:01:01 2022 ] Mean training loss: 0.0125.
|
537 |
+
[ Thu Sep 8 11:01:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 11:01:01 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 11:08:52 2022 ] Epoch 98 Curr Acc: (34319/59477)57.70%
|
540 |
+
[ Thu Sep 8 11:08:52 2022 ] Epoch 93 Best Acc 57.88%
|
541 |
+
[ Thu Sep 8 11:08:52 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 11:08:52 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 11:13:18 2022 ] Mean training loss: 0.0125.
|
544 |
+
[ Thu Sep 8 11:13:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 11:13:18 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 11:21:10 2022 ] Epoch 99 Curr Acc: (34330/59477)57.72%
|
547 |
+
[ Thu Sep 8 11:21:10 2022 ] Epoch 93 Best Acc 57.88%
|
548 |
+
[ Thu Sep 8 11:21:10 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 11:21:10 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 11:25:36 2022 ] Mean training loss: 0.0134.
|
551 |
+
[ Thu Sep 8 11:25:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 11:25:36 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 11:33:27 2022 ] Epoch 100 Curr Acc: (33592/59477)56.48%
|
554 |
+
[ Thu Sep 8 11:33:27 2022 ] Epoch 93 Best Acc 57.88%
|
555 |
+
[ Thu Sep 8 11:33:28 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 11:33:28 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 11:37:54 2022 ] Mean training loss: 0.0127.
|
558 |
+
[ Thu Sep 8 11:37:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 11:37:54 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 11:45:45 2022 ] Epoch 101 Curr Acc: (34314/59477)57.69%
|
561 |
+
[ Thu Sep 8 11:45:45 2022 ] Epoch 93 Best Acc 57.88%
|
562 |
+
[ Thu Sep 8 11:45:45 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 11:45:45 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 11:50:12 2022 ] Mean training loss: 0.0129.
|
565 |
+
[ Thu Sep 8 11:50:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 11:50:12 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 11:58:03 2022 ] Epoch 102 Curr Acc: (34594/59477)58.16%
|
568 |
+
[ Thu Sep 8 11:58:03 2022 ] Epoch 102 Best Acc 58.16%
|
569 |
+
[ Thu Sep 8 11:58:03 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 11:58:03 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 12:02:30 2022 ] Mean training loss: 0.0132.
|
572 |
+
[ Thu Sep 8 12:02:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 12:02:30 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 12:10:21 2022 ] Epoch 103 Curr Acc: (33746/59477)56.74%
|
575 |
+
[ Thu Sep 8 12:10:21 2022 ] Epoch 102 Best Acc 58.16%
|
576 |
+
[ Thu Sep 8 12:10:21 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 12:10:21 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 12:14:48 2022 ] Mean training loss: 0.0133.
|
579 |
+
[ Thu Sep 8 12:14:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 12:14:48 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 12:22:39 2022 ] Epoch 104 Curr Acc: (34022/59477)57.20%
|
582 |
+
[ Thu Sep 8 12:22:39 2022 ] Epoch 102 Best Acc 58.16%
|
583 |
+
[ Thu Sep 8 12:22:39 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 12:22:39 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 12:27:06 2022 ] Mean training loss: 0.0124.
|
586 |
+
[ Thu Sep 8 12:27:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 12:27:06 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 12:34:57 2022 ] Epoch 105 Curr Acc: (34214/59477)57.52%
|
589 |
+
[ Thu Sep 8 12:34:57 2022 ] Epoch 102 Best Acc 58.16%
|
590 |
+
[ Thu Sep 8 12:34:57 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 12:34:57 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 12:39:24 2022 ] Mean training loss: 0.0126.
|
593 |
+
[ Thu Sep 8 12:39:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 12:39:24 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 12:47:15 2022 ] Epoch 106 Curr Acc: (34257/59477)57.60%
|
596 |
+
[ Thu Sep 8 12:47:15 2022 ] Epoch 102 Best Acc 58.16%
|
597 |
+
[ Thu Sep 8 12:47:15 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 12:47:15 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 12:51:42 2022 ] Mean training loss: 0.0123.
|
600 |
+
[ Thu Sep 8 12:51:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 12:51:42 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 12:59:33 2022 ] Epoch 107 Curr Acc: (33921/59477)57.03%
|
603 |
+
[ Thu Sep 8 12:59:33 2022 ] Epoch 102 Best Acc 58.16%
|
604 |
+
[ Thu Sep 8 12:59:33 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 12:59:33 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 13:04:00 2022 ] Mean training loss: 0.0124.
|
607 |
+
[ Thu Sep 8 13:04:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 13:04:00 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 13:11:52 2022 ] Epoch 108 Curr Acc: (34280/59477)57.64%
|
610 |
+
[ Thu Sep 8 13:11:52 2022 ] Epoch 102 Best Acc 58.16%
|
611 |
+
[ Thu Sep 8 13:11:52 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 13:11:52 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 13:16:18 2022 ] Mean training loss: 0.0128.
|
614 |
+
[ Thu Sep 8 13:16:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 13:16:18 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 13:24:10 2022 ] Epoch 109 Curr Acc: (34290/59477)57.65%
|
617 |
+
[ Thu Sep 8 13:24:10 2022 ] Epoch 102 Best Acc 58.16%
|
618 |
+
[ Thu Sep 8 13:24:10 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 13:24:10 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 13:28:36 2022 ] Mean training loss: 0.0126.
|
621 |
+
[ Thu Sep 8 13:28:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 13:28:36 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 13:36:27 2022 ] Epoch 110 Curr Acc: (34164/59477)57.44%
|
624 |
+
[ Thu Sep 8 13:36:27 2022 ] Epoch 102 Best Acc 58.16%
|
625 |
+
[ Thu Sep 8 13:36:27 2022 ] epoch: 102, best accuracy: 0.5816365990214705
|
626 |
+
[ Thu Sep 8 13:36:27 2022 ] Experiment: ./work_dir/ntu120/xset_jm
|
627 |
+
[ Thu Sep 8 13:36:27 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 13:36:27 2022 ] Load weights from ./runs/ntu120/xset_jm/runs-101-132294.pt.
|
629 |
+
[ Thu Sep 8 13:36:27 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 13:44:18 2022 ] Epoch 1 Curr Acc: (34594/59477)58.16%
|
631 |
+
[ Thu Sep 8 13:44:18 2022 ] Epoch 102 Best Acc 58.16%
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xsub_b.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xsub_b/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xsub_b
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21e6be77baaebfe7bd8e924bcec2a71be07bea20e769b2e3999c7d38e5d33951
|
3 |
+
size 29946137
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_b/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:34:12 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:34:19 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xsub_b', 'model_saved_name': './runs/ntu120/xsub_b/runs', 'config': 'config/ntu120/xsub_b.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:34:19 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:34:19 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:40:53 2022 ] Mean training loss: 3.3579.
|
8 |
+
[ Wed Sep 7 21:40:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
9 |
+
[ Wed Sep 7 21:40:53 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:40:53 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:47:29 2022 ] Mean training loss: 2.4453.
|
12 |
+
[ Wed Sep 7 21:47:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:47:29 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:47:29 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:54:04 2022 ] Mean training loss: 1.9786.
|
16 |
+
[ Wed Sep 7 21:54:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:54:04 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:54:04 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 22:00:40 2022 ] Mean training loss: 1.7189.
|
20 |
+
[ Wed Sep 7 22:00:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 22:00:41 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 22:00:41 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 22:07:16 2022 ] Mean training loss: 1.5571.
|
24 |
+
[ Wed Sep 7 22:07:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 22:07:16 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 22:07:16 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:13:52 2022 ] Mean training loss: 1.4579.
|
28 |
+
[ Wed Sep 7 22:13:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:13:52 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:13:52 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:20:27 2022 ] Mean training loss: 1.3949.
|
32 |
+
[ Wed Sep 7 22:20:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:20:27 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:20:27 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:27:02 2022 ] Mean training loss: 1.3628.
|
36 |
+
[ Wed Sep 7 22:27:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:27:02 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:27:02 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:33:37 2022 ] Mean training loss: 1.3236.
|
40 |
+
[ Wed Sep 7 22:33:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:33:37 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:33:37 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:40:12 2022 ] Mean training loss: 1.3199.
|
44 |
+
[ Wed Sep 7 22:40:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:40:12 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:40:12 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:46:48 2022 ] Mean training loss: 1.2531.
|
48 |
+
[ Wed Sep 7 22:46:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:46:48 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:46:48 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:53:23 2022 ] Mean training loss: 1.2180.
|
52 |
+
[ Wed Sep 7 22:53:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:53:23 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:53:23 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 22:59:59 2022 ] Mean training loss: 1.1717.
|
56 |
+
[ Wed Sep 7 22:59:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 22:59:59 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 22:59:59 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 23:06:34 2022 ] Mean training loss: 1.1578.
|
60 |
+
[ Wed Sep 7 23:06:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 23:06:34 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 23:06:34 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 23:13:10 2022 ] Mean training loss: 1.1288.
|
64 |
+
[ Wed Sep 7 23:13:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 23:13:10 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 23:13:10 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 23:19:46 2022 ] Mean training loss: 1.1052.
|
68 |
+
[ Wed Sep 7 23:19:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 23:19:46 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 23:19:46 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 23:26:21 2022 ] Mean training loss: 1.0852.
|
72 |
+
[ Wed Sep 7 23:26:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 23:26:21 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 23:26:21 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 23:32:57 2022 ] Mean training loss: 1.0627.
|
76 |
+
[ Wed Sep 7 23:32:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 23:32:57 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 23:32:57 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 23:39:33 2022 ] Mean training loss: 1.0540.
|
80 |
+
[ Wed Sep 7 23:39:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 23:39:33 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 23:39:33 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:46:08 2022 ] Mean training loss: 1.0431.
|
84 |
+
[ Wed Sep 7 23:46:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:46:08 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:46:08 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:52:43 2022 ] Mean training loss: 1.0358.
|
88 |
+
[ Wed Sep 7 23:52:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:52:43 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:52:43 2022 ] Learning rate: 0.15
|
91 |
+
[ Wed Sep 7 23:59:19 2022 ] Mean training loss: 1.0118.
|
92 |
+
[ Wed Sep 7 23:59:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Wed Sep 7 23:59:19 2022 ] Training epoch: 23
|
94 |
+
[ Wed Sep 7 23:59:19 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 00:05:54 2022 ] Mean training loss: 1.0057.
|
96 |
+
[ Thu Sep 8 00:05:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Thu Sep 8 00:05:54 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 00:05:54 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 00:12:31 2022 ] Mean training loss: 1.0026.
|
100 |
+
[ Thu Sep 8 00:12:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Thu Sep 8 00:12:31 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 00:12:31 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 00:19:08 2022 ] Mean training loss: 0.9769.
|
104 |
+
[ Thu Sep 8 00:19:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Thu Sep 8 00:19:08 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 00:19:08 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 00:25:43 2022 ] Mean training loss: 0.9739.
|
108 |
+
[ Thu Sep 8 00:25:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Thu Sep 8 00:25:43 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 00:25:43 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 00:32:20 2022 ] Mean training loss: 0.9803.
|
112 |
+
[ Thu Sep 8 00:32:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Thu Sep 8 00:32:20 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 00:32:20 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 00:38:55 2022 ] Mean training loss: 0.9674.
|
116 |
+
[ Thu Sep 8 00:38:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Thu Sep 8 00:38:55 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 00:38:55 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 00:45:31 2022 ] Mean training loss: 0.9484.
|
120 |
+
[ Thu Sep 8 00:45:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Thu Sep 8 00:45:31 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 00:45:31 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 00:52:07 2022 ] Mean training loss: 0.9565.
|
124 |
+
[ Thu Sep 8 00:52:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Thu Sep 8 00:52:07 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 00:52:07 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 00:58:42 2022 ] Mean training loss: 0.9433.
|
128 |
+
[ Thu Sep 8 00:58:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Thu Sep 8 00:58:42 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 00:58:42 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 01:05:17 2022 ] Mean training loss: 0.9634.
|
132 |
+
[ Thu Sep 8 01:05:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Thu Sep 8 01:05:17 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 01:05:17 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 01:11:52 2022 ] Mean training loss: 0.9298.
|
136 |
+
[ Thu Sep 8 01:11:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 01:11:52 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 01:11:52 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 01:18:27 2022 ] Mean training loss: 0.9412.
|
140 |
+
[ Thu Sep 8 01:18:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 01:18:27 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 01:18:27 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 01:25:03 2022 ] Mean training loss: 0.9290.
|
144 |
+
[ Thu Sep 8 01:25:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 01:25:03 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 01:25:03 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 01:31:39 2022 ] Mean training loss: 0.9283.
|
148 |
+
[ Thu Sep 8 01:31:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 01:31:39 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 01:31:39 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 01:38:14 2022 ] Mean training loss: 0.9286.
|
152 |
+
[ Thu Sep 8 01:38:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 01:38:14 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 01:38:14 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 01:44:49 2022 ] Mean training loss: 0.9283.
|
156 |
+
[ Thu Sep 8 01:44:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 01:44:49 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 01:44:49 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 01:51:25 2022 ] Mean training loss: 0.9218.
|
160 |
+
[ Thu Sep 8 01:51:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 01:51:25 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 01:51:25 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 01:58:00 2022 ] Mean training loss: 0.9245.
|
164 |
+
[ Thu Sep 8 01:58:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 01:58:00 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 01:58:00 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 02:04:35 2022 ] Mean training loss: 0.9271.
|
168 |
+
[ Thu Sep 8 02:04:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 02:04:35 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 02:04:35 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 02:11:10 2022 ] Mean training loss: 0.9300.
|
172 |
+
[ Thu Sep 8 02:11:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 02:11:10 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 02:11:10 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 02:17:46 2022 ] Mean training loss: 0.9108.
|
176 |
+
[ Thu Sep 8 02:17:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 02:17:46 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 02:17:46 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 02:24:21 2022 ] Mean training loss: 0.9156.
|
180 |
+
[ Thu Sep 8 02:24:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 02:24:21 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 02:24:21 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 02:30:56 2022 ] Mean training loss: 0.9297.
|
184 |
+
[ Thu Sep 8 02:30:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 02:30:56 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 02:30:56 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 02:37:30 2022 ] Mean training loss: 0.9178.
|
188 |
+
[ Thu Sep 8 02:37:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 02:37:30 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 02:37:30 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 02:44:05 2022 ] Mean training loss: 0.9152.
|
192 |
+
[ Thu Sep 8 02:44:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 02:44:05 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 02:44:05 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 02:50:42 2022 ] Mean training loss: 0.9138.
|
196 |
+
[ Thu Sep 8 02:50:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 02:50:42 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 02:50:42 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 02:57:20 2022 ] Mean training loss: 0.9059.
|
200 |
+
[ Thu Sep 8 02:57:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 02:57:20 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 02:57:20 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 03:03:57 2022 ] Mean training loss: 0.9049.
|
204 |
+
[ Thu Sep 8 03:03:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 03:03:57 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 03:03:57 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 03:10:35 2022 ] Mean training loss: 0.4705.
|
208 |
+
[ Thu Sep 8 03:10:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 03:10:35 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 03:17:25 2022 ] Epoch 51 Curr Acc: (28300/50919)55.58%
|
211 |
+
[ Thu Sep 8 03:17:25 2022 ] Epoch 51 Best Acc 55.58%
|
212 |
+
[ Thu Sep 8 03:17:25 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 03:17:25 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 03:24:00 2022 ] Mean training loss: 0.3493.
|
215 |
+
[ Thu Sep 8 03:24:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 03:24:00 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 03:30:44 2022 ] Epoch 52 Curr Acc: (29876/50919)58.67%
|
218 |
+
[ Thu Sep 8 03:30:44 2022 ] Epoch 52 Best Acc 58.67%
|
219 |
+
[ Thu Sep 8 03:30:44 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 03:30:44 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 03:37:19 2022 ] Mean training loss: 0.2904.
|
222 |
+
[ Thu Sep 8 03:37:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 03:37:19 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 03:44:02 2022 ] Epoch 53 Curr Acc: (29712/50919)58.35%
|
225 |
+
[ Thu Sep 8 03:44:02 2022 ] Epoch 52 Best Acc 58.67%
|
226 |
+
[ Thu Sep 8 03:44:02 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 03:44:02 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 03:50:37 2022 ] Mean training loss: 0.2570.
|
229 |
+
[ Thu Sep 8 03:50:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 03:50:37 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 03:57:20 2022 ] Epoch 54 Curr Acc: (29786/50919)58.50%
|
232 |
+
[ Thu Sep 8 03:57:20 2022 ] Epoch 52 Best Acc 58.67%
|
233 |
+
[ Thu Sep 8 03:57:20 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 03:57:20 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 04:03:56 2022 ] Mean training loss: 0.2286.
|
236 |
+
[ Thu Sep 8 04:03:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 04:03:56 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 04:10:39 2022 ] Epoch 55 Curr Acc: (29113/50919)57.18%
|
239 |
+
[ Thu Sep 8 04:10:39 2022 ] Epoch 52 Best Acc 58.67%
|
240 |
+
[ Thu Sep 8 04:10:39 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 04:10:39 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 04:17:14 2022 ] Mean training loss: 0.2013.
|
243 |
+
[ Thu Sep 8 04:17:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 04:17:14 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 04:23:57 2022 ] Epoch 56 Curr Acc: (30500/50919)59.90%
|
246 |
+
[ Thu Sep 8 04:23:57 2022 ] Epoch 56 Best Acc 59.90%
|
247 |
+
[ Thu Sep 8 04:23:57 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 04:23:57 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 04:30:32 2022 ] Mean training loss: 0.1756.
|
250 |
+
[ Thu Sep 8 04:30:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 04:30:32 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 04:37:16 2022 ] Epoch 57 Curr Acc: (29922/50919)58.76%
|
253 |
+
[ Thu Sep 8 04:37:16 2022 ] Epoch 56 Best Acc 59.90%
|
254 |
+
[ Thu Sep 8 04:37:16 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 04:37:16 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 04:43:52 2022 ] Mean training loss: 0.1621.
|
257 |
+
[ Thu Sep 8 04:43:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 04:43:52 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 04:50:35 2022 ] Epoch 58 Curr Acc: (29356/50919)57.65%
|
260 |
+
[ Thu Sep 8 04:50:35 2022 ] Epoch 56 Best Acc 59.90%
|
261 |
+
[ Thu Sep 8 04:50:35 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 04:50:35 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 04:57:10 2022 ] Mean training loss: 0.1457.
|
264 |
+
[ Thu Sep 8 04:57:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 04:57:10 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 05:03:53 2022 ] Epoch 59 Curr Acc: (29717/50919)58.36%
|
267 |
+
[ Thu Sep 8 05:03:53 2022 ] Epoch 56 Best Acc 59.90%
|
268 |
+
[ Thu Sep 8 05:03:53 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 05:03:53 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 05:10:28 2022 ] Mean training loss: 0.1316.
|
271 |
+
[ Thu Sep 8 05:10:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 05:10:29 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 05:17:11 2022 ] Epoch 60 Curr Acc: (29844/50919)58.61%
|
274 |
+
[ Thu Sep 8 05:17:11 2022 ] Epoch 56 Best Acc 59.90%
|
275 |
+
[ Thu Sep 8 05:17:11 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 05:17:11 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 05:23:47 2022 ] Mean training loss: 0.1264.
|
278 |
+
[ Thu Sep 8 05:23:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 05:23:47 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 05:30:30 2022 ] Epoch 61 Curr Acc: (29379/50919)57.70%
|
281 |
+
[ Thu Sep 8 05:30:30 2022 ] Epoch 56 Best Acc 59.90%
|
282 |
+
[ Thu Sep 8 05:30:30 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 05:30:30 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 05:37:06 2022 ] Mean training loss: 0.1152.
|
285 |
+
[ Thu Sep 8 05:37:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 05:37:06 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 05:43:49 2022 ] Epoch 62 Curr Acc: (29449/50919)57.83%
|
288 |
+
[ Thu Sep 8 05:43:49 2022 ] Epoch 56 Best Acc 59.90%
|
289 |
+
[ Thu Sep 8 05:43:49 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 05:43:49 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 05:50:24 2022 ] Mean training loss: 0.1107.
|
292 |
+
[ Thu Sep 8 05:50:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 05:50:24 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 05:57:07 2022 ] Epoch 63 Curr Acc: (29466/50919)57.87%
|
295 |
+
[ Thu Sep 8 05:57:07 2022 ] Epoch 56 Best Acc 59.90%
|
296 |
+
[ Thu Sep 8 05:57:07 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 05:57:07 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 06:03:43 2022 ] Mean training loss: 0.1082.
|
299 |
+
[ Thu Sep 8 06:03:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 06:03:43 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 06:10:26 2022 ] Epoch 64 Curr Acc: (28773/50919)56.51%
|
302 |
+
[ Thu Sep 8 06:10:26 2022 ] Epoch 56 Best Acc 59.90%
|
303 |
+
[ Thu Sep 8 06:10:26 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 06:10:26 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 06:17:01 2022 ] Mean training loss: 0.1056.
|
306 |
+
[ Thu Sep 8 06:17:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 06:17:02 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 06:23:44 2022 ] Epoch 65 Curr Acc: (28107/50919)55.20%
|
309 |
+
[ Thu Sep 8 06:23:44 2022 ] Epoch 56 Best Acc 59.90%
|
310 |
+
[ Thu Sep 8 06:23:44 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 06:23:44 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 06:30:19 2022 ] Mean training loss: 0.1126.
|
313 |
+
[ Thu Sep 8 06:30:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 06:30:19 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 06:37:02 2022 ] Epoch 66 Curr Acc: (28915/50919)56.79%
|
316 |
+
[ Thu Sep 8 06:37:02 2022 ] Epoch 56 Best Acc 59.90%
|
317 |
+
[ Thu Sep 8 06:37:02 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 06:37:02 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 06:43:37 2022 ] Mean training loss: 0.1096.
|
320 |
+
[ Thu Sep 8 06:43:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 06:43:37 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 06:50:20 2022 ] Epoch 67 Curr Acc: (27970/50919)54.93%
|
323 |
+
[ Thu Sep 8 06:50:20 2022 ] Epoch 56 Best Acc 59.90%
|
324 |
+
[ Thu Sep 8 06:50:20 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 06:50:20 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 06:56:56 2022 ] Mean training loss: 0.1034.
|
327 |
+
[ Thu Sep 8 06:56:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 06:56:56 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 07:03:39 2022 ] Epoch 68 Curr Acc: (28812/50919)56.58%
|
330 |
+
[ Thu Sep 8 07:03:39 2022 ] Epoch 56 Best Acc 59.90%
|
331 |
+
[ Thu Sep 8 07:03:39 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 07:03:39 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 07:10:14 2022 ] Mean training loss: 0.1027.
|
334 |
+
[ Thu Sep 8 07:10:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 07:10:14 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 07:16:56 2022 ] Epoch 69 Curr Acc: (28696/50919)56.36%
|
337 |
+
[ Thu Sep 8 07:16:56 2022 ] Epoch 56 Best Acc 59.90%
|
338 |
+
[ Thu Sep 8 07:16:56 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 07:16:56 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 07:23:31 2022 ] Mean training loss: 0.1057.
|
341 |
+
[ Thu Sep 8 07:23:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 07:23:31 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 07:30:14 2022 ] Epoch 70 Curr Acc: (27995/50919)54.98%
|
344 |
+
[ Thu Sep 8 07:30:14 2022 ] Epoch 56 Best Acc 59.90%
|
345 |
+
[ Thu Sep 8 07:30:14 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 07:30:14 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 07:36:49 2022 ] Mean training loss: 0.0602.
|
348 |
+
[ Thu Sep 8 07:36:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 07:36:49 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 07:43:32 2022 ] Epoch 71 Curr Acc: (29615/50919)58.16%
|
351 |
+
[ Thu Sep 8 07:43:32 2022 ] Epoch 56 Best Acc 59.90%
|
352 |
+
[ Thu Sep 8 07:43:32 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 07:43:32 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 07:50:08 2022 ] Mean training loss: 0.0393.
|
355 |
+
[ Thu Sep 8 07:50:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 07:50:08 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 07:56:50 2022 ] Epoch 72 Curr Acc: (29373/50919)57.69%
|
358 |
+
[ Thu Sep 8 07:56:50 2022 ] Epoch 56 Best Acc 59.90%
|
359 |
+
[ Thu Sep 8 07:56:50 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 07:56:50 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 08:03:26 2022 ] Mean training loss: 0.0340.
|
362 |
+
[ Thu Sep 8 08:03:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 08:03:26 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 08:10:08 2022 ] Epoch 73 Curr Acc: (29514/50919)57.96%
|
365 |
+
[ Thu Sep 8 08:10:08 2022 ] Epoch 56 Best Acc 59.90%
|
366 |
+
[ Thu Sep 8 08:10:08 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 08:10:08 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 08:16:44 2022 ] Mean training loss: 0.0307.
|
369 |
+
[ Thu Sep 8 08:16:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 08:16:44 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 08:23:26 2022 ] Epoch 74 Curr Acc: (30247/50919)59.40%
|
372 |
+
[ Thu Sep 8 08:23:26 2022 ] Epoch 56 Best Acc 59.90%
|
373 |
+
[ Thu Sep 8 08:23:26 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 08:23:26 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 08:30:01 2022 ] Mean training loss: 0.0268.
|
376 |
+
[ Thu Sep 8 08:30:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 08:30:01 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 08:36:44 2022 ] Epoch 75 Curr Acc: (29983/50919)58.88%
|
379 |
+
[ Thu Sep 8 08:36:44 2022 ] Epoch 56 Best Acc 59.90%
|
380 |
+
[ Thu Sep 8 08:36:44 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 08:36:44 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 08:43:19 2022 ] Mean training loss: 0.0262.
|
383 |
+
[ Thu Sep 8 08:43:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 08:43:19 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 08:50:02 2022 ] Epoch 76 Curr Acc: (29562/50919)58.06%
|
386 |
+
[ Thu Sep 8 08:50:02 2022 ] Epoch 56 Best Acc 59.90%
|
387 |
+
[ Thu Sep 8 08:50:02 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 08:50:02 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 08:56:37 2022 ] Mean training loss: 0.0256.
|
390 |
+
[ Thu Sep 8 08:56:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 08:56:37 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 09:03:20 2022 ] Epoch 77 Curr Acc: (28726/50919)56.42%
|
393 |
+
[ Thu Sep 8 09:03:20 2022 ] Epoch 56 Best Acc 59.90%
|
394 |
+
[ Thu Sep 8 09:03:20 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 09:03:20 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 09:09:55 2022 ] Mean training loss: 0.0236.
|
397 |
+
[ Thu Sep 8 09:09:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 09:09:55 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 09:16:37 2022 ] Epoch 78 Curr Acc: (29965/50919)58.85%
|
400 |
+
[ Thu Sep 8 09:16:37 2022 ] Epoch 56 Best Acc 59.90%
|
401 |
+
[ Thu Sep 8 09:16:37 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 09:16:37 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 09:23:12 2022 ] Mean training loss: 0.0202.
|
404 |
+
[ Thu Sep 8 09:23:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 09:23:12 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 09:29:55 2022 ] Epoch 79 Curr Acc: (29629/50919)58.19%
|
407 |
+
[ Thu Sep 8 09:29:55 2022 ] Epoch 56 Best Acc 59.90%
|
408 |
+
[ Thu Sep 8 09:29:55 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 09:29:55 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 09:36:30 2022 ] Mean training loss: 0.0205.
|
411 |
+
[ Thu Sep 8 09:36:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 09:36:30 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 09:43:12 2022 ] Epoch 80 Curr Acc: (30249/50919)59.41%
|
414 |
+
[ Thu Sep 8 09:43:12 2022 ] Epoch 56 Best Acc 59.90%
|
415 |
+
[ Thu Sep 8 09:43:12 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 09:43:12 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 09:49:47 2022 ] Mean training loss: 0.0199.
|
418 |
+
[ Thu Sep 8 09:49:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 09:49:47 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 09:56:30 2022 ] Epoch 81 Curr Acc: (30134/50919)59.18%
|
421 |
+
[ Thu Sep 8 09:56:30 2022 ] Epoch 56 Best Acc 59.90%
|
422 |
+
[ Thu Sep 8 09:56:30 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 09:56:30 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 10:03:05 2022 ] Mean training loss: 0.0194.
|
425 |
+
[ Thu Sep 8 10:03:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 10:03:05 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 10:09:48 2022 ] Epoch 82 Curr Acc: (30251/50919)59.41%
|
428 |
+
[ Thu Sep 8 10:09:48 2022 ] Epoch 56 Best Acc 59.90%
|
429 |
+
[ Thu Sep 8 10:09:48 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 10:09:48 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 10:16:24 2022 ] Mean training loss: 0.0175.
|
432 |
+
[ Thu Sep 8 10:16:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 10:16:24 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 10:23:07 2022 ] Epoch 83 Curr Acc: (29964/50919)58.85%
|
435 |
+
[ Thu Sep 8 10:23:07 2022 ] Epoch 56 Best Acc 59.90%
|
436 |
+
[ Thu Sep 8 10:23:07 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 10:23:07 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 10:29:43 2022 ] Mean training loss: 0.0183.
|
439 |
+
[ Thu Sep 8 10:29:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 10:29:43 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 10:36:26 2022 ] Epoch 84 Curr Acc: (29913/50919)58.75%
|
442 |
+
[ Thu Sep 8 10:36:26 2022 ] Epoch 56 Best Acc 59.90%
|
443 |
+
[ Thu Sep 8 10:36:26 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 10:36:26 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 10:43:01 2022 ] Mean training loss: 0.0177.
|
446 |
+
[ Thu Sep 8 10:43:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 10:43:02 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 10:49:45 2022 ] Epoch 85 Curr Acc: (29971/50919)58.86%
|
449 |
+
[ Thu Sep 8 10:49:45 2022 ] Epoch 56 Best Acc 59.90%
|
450 |
+
[ Thu Sep 8 10:49:45 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 10:49:45 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 10:56:20 2022 ] Mean training loss: 0.0173.
|
453 |
+
[ Thu Sep 8 10:56:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 10:56:20 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 11:03:03 2022 ] Epoch 86 Curr Acc: (29880/50919)58.68%
|
456 |
+
[ Thu Sep 8 11:03:03 2022 ] Epoch 56 Best Acc 59.90%
|
457 |
+
[ Thu Sep 8 11:03:03 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 11:03:03 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 11:09:39 2022 ] Mean training loss: 0.0179.
|
460 |
+
[ Thu Sep 8 11:09:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 11:09:39 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 11:16:23 2022 ] Epoch 87 Curr Acc: (30201/50919)59.31%
|
463 |
+
[ Thu Sep 8 11:16:23 2022 ] Epoch 56 Best Acc 59.90%
|
464 |
+
[ Thu Sep 8 11:16:23 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 11:16:23 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 11:22:59 2022 ] Mean training loss: 0.0164.
|
467 |
+
[ Thu Sep 8 11:22:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 11:22:59 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 11:29:42 2022 ] Epoch 88 Curr Acc: (30104/50919)59.12%
|
470 |
+
[ Thu Sep 8 11:29:42 2022 ] Epoch 56 Best Acc 59.90%
|
471 |
+
[ Thu Sep 8 11:29:42 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 11:29:42 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 11:36:17 2022 ] Mean training loss: 0.0170.
|
474 |
+
[ Thu Sep 8 11:36:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 11:36:17 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 11:43:01 2022 ] Epoch 89 Curr Acc: (30149/50919)59.21%
|
477 |
+
[ Thu Sep 8 11:43:01 2022 ] Epoch 56 Best Acc 59.90%
|
478 |
+
[ Thu Sep 8 11:43:01 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 11:43:01 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 11:49:36 2022 ] Mean training loss: 0.0174.
|
481 |
+
[ Thu Sep 8 11:49:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 11:49:36 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 11:56:19 2022 ] Epoch 90 Curr Acc: (29425/50919)57.79%
|
484 |
+
[ Thu Sep 8 11:56:19 2022 ] Epoch 56 Best Acc 59.90%
|
485 |
+
[ Thu Sep 8 11:56:20 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 11:56:20 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 12:02:55 2022 ] Mean training loss: 0.0153.
|
488 |
+
[ Thu Sep 8 12:02:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 12:02:55 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 12:09:38 2022 ] Epoch 91 Curr Acc: (30085/50919)59.08%
|
491 |
+
[ Thu Sep 8 12:09:38 2022 ] Epoch 56 Best Acc 59.90%
|
492 |
+
[ Thu Sep 8 12:09:38 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 12:09:38 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 12:16:14 2022 ] Mean training loss: 0.0160.
|
495 |
+
[ Thu Sep 8 12:16:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 12:16:14 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 12:22:57 2022 ] Epoch 92 Curr Acc: (29728/50919)58.38%
|
498 |
+
[ Thu Sep 8 12:22:57 2022 ] Epoch 56 Best Acc 59.90%
|
499 |
+
[ Thu Sep 8 12:22:57 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 12:22:57 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 12:29:32 2022 ] Mean training loss: 0.0155.
|
502 |
+
[ Thu Sep 8 12:29:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 12:29:32 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 12:36:15 2022 ] Epoch 93 Curr Acc: (29908/50919)58.74%
|
505 |
+
[ Thu Sep 8 12:36:15 2022 ] Epoch 56 Best Acc 59.90%
|
506 |
+
[ Thu Sep 8 12:36:15 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 12:36:15 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 12:42:50 2022 ] Mean training loss: 0.0155.
|
509 |
+
[ Thu Sep 8 12:42:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 12:42:50 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 12:49:33 2022 ] Epoch 94 Curr Acc: (30040/50919)59.00%
|
512 |
+
[ Thu Sep 8 12:49:33 2022 ] Epoch 56 Best Acc 59.90%
|
513 |
+
[ Thu Sep 8 12:49:33 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 12:49:33 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 12:56:08 2022 ] Mean training loss: 0.0153.
|
516 |
+
[ Thu Sep 8 12:56:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 12:56:08 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 13:02:51 2022 ] Epoch 95 Curr Acc: (29757/50919)58.44%
|
519 |
+
[ Thu Sep 8 13:02:51 2022 ] Epoch 56 Best Acc 59.90%
|
520 |
+
[ Thu Sep 8 13:02:51 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 13:02:51 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 13:09:26 2022 ] Mean training loss: 0.0157.
|
523 |
+
[ Thu Sep 8 13:09:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 13:09:26 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 13:16:09 2022 ] Epoch 96 Curr Acc: (29844/50919)58.61%
|
526 |
+
[ Thu Sep 8 13:16:09 2022 ] Epoch 56 Best Acc 59.90%
|
527 |
+
[ Thu Sep 8 13:16:09 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 13:16:09 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 13:22:44 2022 ] Mean training loss: 0.0158.
|
530 |
+
[ Thu Sep 8 13:22:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 13:22:44 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 13:29:27 2022 ] Epoch 97 Curr Acc: (30111/50919)59.14%
|
533 |
+
[ Thu Sep 8 13:29:27 2022 ] Epoch 56 Best Acc 59.90%
|
534 |
+
[ Thu Sep 8 13:29:27 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 13:29:27 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 13:36:03 2022 ] Mean training loss: 0.0149.
|
537 |
+
[ Thu Sep 8 13:36:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 13:36:03 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 13:42:46 2022 ] Epoch 98 Curr Acc: (30025/50919)58.97%
|
540 |
+
[ Thu Sep 8 13:42:46 2022 ] Epoch 56 Best Acc 59.90%
|
541 |
+
[ Thu Sep 8 13:42:46 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 13:42:46 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 13:49:22 2022 ] Mean training loss: 0.0149.
|
544 |
+
[ Thu Sep 8 13:49:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 13:49:22 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 13:56:04 2022 ] Epoch 99 Curr Acc: (29153/50919)57.25%
|
547 |
+
[ Thu Sep 8 13:56:04 2022 ] Epoch 56 Best Acc 59.90%
|
548 |
+
[ Thu Sep 8 13:56:05 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 13:56:05 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 14:02:39 2022 ] Mean training loss: 0.0151.
|
551 |
+
[ Thu Sep 8 14:02:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 14:02:39 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 14:09:21 2022 ] Epoch 100 Curr Acc: (30215/50919)59.34%
|
554 |
+
[ Thu Sep 8 14:09:21 2022 ] Epoch 56 Best Acc 59.90%
|
555 |
+
[ Thu Sep 8 14:09:21 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 14:09:21 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 14:15:56 2022 ] Mean training loss: 0.0152.
|
558 |
+
[ Thu Sep 8 14:15:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 14:15:56 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 14:22:39 2022 ] Epoch 101 Curr Acc: (29818/50919)58.56%
|
561 |
+
[ Thu Sep 8 14:22:39 2022 ] Epoch 56 Best Acc 59.90%
|
562 |
+
[ Thu Sep 8 14:22:39 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 14:22:39 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 14:29:14 2022 ] Mean training loss: 0.0155.
|
565 |
+
[ Thu Sep 8 14:29:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 14:29:14 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 14:35:56 2022 ] Epoch 102 Curr Acc: (29704/50919)58.34%
|
568 |
+
[ Thu Sep 8 14:35:56 2022 ] Epoch 56 Best Acc 59.90%
|
569 |
+
[ Thu Sep 8 14:35:56 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 14:35:56 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 14:42:31 2022 ] Mean training loss: 0.0153.
|
572 |
+
[ Thu Sep 8 14:42:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 14:42:31 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 14:49:14 2022 ] Epoch 103 Curr Acc: (30147/50919)59.21%
|
575 |
+
[ Thu Sep 8 14:49:14 2022 ] Epoch 56 Best Acc 59.90%
|
576 |
+
[ Thu Sep 8 14:49:14 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 14:49:14 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 14:55:48 2022 ] Mean training loss: 0.0139.
|
579 |
+
[ Thu Sep 8 14:55:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 14:55:48 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 15:02:31 2022 ] Epoch 104 Curr Acc: (30201/50919)59.31%
|
582 |
+
[ Thu Sep 8 15:02:31 2022 ] Epoch 56 Best Acc 59.90%
|
583 |
+
[ Thu Sep 8 15:02:31 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 15:02:31 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 15:09:05 2022 ] Mean training loss: 0.0146.
|
586 |
+
[ Thu Sep 8 15:09:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 15:09:05 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 15:15:48 2022 ] Epoch 105 Curr Acc: (29992/50919)58.90%
|
589 |
+
[ Thu Sep 8 15:15:48 2022 ] Epoch 56 Best Acc 59.90%
|
590 |
+
[ Thu Sep 8 15:15:48 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 15:15:48 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 15:22:22 2022 ] Mean training loss: 0.0144.
|
593 |
+
[ Thu Sep 8 15:22:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 15:22:22 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 15:29:04 2022 ] Epoch 106 Curr Acc: (30148/50919)59.21%
|
596 |
+
[ Thu Sep 8 15:29:04 2022 ] Epoch 56 Best Acc 59.90%
|
597 |
+
[ Thu Sep 8 15:29:04 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 15:29:04 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 15:35:39 2022 ] Mean training loss: 0.0143.
|
600 |
+
[ Thu Sep 8 15:35:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 15:35:39 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 15:42:22 2022 ] Epoch 107 Curr Acc: (29915/50919)58.75%
|
603 |
+
[ Thu Sep 8 15:42:22 2022 ] Epoch 56 Best Acc 59.90%
|
604 |
+
[ Thu Sep 8 15:42:22 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 15:42:22 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 15:48:55 2022 ] Mean training loss: 0.0157.
|
607 |
+
[ Thu Sep 8 15:48:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 15:48:55 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 15:55:37 2022 ] Epoch 108 Curr Acc: (30345/50919)59.59%
|
610 |
+
[ Thu Sep 8 15:55:37 2022 ] Epoch 56 Best Acc 59.90%
|
611 |
+
[ Thu Sep 8 15:55:37 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 15:55:37 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 16:02:12 2022 ] Mean training loss: 0.0140.
|
614 |
+
[ Thu Sep 8 16:02:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 16:02:12 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 16:08:54 2022 ] Epoch 109 Curr Acc: (29940/50919)58.80%
|
617 |
+
[ Thu Sep 8 16:08:54 2022 ] Epoch 56 Best Acc 59.90%
|
618 |
+
[ Thu Sep 8 16:08:54 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 16:08:54 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 16:15:29 2022 ] Mean training loss: 0.0155.
|
621 |
+
[ Thu Sep 8 16:15:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 16:15:29 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 16:22:12 2022 ] Epoch 110 Curr Acc: (29913/50919)58.75%
|
624 |
+
[ Thu Sep 8 16:22:12 2022 ] Epoch 56 Best Acc 59.90%
|
625 |
+
[ Thu Sep 8 16:22:12 2022 ] epoch: 56, best accuracy: 0.5989905536243838
|
626 |
+
[ Thu Sep 8 16:22:12 2022 ] Experiment: ./work_dir/ntu120/xsub_b
|
627 |
+
[ Thu Sep 8 16:22:12 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 16:22:12 2022 ] Load weights from ./runs/ntu120/xsub_b/runs-55-109200.pt.
|
629 |
+
[ Thu Sep 8 16:22:12 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 16:28:54 2022 ] Epoch 1 Curr Acc: (30500/50919)59.90%
|
631 |
+
[ Thu Sep 8 16:28:54 2022 ] Epoch 56 Best Acc 59.90%
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xsub_bm.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xsub_bm/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone_motion.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone_motion.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xsub_bm
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ed3be9094c4a76dd87e77bea5421bd2466a9547d072311f8ef389544269d6c1
|
3 |
+
size 29946137
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_bm/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:34:40 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:34:40 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xsub_bm', 'model_saved_name': './runs/ntu120/xsub_bm/runs', 'config': 'config/ntu120/xsub_bm.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:34:40 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:34:40 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:41:19 2022 ] Mean training loss: 3.5177.
|
8 |
+
[ Wed Sep 7 21:41:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
9 |
+
[ Wed Sep 7 21:41:19 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:41:19 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:47:58 2022 ] Mean training loss: 2.4868.
|
12 |
+
[ Wed Sep 7 21:47:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:47:58 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:47:58 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:54:36 2022 ] Mean training loss: 1.9641.
|
16 |
+
[ Wed Sep 7 21:54:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:54:36 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:54:36 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 22:01:14 2022 ] Mean training loss: 1.6675.
|
20 |
+
[ Wed Sep 7 22:01:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 22:01:14 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 22:01:14 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 22:07:53 2022 ] Mean training loss: 1.5121.
|
24 |
+
[ Wed Sep 7 22:07:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 22:07:53 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 22:07:53 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:14:31 2022 ] Mean training loss: 1.4097.
|
28 |
+
[ Wed Sep 7 22:14:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:14:31 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:14:31 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:21:09 2022 ] Mean training loss: 1.3619.
|
32 |
+
[ Wed Sep 7 22:21:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:21:09 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:21:09 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:27:46 2022 ] Mean training loss: 1.3424.
|
36 |
+
[ Wed Sep 7 22:27:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:27:46 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:27:46 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:34:25 2022 ] Mean training loss: 1.3057.
|
40 |
+
[ Wed Sep 7 22:34:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:34:25 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:34:25 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:41:02 2022 ] Mean training loss: 1.3086.
|
44 |
+
[ Wed Sep 7 22:41:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:41:02 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:41:02 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:47:42 2022 ] Mean training loss: 1.2515.
|
48 |
+
[ Wed Sep 7 22:47:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:47:42 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:47:42 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:54:20 2022 ] Mean training loss: 1.2029.
|
52 |
+
[ Wed Sep 7 22:54:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:54:20 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:54:20 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 23:01:00 2022 ] Mean training loss: 1.1772.
|
56 |
+
[ Wed Sep 7 23:01:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 23:01:00 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 23:01:00 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 23:07:38 2022 ] Mean training loss: 1.1704.
|
60 |
+
[ Wed Sep 7 23:07:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 23:07:38 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 23:07:38 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 23:14:16 2022 ] Mean training loss: 1.1350.
|
64 |
+
[ Wed Sep 7 23:14:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 23:14:16 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 23:14:16 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 23:20:54 2022 ] Mean training loss: 1.1048.
|
68 |
+
[ Wed Sep 7 23:20:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 23:20:54 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 23:20:54 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 23:27:33 2022 ] Mean training loss: 1.0995.
|
72 |
+
[ Wed Sep 7 23:27:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 23:27:33 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 23:27:33 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 23:34:11 2022 ] Mean training loss: 1.0836.
|
76 |
+
[ Wed Sep 7 23:34:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 23:34:11 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 23:34:11 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 23:40:50 2022 ] Mean training loss: 1.0612.
|
80 |
+
[ Wed Sep 7 23:40:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 23:40:50 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 23:40:50 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:47:30 2022 ] Mean training loss: 1.0556.
|
84 |
+
[ Wed Sep 7 23:47:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:47:30 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:47:30 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:54:08 2022 ] Mean training loss: 1.0510.
|
88 |
+
[ Wed Sep 7 23:54:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:54:08 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:54:08 2022 ] Learning rate: 0.15
|
91 |
+
[ Thu Sep 8 00:00:47 2022 ] Mean training loss: 1.0254.
|
92 |
+
[ Thu Sep 8 00:00:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Thu Sep 8 00:00:47 2022 ] Training epoch: 23
|
94 |
+
[ Thu Sep 8 00:00:47 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 00:07:26 2022 ] Mean training loss: 1.0141.
|
96 |
+
[ Thu Sep 8 00:07:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Thu Sep 8 00:07:26 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 00:07:26 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 00:14:05 2022 ] Mean training loss: 1.0105.
|
100 |
+
[ Thu Sep 8 00:14:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Thu Sep 8 00:14:05 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 00:14:05 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 00:20:45 2022 ] Mean training loss: 0.9963.
|
104 |
+
[ Thu Sep 8 00:20:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Thu Sep 8 00:20:45 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 00:20:45 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 00:27:23 2022 ] Mean training loss: 1.0034.
|
108 |
+
[ Thu Sep 8 00:27:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Thu Sep 8 00:27:23 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 00:27:23 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 00:34:03 2022 ] Mean training loss: 0.9867.
|
112 |
+
[ Thu Sep 8 00:34:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Thu Sep 8 00:34:03 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 00:34:03 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 00:40:42 2022 ] Mean training loss: 1.0034.
|
116 |
+
[ Thu Sep 8 00:40:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Thu Sep 8 00:40:42 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 00:40:42 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 00:47:21 2022 ] Mean training loss: 0.9684.
|
120 |
+
[ Thu Sep 8 00:47:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Thu Sep 8 00:47:21 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 00:47:21 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 00:53:59 2022 ] Mean training loss: 0.9827.
|
124 |
+
[ Thu Sep 8 00:53:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Thu Sep 8 00:53:59 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 00:53:59 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 01:00:38 2022 ] Mean training loss: 0.9715.
|
128 |
+
[ Thu Sep 8 01:00:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Thu Sep 8 01:00:38 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 01:00:38 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 01:07:17 2022 ] Mean training loss: 0.9609.
|
132 |
+
[ Thu Sep 8 01:07:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Thu Sep 8 01:07:17 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 01:07:17 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 01:13:56 2022 ] Mean training loss: 0.9581.
|
136 |
+
[ Thu Sep 8 01:13:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 01:13:56 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 01:13:56 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 01:20:35 2022 ] Mean training loss: 0.9673.
|
140 |
+
[ Thu Sep 8 01:20:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 01:20:35 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 01:20:35 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 01:27:17 2022 ] Mean training loss: 0.9638.
|
144 |
+
[ Thu Sep 8 01:27:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 01:27:17 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 01:27:17 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 01:33:58 2022 ] Mean training loss: 0.9563.
|
148 |
+
[ Thu Sep 8 01:33:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 01:33:58 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 01:33:58 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 01:40:39 2022 ] Mean training loss: 0.9399.
|
152 |
+
[ Thu Sep 8 01:40:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 01:40:39 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 01:40:39 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 01:47:18 2022 ] Mean training loss: 0.9570.
|
156 |
+
[ Thu Sep 8 01:47:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 01:47:18 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 01:47:18 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 01:53:59 2022 ] Mean training loss: 0.9351.
|
160 |
+
[ Thu Sep 8 01:53:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 01:53:59 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 01:53:59 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 02:00:40 2022 ] Mean training loss: 0.9485.
|
164 |
+
[ Thu Sep 8 02:00:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 02:00:40 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 02:00:40 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 02:07:22 2022 ] Mean training loss: 0.9391.
|
168 |
+
[ Thu Sep 8 02:07:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 02:07:22 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 02:07:22 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 02:14:02 2022 ] Mean training loss: 0.9480.
|
172 |
+
[ Thu Sep 8 02:14:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 02:14:02 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 02:14:02 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 02:20:42 2022 ] Mean training loss: 0.9306.
|
176 |
+
[ Thu Sep 8 02:20:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 02:20:42 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 02:20:42 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 02:27:22 2022 ] Mean training loss: 0.9404.
|
180 |
+
[ Thu Sep 8 02:27:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 02:27:22 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 02:27:22 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 02:34:02 2022 ] Mean training loss: 0.9390.
|
184 |
+
[ Thu Sep 8 02:34:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 02:34:02 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 02:34:02 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 02:40:42 2022 ] Mean training loss: 0.9434.
|
188 |
+
[ Thu Sep 8 02:40:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 02:40:42 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 02:40:42 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 02:47:24 2022 ] Mean training loss: 0.9347.
|
192 |
+
[ Thu Sep 8 02:47:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 02:47:24 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 02:47:24 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 02:54:05 2022 ] Mean training loss: 0.9452.
|
196 |
+
[ Thu Sep 8 02:54:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 02:54:05 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 02:54:05 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 03:00:46 2022 ] Mean training loss: 0.9305.
|
200 |
+
[ Thu Sep 8 03:00:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 03:00:46 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 03:00:46 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 03:07:27 2022 ] Mean training loss: 0.9310.
|
204 |
+
[ Thu Sep 8 03:07:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 03:07:27 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 03:07:27 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 03:14:07 2022 ] Mean training loss: 0.4632.
|
208 |
+
[ Thu Sep 8 03:14:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 03:14:07 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 03:21:03 2022 ] Epoch 51 Curr Acc: (26802/50919)52.64%
|
211 |
+
[ Thu Sep 8 03:21:03 2022 ] Epoch 51 Best Acc 52.64%
|
212 |
+
[ Thu Sep 8 03:21:03 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 03:21:03 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 03:27:41 2022 ] Mean training loss: 0.3347.
|
215 |
+
[ Thu Sep 8 03:27:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 03:27:41 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 03:34:29 2022 ] Epoch 52 Curr Acc: (28067/50919)55.12%
|
218 |
+
[ Thu Sep 8 03:34:29 2022 ] Epoch 52 Best Acc 55.12%
|
219 |
+
[ Thu Sep 8 03:34:29 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 03:34:29 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 03:41:07 2022 ] Mean training loss: 0.2764.
|
222 |
+
[ Thu Sep 8 03:41:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 03:41:07 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 03:47:55 2022 ] Epoch 53 Curr Acc: (28580/50919)56.13%
|
225 |
+
[ Thu Sep 8 03:47:55 2022 ] Epoch 53 Best Acc 56.13%
|
226 |
+
[ Thu Sep 8 03:47:55 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 03:47:55 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 03:54:33 2022 ] Mean training loss: 0.2362.
|
229 |
+
[ Thu Sep 8 03:54:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 03:54:33 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 04:01:20 2022 ] Epoch 54 Curr Acc: (28779/50919)56.52%
|
232 |
+
[ Thu Sep 8 04:01:20 2022 ] Epoch 54 Best Acc 56.52%
|
233 |
+
[ Thu Sep 8 04:01:20 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 04:01:20 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 04:07:58 2022 ] Mean training loss: 0.1985.
|
236 |
+
[ Thu Sep 8 04:07:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 04:07:58 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 04:14:46 2022 ] Epoch 55 Curr Acc: (28006/50919)55.00%
|
239 |
+
[ Thu Sep 8 04:14:46 2022 ] Epoch 54 Best Acc 56.52%
|
240 |
+
[ Thu Sep 8 04:14:46 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 04:14:46 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 04:21:23 2022 ] Mean training loss: 0.1702.
|
243 |
+
[ Thu Sep 8 04:21:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 04:21:23 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 04:28:11 2022 ] Epoch 56 Curr Acc: (28411/50919)55.80%
|
246 |
+
[ Thu Sep 8 04:28:11 2022 ] Epoch 54 Best Acc 56.52%
|
247 |
+
[ Thu Sep 8 04:28:11 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 04:28:11 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 04:34:50 2022 ] Mean training loss: 0.1436.
|
250 |
+
[ Thu Sep 8 04:34:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 04:34:51 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 04:41:38 2022 ] Epoch 57 Curr Acc: (28130/50919)55.24%
|
253 |
+
[ Thu Sep 8 04:41:38 2022 ] Epoch 54 Best Acc 56.52%
|
254 |
+
[ Thu Sep 8 04:41:38 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 04:41:38 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 04:48:17 2022 ] Mean training loss: 0.1257.
|
257 |
+
[ Thu Sep 8 04:48:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 04:48:17 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 04:55:04 2022 ] Epoch 58 Curr Acc: (27163/50919)53.35%
|
260 |
+
[ Thu Sep 8 04:55:04 2022 ] Epoch 54 Best Acc 56.52%
|
261 |
+
[ Thu Sep 8 04:55:04 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 04:55:04 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 05:01:44 2022 ] Mean training loss: 0.1122.
|
264 |
+
[ Thu Sep 8 05:01:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 05:01:44 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 05:08:32 2022 ] Epoch 59 Curr Acc: (28446/50919)55.87%
|
267 |
+
[ Thu Sep 8 05:08:32 2022 ] Epoch 54 Best Acc 56.52%
|
268 |
+
[ Thu Sep 8 05:08:32 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 05:08:32 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 05:15:11 2022 ] Mean training loss: 0.1003.
|
271 |
+
[ Thu Sep 8 05:15:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 05:15:11 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 05:21:58 2022 ] Epoch 60 Curr Acc: (27848/50919)54.69%
|
274 |
+
[ Thu Sep 8 05:21:58 2022 ] Epoch 54 Best Acc 56.52%
|
275 |
+
[ Thu Sep 8 05:21:58 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 05:21:58 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 05:28:37 2022 ] Mean training loss: 0.0900.
|
278 |
+
[ Thu Sep 8 05:28:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 05:28:37 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 05:35:24 2022 ] Epoch 61 Curr Acc: (28017/50919)55.02%
|
281 |
+
[ Thu Sep 8 05:35:24 2022 ] Epoch 54 Best Acc 56.52%
|
282 |
+
[ Thu Sep 8 05:35:24 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 05:35:24 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 05:42:03 2022 ] Mean training loss: 0.0846.
|
285 |
+
[ Thu Sep 8 05:42:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 05:42:03 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 05:48:51 2022 ] Epoch 62 Curr Acc: (27292/50919)53.60%
|
288 |
+
[ Thu Sep 8 05:48:51 2022 ] Epoch 54 Best Acc 56.52%
|
289 |
+
[ Thu Sep 8 05:48:51 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 05:48:51 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 05:55:29 2022 ] Mean training loss: 0.0817.
|
292 |
+
[ Thu Sep 8 05:55:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 05:55:29 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 06:02:16 2022 ] Epoch 63 Curr Acc: (27251/50919)53.52%
|
295 |
+
[ Thu Sep 8 06:02:16 2022 ] Epoch 54 Best Acc 56.52%
|
296 |
+
[ Thu Sep 8 06:02:16 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 06:02:16 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 06:08:55 2022 ] Mean training loss: 0.0857.
|
299 |
+
[ Thu Sep 8 06:08:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 06:08:55 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 06:15:42 2022 ] Epoch 64 Curr Acc: (27321/50919)53.66%
|
302 |
+
[ Thu Sep 8 06:15:42 2022 ] Epoch 54 Best Acc 56.52%
|
303 |
+
[ Thu Sep 8 06:15:42 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 06:15:42 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 06:22:21 2022 ] Mean training loss: 0.0840.
|
306 |
+
[ Thu Sep 8 06:22:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 06:22:21 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 06:29:08 2022 ] Epoch 65 Curr Acc: (27135/50919)53.29%
|
309 |
+
[ Thu Sep 8 06:29:08 2022 ] Epoch 54 Best Acc 56.52%
|
310 |
+
[ Thu Sep 8 06:29:08 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 06:29:08 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 06:35:46 2022 ] Mean training loss: 0.0902.
|
313 |
+
[ Thu Sep 8 06:35:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 06:35:46 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 06:42:33 2022 ] Epoch 66 Curr Acc: (27501/50919)54.01%
|
316 |
+
[ Thu Sep 8 06:42:33 2022 ] Epoch 54 Best Acc 56.52%
|
317 |
+
[ Thu Sep 8 06:42:33 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 06:42:33 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 06:49:10 2022 ] Mean training loss: 0.0792.
|
320 |
+
[ Thu Sep 8 06:49:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 06:49:10 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 06:55:57 2022 ] Epoch 67 Curr Acc: (26786/50919)52.61%
|
323 |
+
[ Thu Sep 8 06:55:57 2022 ] Epoch 54 Best Acc 56.52%
|
324 |
+
[ Thu Sep 8 06:55:57 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 06:55:57 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 07:02:36 2022 ] Mean training loss: 0.0829.
|
327 |
+
[ Thu Sep 8 07:02:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 07:02:36 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 07:09:23 2022 ] Epoch 68 Curr Acc: (27327/50919)53.67%
|
330 |
+
[ Thu Sep 8 07:09:23 2022 ] Epoch 54 Best Acc 56.52%
|
331 |
+
[ Thu Sep 8 07:09:23 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 07:09:23 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 07:16:02 2022 ] Mean training loss: 0.0866.
|
334 |
+
[ Thu Sep 8 07:16:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 07:16:02 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 07:22:49 2022 ] Epoch 69 Curr Acc: (27766/50919)54.53%
|
337 |
+
[ Thu Sep 8 07:22:49 2022 ] Epoch 54 Best Acc 56.52%
|
338 |
+
[ Thu Sep 8 07:22:49 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 07:22:49 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 07:29:28 2022 ] Mean training loss: 0.0811.
|
341 |
+
[ Thu Sep 8 07:29:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 07:29:28 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 07:36:14 2022 ] Epoch 70 Curr Acc: (26193/50919)51.44%
|
344 |
+
[ Thu Sep 8 07:36:14 2022 ] Epoch 54 Best Acc 56.52%
|
345 |
+
[ Thu Sep 8 07:36:14 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 07:36:14 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 07:42:53 2022 ] Mean training loss: 0.0408.
|
348 |
+
[ Thu Sep 8 07:42:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 07:42:53 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 07:49:40 2022 ] Epoch 71 Curr Acc: (28004/50919)55.00%
|
351 |
+
[ Thu Sep 8 07:49:40 2022 ] Epoch 54 Best Acc 56.52%
|
352 |
+
[ Thu Sep 8 07:49:40 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 07:49:40 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 07:56:18 2022 ] Mean training loss: 0.0294.
|
355 |
+
[ Thu Sep 8 07:56:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 07:56:18 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 08:03:04 2022 ] Epoch 72 Curr Acc: (28081/50919)55.15%
|
358 |
+
[ Thu Sep 8 08:03:04 2022 ] Epoch 54 Best Acc 56.52%
|
359 |
+
[ Thu Sep 8 08:03:04 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 08:03:04 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 08:09:43 2022 ] Mean training loss: 0.0240.
|
362 |
+
[ Thu Sep 8 08:09:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 08:09:43 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 08:16:29 2022 ] Epoch 73 Curr Acc: (28268/50919)55.52%
|
365 |
+
[ Thu Sep 8 08:16:29 2022 ] Epoch 54 Best Acc 56.52%
|
366 |
+
[ Thu Sep 8 08:16:29 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 08:16:29 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 08:23:07 2022 ] Mean training loss: 0.0197.
|
369 |
+
[ Thu Sep 8 08:23:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 08:23:07 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 08:29:54 2022 ] Epoch 74 Curr Acc: (27956/50919)54.90%
|
372 |
+
[ Thu Sep 8 08:29:54 2022 ] Epoch 54 Best Acc 56.52%
|
373 |
+
[ Thu Sep 8 08:29:54 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 08:29:54 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 08:36:32 2022 ] Mean training loss: 0.0185.
|
376 |
+
[ Thu Sep 8 08:36:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 08:36:32 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 08:43:19 2022 ] Epoch 75 Curr Acc: (28479/50919)55.93%
|
379 |
+
[ Thu Sep 8 08:43:19 2022 ] Epoch 54 Best Acc 56.52%
|
380 |
+
[ Thu Sep 8 08:43:19 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 08:43:19 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 08:49:58 2022 ] Mean training loss: 0.0187.
|
383 |
+
[ Thu Sep 8 08:49:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 08:49:58 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 08:56:45 2022 ] Epoch 76 Curr Acc: (27736/50919)54.47%
|
386 |
+
[ Thu Sep 8 08:56:45 2022 ] Epoch 54 Best Acc 56.52%
|
387 |
+
[ Thu Sep 8 08:56:45 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 08:56:45 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 09:03:23 2022 ] Mean training loss: 0.0174.
|
390 |
+
[ Thu Sep 8 09:03:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 09:03:23 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 09:10:10 2022 ] Epoch 77 Curr Acc: (28292/50919)55.56%
|
393 |
+
[ Thu Sep 8 09:10:10 2022 ] Epoch 54 Best Acc 56.52%
|
394 |
+
[ Thu Sep 8 09:10:10 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 09:10:10 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 09:16:49 2022 ] Mean training loss: 0.0167.
|
397 |
+
[ Thu Sep 8 09:16:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 09:16:50 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 09:23:37 2022 ] Epoch 78 Curr Acc: (28095/50919)55.18%
|
400 |
+
[ Thu Sep 8 09:23:37 2022 ] Epoch 54 Best Acc 56.52%
|
401 |
+
[ Thu Sep 8 09:23:37 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 09:23:37 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 09:30:16 2022 ] Mean training loss: 0.0166.
|
404 |
+
[ Thu Sep 8 09:30:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 09:30:16 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 09:37:03 2022 ] Epoch 79 Curr Acc: (27909/50919)54.81%
|
407 |
+
[ Thu Sep 8 09:37:03 2022 ] Epoch 54 Best Acc 56.52%
|
408 |
+
[ Thu Sep 8 09:37:03 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 09:37:03 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 09:43:41 2022 ] Mean training loss: 0.0145.
|
411 |
+
[ Thu Sep 8 09:43:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 09:43:41 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 09:50:28 2022 ] Epoch 80 Curr Acc: (27822/50919)54.64%
|
414 |
+
[ Thu Sep 8 09:50:28 2022 ] Epoch 54 Best Acc 56.52%
|
415 |
+
[ Thu Sep 8 09:50:28 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 09:50:28 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 09:57:07 2022 ] Mean training loss: 0.0152.
|
418 |
+
[ Thu Sep 8 09:57:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 09:57:07 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 10:03:54 2022 ] Epoch 81 Curr Acc: (28262/50919)55.50%
|
421 |
+
[ Thu Sep 8 10:03:54 2022 ] Epoch 54 Best Acc 56.52%
|
422 |
+
[ Thu Sep 8 10:03:54 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 10:03:54 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 10:10:33 2022 ] Mean training loss: 0.0138.
|
425 |
+
[ Thu Sep 8 10:10:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 10:10:33 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 10:17:21 2022 ] Epoch 82 Curr Acc: (28551/50919)56.07%
|
428 |
+
[ Thu Sep 8 10:17:21 2022 ] Epoch 54 Best Acc 56.52%
|
429 |
+
[ Thu Sep 8 10:17:21 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 10:17:21 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 10:24:00 2022 ] Mean training loss: 0.0138.
|
432 |
+
[ Thu Sep 8 10:24:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 10:24:00 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 10:30:48 2022 ] Epoch 83 Curr Acc: (28096/50919)55.18%
|
435 |
+
[ Thu Sep 8 10:30:48 2022 ] Epoch 54 Best Acc 56.52%
|
436 |
+
[ Thu Sep 8 10:30:48 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 10:30:48 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 10:37:27 2022 ] Mean training loss: 0.0137.
|
439 |
+
[ Thu Sep 8 10:37:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 10:37:27 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 10:44:14 2022 ] Epoch 84 Curr Acc: (27911/50919)54.81%
|
442 |
+
[ Thu Sep 8 10:44:14 2022 ] Epoch 54 Best Acc 56.52%
|
443 |
+
[ Thu Sep 8 10:44:14 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 10:44:14 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 10:50:53 2022 ] Mean training loss: 0.0149.
|
446 |
+
[ Thu Sep 8 10:50:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 10:50:53 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 10:57:41 2022 ] Epoch 85 Curr Acc: (28660/50919)56.29%
|
449 |
+
[ Thu Sep 8 10:57:41 2022 ] Epoch 54 Best Acc 56.52%
|
450 |
+
[ Thu Sep 8 10:57:41 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 10:57:41 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 11:04:18 2022 ] Mean training loss: 0.0134.
|
453 |
+
[ Thu Sep 8 11:04:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 11:04:18 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 11:11:05 2022 ] Epoch 86 Curr Acc: (28392/50919)55.76%
|
456 |
+
[ Thu Sep 8 11:11:05 2022 ] Epoch 54 Best Acc 56.52%
|
457 |
+
[ Thu Sep 8 11:11:05 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 11:11:05 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 11:17:44 2022 ] Mean training loss: 0.0134.
|
460 |
+
[ Thu Sep 8 11:17:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 11:17:44 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 11:24:32 2022 ] Epoch 87 Curr Acc: (28551/50919)56.07%
|
463 |
+
[ Thu Sep 8 11:24:32 2022 ] Epoch 54 Best Acc 56.52%
|
464 |
+
[ Thu Sep 8 11:24:32 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 11:24:32 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 11:31:12 2022 ] Mean training loss: 0.0114.
|
467 |
+
[ Thu Sep 8 11:31:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 11:31:12 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 11:38:00 2022 ] Epoch 88 Curr Acc: (28432/50919)55.84%
|
470 |
+
[ Thu Sep 8 11:38:00 2022 ] Epoch 54 Best Acc 56.52%
|
471 |
+
[ Thu Sep 8 11:38:00 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 11:38:00 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 11:44:39 2022 ] Mean training loss: 0.0120.
|
474 |
+
[ Thu Sep 8 11:44:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 11:44:39 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 11:51:27 2022 ] Epoch 89 Curr Acc: (28606/50919)56.18%
|
477 |
+
[ Thu Sep 8 11:51:27 2022 ] Epoch 54 Best Acc 56.52%
|
478 |
+
[ Thu Sep 8 11:51:27 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 11:51:27 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 11:58:07 2022 ] Mean training loss: 0.0120.
|
481 |
+
[ Thu Sep 8 11:58:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 11:58:07 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 12:04:55 2022 ] Epoch 90 Curr Acc: (28496/50919)55.96%
|
484 |
+
[ Thu Sep 8 12:04:55 2022 ] Epoch 54 Best Acc 56.52%
|
485 |
+
[ Thu Sep 8 12:04:55 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 12:04:55 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 12:11:36 2022 ] Mean training loss: 0.0114.
|
488 |
+
[ Thu Sep 8 12:11:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 12:11:36 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 12:18:24 2022 ] Epoch 91 Curr Acc: (28335/50919)55.65%
|
491 |
+
[ Thu Sep 8 12:18:24 2022 ] Epoch 54 Best Acc 56.52%
|
492 |
+
[ Thu Sep 8 12:18:24 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 12:18:24 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 12:25:03 2022 ] Mean training loss: 0.0117.
|
495 |
+
[ Thu Sep 8 12:25:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 12:25:03 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 12:31:52 2022 ] Epoch 92 Curr Acc: (28666/50919)56.30%
|
498 |
+
[ Thu Sep 8 12:31:52 2022 ] Epoch 54 Best Acc 56.52%
|
499 |
+
[ Thu Sep 8 12:31:52 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 12:31:52 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 12:38:30 2022 ] Mean training loss: 0.0121.
|
502 |
+
[ Thu Sep 8 12:38:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 12:38:31 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 12:45:19 2022 ] Epoch 93 Curr Acc: (28146/50919)55.28%
|
505 |
+
[ Thu Sep 8 12:45:19 2022 ] Epoch 54 Best Acc 56.52%
|
506 |
+
[ Thu Sep 8 12:45:19 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 12:45:19 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 12:51:58 2022 ] Mean training loss: 0.0111.
|
509 |
+
[ Thu Sep 8 12:51:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 12:51:58 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 12:58:47 2022 ] Epoch 94 Curr Acc: (28741/50919)56.44%
|
512 |
+
[ Thu Sep 8 12:58:47 2022 ] Epoch 54 Best Acc 56.52%
|
513 |
+
[ Thu Sep 8 12:58:47 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 12:58:47 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 13:05:26 2022 ] Mean training loss: 0.0116.
|
516 |
+
[ Thu Sep 8 13:05:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 13:05:26 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 13:12:14 2022 ] Epoch 95 Curr Acc: (28011/50919)55.01%
|
519 |
+
[ Thu Sep 8 13:12:14 2022 ] Epoch 54 Best Acc 56.52%
|
520 |
+
[ Thu Sep 8 13:12:14 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 13:12:14 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 13:18:54 2022 ] Mean training loss: 0.0116.
|
523 |
+
[ Thu Sep 8 13:18:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 13:18:54 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 13:25:42 2022 ] Epoch 96 Curr Acc: (27446/50919)53.90%
|
526 |
+
[ Thu Sep 8 13:25:42 2022 ] Epoch 54 Best Acc 56.52%
|
527 |
+
[ Thu Sep 8 13:25:42 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 13:25:42 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 13:32:23 2022 ] Mean training loss: 0.0113.
|
530 |
+
[ Thu Sep 8 13:32:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 13:32:23 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 13:39:11 2022 ] Epoch 97 Curr Acc: (28261/50919)55.50%
|
533 |
+
[ Thu Sep 8 13:39:11 2022 ] Epoch 54 Best Acc 56.52%
|
534 |
+
[ Thu Sep 8 13:39:11 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 13:39:11 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 13:45:52 2022 ] Mean training loss: 0.0113.
|
537 |
+
[ Thu Sep 8 13:45:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 13:45:52 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 13:52:39 2022 ] Epoch 98 Curr Acc: (28415/50919)55.80%
|
540 |
+
[ Thu Sep 8 13:52:39 2022 ] Epoch 54 Best Acc 56.52%
|
541 |
+
[ Thu Sep 8 13:52:39 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 13:52:39 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 13:59:17 2022 ] Mean training loss: 0.0111.
|
544 |
+
[ Thu Sep 8 13:59:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 13:59:17 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 14:06:04 2022 ] Epoch 99 Curr Acc: (28017/50919)55.02%
|
547 |
+
[ Thu Sep 8 14:06:04 2022 ] Epoch 54 Best Acc 56.52%
|
548 |
+
[ Thu Sep 8 14:06:04 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 14:06:04 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 14:12:42 2022 ] Mean training loss: 0.0104.
|
551 |
+
[ Thu Sep 8 14:12:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 14:12:42 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 14:19:29 2022 ] Epoch 100 Curr Acc: (28442/50919)55.86%
|
554 |
+
[ Thu Sep 8 14:19:29 2022 ] Epoch 54 Best Acc 56.52%
|
555 |
+
[ Thu Sep 8 14:19:29 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 14:19:29 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 14:26:07 2022 ] Mean training loss: 0.0109.
|
558 |
+
[ Thu Sep 8 14:26:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 14:26:07 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 14:32:54 2022 ] Epoch 101 Curr Acc: (28236/50919)55.45%
|
561 |
+
[ Thu Sep 8 14:32:54 2022 ] Epoch 54 Best Acc 56.52%
|
562 |
+
[ Thu Sep 8 14:32:54 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 14:32:54 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 14:39:33 2022 ] Mean training loss: 0.0116.
|
565 |
+
[ Thu Sep 8 14:39:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 14:39:33 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 14:46:20 2022 ] Epoch 102 Curr Acc: (28441/50919)55.86%
|
568 |
+
[ Thu Sep 8 14:46:20 2022 ] Epoch 54 Best Acc 56.52%
|
569 |
+
[ Thu Sep 8 14:46:20 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 14:46:20 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 14:52:58 2022 ] Mean training loss: 0.0122.
|
572 |
+
[ Thu Sep 8 14:52:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 14:52:58 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 14:59:45 2022 ] Epoch 103 Curr Acc: (28322/50919)55.62%
|
575 |
+
[ Thu Sep 8 14:59:45 2022 ] Epoch 54 Best Acc 56.52%
|
576 |
+
[ Thu Sep 8 14:59:45 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 14:59:45 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 15:06:24 2022 ] Mean training loss: 0.0116.
|
579 |
+
[ Thu Sep 8 15:06:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 15:06:24 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 15:13:11 2022 ] Epoch 104 Curr Acc: (28575/50919)56.12%
|
582 |
+
[ Thu Sep 8 15:13:11 2022 ] Epoch 54 Best Acc 56.52%
|
583 |
+
[ Thu Sep 8 15:13:11 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 15:13:11 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 15:19:49 2022 ] Mean training loss: 0.0110.
|
586 |
+
[ Thu Sep 8 15:19:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 15:19:49 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 15:26:35 2022 ] Epoch 105 Curr Acc: (28136/50919)55.26%
|
589 |
+
[ Thu Sep 8 15:26:35 2022 ] Epoch 54 Best Acc 56.52%
|
590 |
+
[ Thu Sep 8 15:26:35 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 15:26:35 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 15:33:14 2022 ] Mean training loss: 0.0110.
|
593 |
+
[ Thu Sep 8 15:33:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 15:33:14 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 15:40:00 2022 ] Epoch 106 Curr Acc: (28410/50919)55.79%
|
596 |
+
[ Thu Sep 8 15:40:00 2022 ] Epoch 54 Best Acc 56.52%
|
597 |
+
[ Thu Sep 8 15:40:00 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 15:40:00 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 15:46:37 2022 ] Mean training loss: 0.0112.
|
600 |
+
[ Thu Sep 8 15:46:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 15:46:37 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 15:53:24 2022 ] Epoch 107 Curr Acc: (28708/50919)56.38%
|
603 |
+
[ Thu Sep 8 15:53:24 2022 ] Epoch 54 Best Acc 56.52%
|
604 |
+
[ Thu Sep 8 15:53:24 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 15:53:24 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 16:00:02 2022 ] Mean training loss: 0.0112.
|
607 |
+
[ Thu Sep 8 16:00:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 16:00:02 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 16:06:49 2022 ] Epoch 108 Curr Acc: (28446/50919)55.87%
|
610 |
+
[ Thu Sep 8 16:06:49 2022 ] Epoch 54 Best Acc 56.52%
|
611 |
+
[ Thu Sep 8 16:06:49 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 16:06:49 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 16:13:28 2022 ] Mean training loss: 0.0108.
|
614 |
+
[ Thu Sep 8 16:13:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 16:13:28 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 16:20:14 2022 ] Epoch 109 Curr Acc: (28427/50919)55.83%
|
617 |
+
[ Thu Sep 8 16:20:14 2022 ] Epoch 54 Best Acc 56.52%
|
618 |
+
[ Thu Sep 8 16:20:14 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 16:20:14 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 16:26:53 2022 ] Mean training loss: 0.0121.
|
621 |
+
[ Thu Sep 8 16:26:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 16:26:53 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 16:33:39 2022 ] Epoch 110 Curr Acc: (28147/50919)55.28%
|
624 |
+
[ Thu Sep 8 16:33:39 2022 ] Epoch 54 Best Acc 56.52%
|
625 |
+
[ Thu Sep 8 16:33:39 2022 ] epoch: 54, best accuracy: 0.5651917751723325
|
626 |
+
[ Thu Sep 8 16:33:39 2022 ] Experiment: ./work_dir/ntu120/xsub_bm
|
627 |
+
[ Thu Sep 8 16:33:39 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 16:33:39 2022 ] Load weights from ./runs/ntu120/xsub_bm/runs-53-105300.pt.
|
629 |
+
[ Thu Sep 8 16:33:39 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 16:40:24 2022 ] Epoch 1 Curr Acc: (28779/50919)56.52%
|
631 |
+
[ Thu Sep 8 16:40:24 2022 ] Epoch 54 Best Acc 56.52%
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xsub_j.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xsub_j/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xsub_j
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:970fb96c694e69cc7b3de27dda5a9160f196839288f4f24f73d3500159078621
|
3 |
+
size 29946137
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_j/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:34:48 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:34:48 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xsub_j', 'model_saved_name': './runs/ntu120/xsub_j/runs', 'config': 'config/ntu120/xsub_j.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:34:48 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:34:48 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:41:24 2022 ] Mean training loss: 3.4110.
|
8 |
+
[ Wed Sep 7 21:41:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
9 |
+
[ Wed Sep 7 21:41:24 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:41:24 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:47:59 2022 ] Mean training loss: 2.4547.
|
12 |
+
[ Wed Sep 7 21:47:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:47:59 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:47:59 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:54:36 2022 ] Mean training loss: 1.9976.
|
16 |
+
[ Wed Sep 7 21:54:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:54:36 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:54:36 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 22:01:13 2022 ] Mean training loss: 1.7330.
|
20 |
+
[ Wed Sep 7 22:01:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 22:01:13 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 22:01:13 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 22:07:49 2022 ] Mean training loss: 1.5684.
|
24 |
+
[ Wed Sep 7 22:07:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 22:07:49 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 22:07:49 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:14:24 2022 ] Mean training loss: 1.4553.
|
28 |
+
[ Wed Sep 7 22:14:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:14:24 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:14:24 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:21:00 2022 ] Mean training loss: 1.4066.
|
32 |
+
[ Wed Sep 7 22:21:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:21:00 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:21:00 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:27:36 2022 ] Mean training loss: 1.3621.
|
36 |
+
[ Wed Sep 7 22:27:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:27:36 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:27:36 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:34:12 2022 ] Mean training loss: 1.3254.
|
40 |
+
[ Wed Sep 7 22:34:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:34:12 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:34:12 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:40:48 2022 ] Mean training loss: 1.3225.
|
44 |
+
[ Wed Sep 7 22:40:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:40:48 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:40:48 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:47:25 2022 ] Mean training loss: 1.2530.
|
48 |
+
[ Wed Sep 7 22:47:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:47:25 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:47:25 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:53:59 2022 ] Mean training loss: 1.1999.
|
52 |
+
[ Wed Sep 7 22:53:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:53:59 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:53:59 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 23:00:34 2022 ] Mean training loss: 1.1760.
|
56 |
+
[ Wed Sep 7 23:00:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 23:00:34 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 23:00:34 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 23:07:09 2022 ] Mean training loss: 1.1365.
|
60 |
+
[ Wed Sep 7 23:07:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 23:07:09 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 23:07:09 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 23:13:44 2022 ] Mean training loss: 1.1145.
|
64 |
+
[ Wed Sep 7 23:13:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 23:13:44 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 23:13:44 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 23:20:21 2022 ] Mean training loss: 1.0964.
|
68 |
+
[ Wed Sep 7 23:20:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 23:20:21 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 23:20:21 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 23:26:58 2022 ] Mean training loss: 1.0684.
|
72 |
+
[ Wed Sep 7 23:26:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 23:26:58 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 23:26:58 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 23:33:34 2022 ] Mean training loss: 1.0638.
|
76 |
+
[ Wed Sep 7 23:33:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 23:33:34 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 23:33:34 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 23:40:10 2022 ] Mean training loss: 1.0479.
|
80 |
+
[ Wed Sep 7 23:40:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 23:40:10 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 23:40:10 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:46:45 2022 ] Mean training loss: 1.0294.
|
84 |
+
[ Wed Sep 7 23:46:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:46:45 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:46:45 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:53:21 2022 ] Mean training loss: 1.0288.
|
88 |
+
[ Wed Sep 7 23:53:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:53:21 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:53:21 2022 ] Learning rate: 0.15
|
91 |
+
[ Wed Sep 7 23:59:56 2022 ] Mean training loss: 1.0129.
|
92 |
+
[ Wed Sep 7 23:59:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Wed Sep 7 23:59:56 2022 ] Training epoch: 23
|
94 |
+
[ Wed Sep 7 23:59:56 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 00:06:33 2022 ] Mean training loss: 1.0015.
|
96 |
+
[ Thu Sep 8 00:06:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Thu Sep 8 00:06:33 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 00:06:33 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 00:13:08 2022 ] Mean training loss: 1.0029.
|
100 |
+
[ Thu Sep 8 00:13:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Thu Sep 8 00:13:08 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 00:13:08 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 00:19:44 2022 ] Mean training loss: 0.9837.
|
104 |
+
[ Thu Sep 8 00:19:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Thu Sep 8 00:19:44 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 00:19:44 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 00:26:20 2022 ] Mean training loss: 0.9914.
|
108 |
+
[ Thu Sep 8 00:26:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Thu Sep 8 00:26:20 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 00:26:20 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 00:32:56 2022 ] Mean training loss: 0.9702.
|
112 |
+
[ Thu Sep 8 00:32:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Thu Sep 8 00:32:56 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 00:32:56 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 00:39:32 2022 ] Mean training loss: 0.9798.
|
116 |
+
[ Thu Sep 8 00:39:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Thu Sep 8 00:39:32 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 00:39:32 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 00:46:08 2022 ] Mean training loss: 0.9441.
|
120 |
+
[ Thu Sep 8 00:46:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Thu Sep 8 00:46:08 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 00:46:08 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 00:52:43 2022 ] Mean training loss: 0.9694.
|
124 |
+
[ Thu Sep 8 00:52:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Thu Sep 8 00:52:43 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 00:52:43 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 00:59:18 2022 ] Mean training loss: 0.9698.
|
128 |
+
[ Thu Sep 8 00:59:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Thu Sep 8 00:59:18 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 00:59:18 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 01:05:53 2022 ] Mean training loss: 0.9586.
|
132 |
+
[ Thu Sep 8 01:05:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Thu Sep 8 01:05:53 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 01:05:53 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 01:12:28 2022 ] Mean training loss: 0.9430.
|
136 |
+
[ Thu Sep 8 01:12:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 01:12:28 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 01:12:28 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 01:19:05 2022 ] Mean training loss: 0.9436.
|
140 |
+
[ Thu Sep 8 01:19:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 01:19:05 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 01:19:05 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 01:25:42 2022 ] Mean training loss: 0.9375.
|
144 |
+
[ Thu Sep 8 01:25:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 01:25:42 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 01:25:42 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 01:32:18 2022 ] Mean training loss: 0.9467.
|
148 |
+
[ Thu Sep 8 01:32:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 01:32:18 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 01:32:18 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 01:38:54 2022 ] Mean training loss: 0.9447.
|
152 |
+
[ Thu Sep 8 01:38:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 01:38:54 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 01:38:54 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 01:45:30 2022 ] Mean training loss: 0.9448.
|
156 |
+
[ Thu Sep 8 01:45:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 01:45:30 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 01:45:30 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 01:52:06 2022 ] Mean training loss: 0.9296.
|
160 |
+
[ Thu Sep 8 01:52:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 01:52:06 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 01:52:06 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 01:58:40 2022 ] Mean training loss: 0.9398.
|
164 |
+
[ Thu Sep 8 01:58:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 01:58:40 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 01:58:40 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 02:05:14 2022 ] Mean training loss: 0.9259.
|
168 |
+
[ Thu Sep 8 02:05:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 02:05:14 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 02:05:14 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 02:11:49 2022 ] Mean training loss: 0.9358.
|
172 |
+
[ Thu Sep 8 02:11:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 02:11:49 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 02:11:49 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 02:18:24 2022 ] Mean training loss: 0.9339.
|
176 |
+
[ Thu Sep 8 02:18:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 02:18:24 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 02:18:24 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 02:25:00 2022 ] Mean training loss: 0.9247.
|
180 |
+
[ Thu Sep 8 02:25:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 02:25:00 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 02:25:00 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 02:31:37 2022 ] Mean training loss: 0.9417.
|
184 |
+
[ Thu Sep 8 02:31:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 02:31:37 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 02:31:37 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 02:38:12 2022 ] Mean training loss: 0.9303.
|
188 |
+
[ Thu Sep 8 02:38:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 02:38:12 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 02:38:12 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 02:44:47 2022 ] Mean training loss: 0.9310.
|
192 |
+
[ Thu Sep 8 02:44:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 02:44:47 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 02:44:47 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 02:51:23 2022 ] Mean training loss: 0.9202.
|
196 |
+
[ Thu Sep 8 02:51:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 02:51:23 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 02:51:23 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 02:57:59 2022 ] Mean training loss: 0.9208.
|
200 |
+
[ Thu Sep 8 02:57:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 02:57:59 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 02:57:59 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 03:04:35 2022 ] Mean training loss: 0.9195.
|
204 |
+
[ Thu Sep 8 03:04:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 03:04:35 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 03:04:35 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 03:11:11 2022 ] Mean training loss: 0.4928.
|
208 |
+
[ Thu Sep 8 03:11:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 03:11:11 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 03:17:55 2022 ] Epoch 51 Curr Acc: (27550/50919)54.11%
|
211 |
+
[ Thu Sep 8 03:17:55 2022 ] Epoch 51 Best Acc 54.11%
|
212 |
+
[ Thu Sep 8 03:17:55 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 03:17:55 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 03:24:31 2022 ] Mean training loss: 0.3719.
|
215 |
+
[ Thu Sep 8 03:24:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 03:24:31 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 03:31:14 2022 ] Epoch 52 Curr Acc: (28520/50919)56.01%
|
218 |
+
[ Thu Sep 8 03:31:14 2022 ] Epoch 52 Best Acc 56.01%
|
219 |
+
[ Thu Sep 8 03:31:14 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 03:31:14 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 03:37:51 2022 ] Mean training loss: 0.3150.
|
222 |
+
[ Thu Sep 8 03:37:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 03:37:51 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 03:44:35 2022 ] Epoch 53 Curr Acc: (28941/50919)56.84%
|
225 |
+
[ Thu Sep 8 03:44:35 2022 ] Epoch 53 Best Acc 56.84%
|
226 |
+
[ Thu Sep 8 03:44:35 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 03:44:35 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 03:51:10 2022 ] Mean training loss: 0.2692.
|
229 |
+
[ Thu Sep 8 03:51:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 03:51:10 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 03:57:54 2022 ] Epoch 54 Curr Acc: (29213/50919)57.37%
|
232 |
+
[ Thu Sep 8 03:57:54 2022 ] Epoch 54 Best Acc 57.37%
|
233 |
+
[ Thu Sep 8 03:57:54 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 03:57:54 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 04:04:30 2022 ] Mean training loss: 0.2441.
|
236 |
+
[ Thu Sep 8 04:04:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 04:04:30 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 04:11:13 2022 ] Epoch 55 Curr Acc: (28870/50919)56.70%
|
239 |
+
[ Thu Sep 8 04:11:13 2022 ] Epoch 54 Best Acc 57.37%
|
240 |
+
[ Thu Sep 8 04:11:13 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 04:11:13 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 04:17:49 2022 ] Mean training loss: 0.2166.
|
243 |
+
[ Thu Sep 8 04:17:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 04:17:49 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 04:24:32 2022 ] Epoch 56 Curr Acc: (29086/50919)57.12%
|
246 |
+
[ Thu Sep 8 04:24:32 2022 ] Epoch 54 Best Acc 57.37%
|
247 |
+
[ Thu Sep 8 04:24:32 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 04:24:32 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 04:31:09 2022 ] Mean training loss: 0.1935.
|
250 |
+
[ Thu Sep 8 04:31:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 04:31:09 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 04:37:52 2022 ] Epoch 57 Curr Acc: (28702/50919)56.37%
|
253 |
+
[ Thu Sep 8 04:37:52 2022 ] Epoch 54 Best Acc 57.37%
|
254 |
+
[ Thu Sep 8 04:37:52 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 04:37:52 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 04:44:29 2022 ] Mean training loss: 0.1774.
|
257 |
+
[ Thu Sep 8 04:44:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 04:44:29 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 04:51:12 2022 ] Epoch 58 Curr Acc: (29216/50919)57.38%
|
260 |
+
[ Thu Sep 8 04:51:12 2022 ] Epoch 58 Best Acc 57.38%
|
261 |
+
[ Thu Sep 8 04:51:12 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 04:51:12 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 04:57:49 2022 ] Mean training loss: 0.1613.
|
264 |
+
[ Thu Sep 8 04:57:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 04:57:49 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 05:04:32 2022 ] Epoch 59 Curr Acc: (29268/50919)57.48%
|
267 |
+
[ Thu Sep 8 05:04:32 2022 ] Epoch 59 Best Acc 57.48%
|
268 |
+
[ Thu Sep 8 05:04:32 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 05:04:32 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 05:11:08 2022 ] Mean training loss: 0.1465.
|
271 |
+
[ Thu Sep 8 05:11:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 05:11:08 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 05:17:51 2022 ] Epoch 60 Curr Acc: (27961/50919)54.91%
|
274 |
+
[ Thu Sep 8 05:17:51 2022 ] Epoch 59 Best Acc 57.48%
|
275 |
+
[ Thu Sep 8 05:17:51 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 05:17:51 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 05:24:28 2022 ] Mean training loss: 0.1338.
|
278 |
+
[ Thu Sep 8 05:24:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 05:24:28 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 05:31:11 2022 ] Epoch 61 Curr Acc: (28617/50919)56.20%
|
281 |
+
[ Thu Sep 8 05:31:11 2022 ] Epoch 59 Best Acc 57.48%
|
282 |
+
[ Thu Sep 8 05:31:11 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 05:31:11 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 05:37:47 2022 ] Mean training loss: 0.1262.
|
285 |
+
[ Thu Sep 8 05:37:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 05:37:47 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 05:44:30 2022 ] Epoch 62 Curr Acc: (28582/50919)56.13%
|
288 |
+
[ Thu Sep 8 05:44:30 2022 ] Epoch 59 Best Acc 57.48%
|
289 |
+
[ Thu Sep 8 05:44:30 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 05:44:30 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 05:51:07 2022 ] Mean training loss: 0.1247.
|
292 |
+
[ Thu Sep 8 05:51:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 05:51:07 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 05:57:50 2022 ] Epoch 63 Curr Acc: (28114/50919)55.21%
|
295 |
+
[ Thu Sep 8 05:57:50 2022 ] Epoch 59 Best Acc 57.48%
|
296 |
+
[ Thu Sep 8 05:57:50 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 05:57:50 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 06:04:26 2022 ] Mean training loss: 0.1191.
|
299 |
+
[ Thu Sep 8 06:04:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 06:04:26 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 06:11:09 2022 ] Epoch 64 Curr Acc: (28186/50919)55.35%
|
302 |
+
[ Thu Sep 8 06:11:09 2022 ] Epoch 59 Best Acc 57.48%
|
303 |
+
[ Thu Sep 8 06:11:09 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 06:11:09 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 06:17:45 2022 ] Mean training loss: 0.1178.
|
306 |
+
[ Thu Sep 8 06:17:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 06:17:45 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 06:24:28 2022 ] Epoch 65 Curr Acc: (27422/50919)53.85%
|
309 |
+
[ Thu Sep 8 06:24:28 2022 ] Epoch 59 Best Acc 57.48%
|
310 |
+
[ Thu Sep 8 06:24:28 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 06:24:28 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 06:31:04 2022 ] Mean training loss: 0.1247.
|
313 |
+
[ Thu Sep 8 06:31:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 06:31:04 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 06:37:47 2022 ] Epoch 66 Curr Acc: (27001/50919)53.03%
|
316 |
+
[ Thu Sep 8 06:37:47 2022 ] Epoch 59 Best Acc 57.48%
|
317 |
+
[ Thu Sep 8 06:37:47 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 06:37:47 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 06:44:23 2022 ] Mean training loss: 0.1185.
|
320 |
+
[ Thu Sep 8 06:44:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 06:44:24 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 06:51:06 2022 ] Epoch 67 Curr Acc: (27867/50919)54.73%
|
323 |
+
[ Thu Sep 8 06:51:06 2022 ] Epoch 59 Best Acc 57.48%
|
324 |
+
[ Thu Sep 8 06:51:06 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 06:51:06 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 06:57:43 2022 ] Mean training loss: 0.1110.
|
327 |
+
[ Thu Sep 8 06:57:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 06:57:43 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 07:04:26 2022 ] Epoch 68 Curr Acc: (28220/50919)55.42%
|
330 |
+
[ Thu Sep 8 07:04:26 2022 ] Epoch 59 Best Acc 57.48%
|
331 |
+
[ Thu Sep 8 07:04:26 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 07:04:26 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 07:11:01 2022 ] Mean training loss: 0.1122.
|
334 |
+
[ Thu Sep 8 07:11:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 07:11:01 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 07:17:44 2022 ] Epoch 69 Curr Acc: (27883/50919)54.76%
|
337 |
+
[ Thu Sep 8 07:17:44 2022 ] Epoch 59 Best Acc 57.48%
|
338 |
+
[ Thu Sep 8 07:17:44 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 07:17:44 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 07:24:21 2022 ] Mean training loss: 0.1229.
|
341 |
+
[ Thu Sep 8 07:24:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 07:24:21 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 07:31:04 2022 ] Epoch 70 Curr Acc: (27158/50919)53.34%
|
344 |
+
[ Thu Sep 8 07:31:04 2022 ] Epoch 59 Best Acc 57.48%
|
345 |
+
[ Thu Sep 8 07:31:04 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 07:31:04 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 07:37:41 2022 ] Mean training loss: 0.0659.
|
348 |
+
[ Thu Sep 8 07:37:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 07:37:41 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 07:44:24 2022 ] Epoch 71 Curr Acc: (28399/50919)55.77%
|
351 |
+
[ Thu Sep 8 07:44:24 2022 ] Epoch 59 Best Acc 57.48%
|
352 |
+
[ Thu Sep 8 07:44:24 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 07:44:24 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 07:50:58 2022 ] Mean training loss: 0.0415.
|
355 |
+
[ Thu Sep 8 07:50:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 07:50:58 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 07:57:41 2022 ] Epoch 72 Curr Acc: (28925/50919)56.81%
|
358 |
+
[ Thu Sep 8 07:57:41 2022 ] Epoch 59 Best Acc 57.48%
|
359 |
+
[ Thu Sep 8 07:57:41 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 07:57:41 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 08:04:17 2022 ] Mean training loss: 0.0350.
|
362 |
+
[ Thu Sep 8 08:04:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 08:04:17 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 08:11:00 2022 ] Epoch 73 Curr Acc: (28805/50919)56.57%
|
365 |
+
[ Thu Sep 8 08:11:00 2022 ] Epoch 59 Best Acc 57.48%
|
366 |
+
[ Thu Sep 8 08:11:00 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 08:11:00 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 08:17:37 2022 ] Mean training loss: 0.0290.
|
369 |
+
[ Thu Sep 8 08:17:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 08:17:37 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 08:24:20 2022 ] Epoch 74 Curr Acc: (29052/50919)57.06%
|
372 |
+
[ Thu Sep 8 08:24:20 2022 ] Epoch 59 Best Acc 57.48%
|
373 |
+
[ Thu Sep 8 08:24:20 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 08:24:20 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 08:30:56 2022 ] Mean training loss: 0.0276.
|
376 |
+
[ Thu Sep 8 08:30:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 08:30:56 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 08:37:39 2022 ] Epoch 75 Curr Acc: (28863/50919)56.68%
|
379 |
+
[ Thu Sep 8 08:37:39 2022 ] Epoch 59 Best Acc 57.48%
|
380 |
+
[ Thu Sep 8 08:37:39 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 08:37:39 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 08:44:16 2022 ] Mean training loss: 0.0257.
|
383 |
+
[ Thu Sep 8 08:44:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 08:44:16 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 08:50:58 2022 ] Epoch 76 Curr Acc: (28568/50919)56.10%
|
386 |
+
[ Thu Sep 8 08:50:58 2022 ] Epoch 59 Best Acc 57.48%
|
387 |
+
[ Thu Sep 8 08:50:58 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 08:50:58 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 08:57:35 2022 ] Mean training loss: 0.0261.
|
390 |
+
[ Thu Sep 8 08:57:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 08:57:35 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 09:04:18 2022 ] Epoch 77 Curr Acc: (28749/50919)56.46%
|
393 |
+
[ Thu Sep 8 09:04:18 2022 ] Epoch 59 Best Acc 57.48%
|
394 |
+
[ Thu Sep 8 09:04:18 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 09:04:18 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 09:10:55 2022 ] Mean training loss: 0.0242.
|
397 |
+
[ Thu Sep 8 09:10:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 09:10:55 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 09:17:38 2022 ] Epoch 78 Curr Acc: (28752/50919)56.47%
|
400 |
+
[ Thu Sep 8 09:17:38 2022 ] Epoch 59 Best Acc 57.48%
|
401 |
+
[ Thu Sep 8 09:17:38 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 09:17:38 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 09:24:15 2022 ] Mean training loss: 0.0220.
|
404 |
+
[ Thu Sep 8 09:24:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 09:24:15 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 09:30:58 2022 ] Epoch 79 Curr Acc: (28827/50919)56.61%
|
407 |
+
[ Thu Sep 8 09:30:58 2022 ] Epoch 59 Best Acc 57.48%
|
408 |
+
[ Thu Sep 8 09:30:58 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 09:30:58 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 09:37:34 2022 ] Mean training loss: 0.0207.
|
411 |
+
[ Thu Sep 8 09:37:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 09:37:34 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 09:44:16 2022 ] Epoch 80 Curr Acc: (28801/50919)56.56%
|
414 |
+
[ Thu Sep 8 09:44:16 2022 ] Epoch 59 Best Acc 57.48%
|
415 |
+
[ Thu Sep 8 09:44:17 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 09:44:17 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 09:50:54 2022 ] Mean training loss: 0.0207.
|
418 |
+
[ Thu Sep 8 09:50:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 09:50:54 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 09:57:37 2022 ] Epoch 81 Curr Acc: (28660/50919)56.29%
|
421 |
+
[ Thu Sep 8 09:57:37 2022 ] Epoch 59 Best Acc 57.48%
|
422 |
+
[ Thu Sep 8 09:57:37 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 09:57:37 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 10:04:13 2022 ] Mean training loss: 0.0191.
|
425 |
+
[ Thu Sep 8 10:04:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 10:04:13 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 10:10:56 2022 ] Epoch 82 Curr Acc: (29050/50919)57.05%
|
428 |
+
[ Thu Sep 8 10:10:56 2022 ] Epoch 59 Best Acc 57.48%
|
429 |
+
[ Thu Sep 8 10:10:56 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 10:10:56 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 10:17:32 2022 ] Mean training loss: 0.0185.
|
432 |
+
[ Thu Sep 8 10:17:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 10:17:33 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 10:24:16 2022 ] Epoch 83 Curr Acc: (28827/50919)56.61%
|
435 |
+
[ Thu Sep 8 10:24:16 2022 ] Epoch 59 Best Acc 57.48%
|
436 |
+
[ Thu Sep 8 10:24:16 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 10:24:16 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 10:30:52 2022 ] Mean training loss: 0.0185.
|
439 |
+
[ Thu Sep 8 10:30:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 10:30:52 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 10:37:35 2022 ] Epoch 84 Curr Acc: (29072/50919)57.09%
|
442 |
+
[ Thu Sep 8 10:37:35 2022 ] Epoch 59 Best Acc 57.48%
|
443 |
+
[ Thu Sep 8 10:37:35 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 10:37:35 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 10:44:12 2022 ] Mean training loss: 0.0185.
|
446 |
+
[ Thu Sep 8 10:44:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 10:44:12 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 10:50:55 2022 ] Epoch 85 Curr Acc: (28934/50919)56.82%
|
449 |
+
[ Thu Sep 8 10:50:55 2022 ] Epoch 59 Best Acc 57.48%
|
450 |
+
[ Thu Sep 8 10:50:55 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 10:50:55 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 10:57:33 2022 ] Mean training loss: 0.0179.
|
453 |
+
[ Thu Sep 8 10:57:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 10:57:33 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 11:04:16 2022 ] Epoch 86 Curr Acc: (29233/50919)57.41%
|
456 |
+
[ Thu Sep 8 11:04:16 2022 ] Epoch 59 Best Acc 57.48%
|
457 |
+
[ Thu Sep 8 11:04:16 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 11:04:16 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 11:10:53 2022 ] Mean training loss: 0.0172.
|
460 |
+
[ Thu Sep 8 11:10:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 11:10:53 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 11:17:36 2022 ] Epoch 87 Curr Acc: (29174/50919)57.29%
|
463 |
+
[ Thu Sep 8 11:17:36 2022 ] Epoch 59 Best Acc 57.48%
|
464 |
+
[ Thu Sep 8 11:17:36 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 11:17:36 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 11:24:13 2022 ] Mean training loss: 0.0166.
|
467 |
+
[ Thu Sep 8 11:24:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 11:24:13 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 11:30:56 2022 ] Epoch 88 Curr Acc: (28578/50919)56.12%
|
470 |
+
[ Thu Sep 8 11:30:56 2022 ] Epoch 59 Best Acc 57.48%
|
471 |
+
[ Thu Sep 8 11:30:56 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 11:30:56 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 11:37:33 2022 ] Mean training loss: 0.0164.
|
474 |
+
[ Thu Sep 8 11:37:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 11:37:33 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 11:44:16 2022 ] Epoch 89 Curr Acc: (29062/50919)57.07%
|
477 |
+
[ Thu Sep 8 11:44:16 2022 ] Epoch 59 Best Acc 57.48%
|
478 |
+
[ Thu Sep 8 11:44:16 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 11:44:16 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 11:50:52 2022 ] Mean training loss: 0.0162.
|
481 |
+
[ Thu Sep 8 11:50:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 11:50:52 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 11:57:36 2022 ] Epoch 90 Curr Acc: (28627/50919)56.22%
|
484 |
+
[ Thu Sep 8 11:57:36 2022 ] Epoch 59 Best Acc 57.48%
|
485 |
+
[ Thu Sep 8 11:57:36 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 11:57:36 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 12:04:11 2022 ] Mean training loss: 0.0158.
|
488 |
+
[ Thu Sep 8 12:04:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 12:04:11 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 12:10:55 2022 ] Epoch 91 Curr Acc: (29127/50919)57.20%
|
491 |
+
[ Thu Sep 8 12:10:55 2022 ] Epoch 59 Best Acc 57.48%
|
492 |
+
[ Thu Sep 8 12:10:55 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 12:10:55 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 12:17:32 2022 ] Mean training loss: 0.0150.
|
495 |
+
[ Thu Sep 8 12:17:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 12:17:32 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 12:24:15 2022 ] Epoch 92 Curr Acc: (28910/50919)56.78%
|
498 |
+
[ Thu Sep 8 12:24:15 2022 ] Epoch 59 Best Acc 57.48%
|
499 |
+
[ Thu Sep 8 12:24:15 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 12:24:15 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 12:30:52 2022 ] Mean training loss: 0.0155.
|
502 |
+
[ Thu Sep 8 12:30:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 12:30:52 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 12:37:35 2022 ] Epoch 93 Curr Acc: (29038/50919)57.03%
|
505 |
+
[ Thu Sep 8 12:37:35 2022 ] Epoch 59 Best Acc 57.48%
|
506 |
+
[ Thu Sep 8 12:37:35 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 12:37:35 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 12:44:12 2022 ] Mean training loss: 0.0147.
|
509 |
+
[ Thu Sep 8 12:44:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 12:44:12 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 12:50:56 2022 ] Epoch 94 Curr Acc: (28978/50919)56.91%
|
512 |
+
[ Thu Sep 8 12:50:56 2022 ] Epoch 59 Best Acc 57.48%
|
513 |
+
[ Thu Sep 8 12:50:56 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 12:50:56 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 12:57:31 2022 ] Mean training loss: 0.0147.
|
516 |
+
[ Thu Sep 8 12:57:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 12:57:31 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 13:04:14 2022 ] Epoch 95 Curr Acc: (29125/50919)57.20%
|
519 |
+
[ Thu Sep 8 13:04:14 2022 ] Epoch 59 Best Acc 57.48%
|
520 |
+
[ Thu Sep 8 13:04:14 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 13:04:14 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 13:10:51 2022 ] Mean training loss: 0.0153.
|
523 |
+
[ Thu Sep 8 13:10:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 13:10:51 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 13:17:34 2022 ] Epoch 96 Curr Acc: (28496/50919)55.96%
|
526 |
+
[ Thu Sep 8 13:17:34 2022 ] Epoch 59 Best Acc 57.48%
|
527 |
+
[ Thu Sep 8 13:17:34 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 13:17:34 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 13:24:11 2022 ] Mean training loss: 0.0149.
|
530 |
+
[ Thu Sep 8 13:24:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 13:24:11 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 13:30:54 2022 ] Epoch 97 Curr Acc: (29098/50919)57.15%
|
533 |
+
[ Thu Sep 8 13:30:54 2022 ] Epoch 59 Best Acc 57.48%
|
534 |
+
[ Thu Sep 8 13:30:54 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 13:30:54 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 13:37:31 2022 ] Mean training loss: 0.0138.
|
537 |
+
[ Thu Sep 8 13:37:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 13:37:31 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 13:44:14 2022 ] Epoch 98 Curr Acc: (28776/50919)56.51%
|
540 |
+
[ Thu Sep 8 13:44:14 2022 ] Epoch 59 Best Acc 57.48%
|
541 |
+
[ Thu Sep 8 13:44:15 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 13:44:15 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 13:50:51 2022 ] Mean training loss: 0.0146.
|
544 |
+
[ Thu Sep 8 13:50:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 13:50:51 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 13:57:34 2022 ] Epoch 99 Curr Acc: (28686/50919)56.34%
|
547 |
+
[ Thu Sep 8 13:57:34 2022 ] Epoch 59 Best Acc 57.48%
|
548 |
+
[ Thu Sep 8 13:57:34 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 13:57:34 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 14:04:11 2022 ] Mean training loss: 0.0147.
|
551 |
+
[ Thu Sep 8 14:04:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 14:04:11 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 14:10:55 2022 ] Epoch 100 Curr Acc: (29201/50919)57.35%
|
554 |
+
[ Thu Sep 8 14:10:55 2022 ] Epoch 59 Best Acc 57.48%
|
555 |
+
[ Thu Sep 8 14:10:55 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 14:10:55 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 14:17:32 2022 ] Mean training loss: 0.0139.
|
558 |
+
[ Thu Sep 8 14:17:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 14:17:32 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 14:24:15 2022 ] Epoch 101 Curr Acc: (28936/50919)56.83%
|
561 |
+
[ Thu Sep 8 14:24:15 2022 ] Epoch 59 Best Acc 57.48%
|
562 |
+
[ Thu Sep 8 14:24:15 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 14:24:15 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 14:30:51 2022 ] Mean training loss: 0.0150.
|
565 |
+
[ Thu Sep 8 14:30:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 14:30:52 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 14:37:35 2022 ] Epoch 102 Curr Acc: (28802/50919)56.56%
|
568 |
+
[ Thu Sep 8 14:37:35 2022 ] Epoch 59 Best Acc 57.48%
|
569 |
+
[ Thu Sep 8 14:37:35 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 14:37:35 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 14:44:13 2022 ] Mean training loss: 0.0158.
|
572 |
+
[ Thu Sep 8 14:44:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 14:44:13 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 14:50:56 2022 ] Epoch 103 Curr Acc: (28958/50919)56.87%
|
575 |
+
[ Thu Sep 8 14:50:56 2022 ] Epoch 59 Best Acc 57.48%
|
576 |
+
[ Thu Sep 8 14:50:56 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 14:50:56 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 14:57:32 2022 ] Mean training loss: 0.0145.
|
579 |
+
[ Thu Sep 8 14:57:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 14:57:32 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 15:04:15 2022 ] Epoch 104 Curr Acc: (29202/50919)57.35%
|
582 |
+
[ Thu Sep 8 15:04:15 2022 ] Epoch 59 Best Acc 57.48%
|
583 |
+
[ Thu Sep 8 15:04:15 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 15:04:15 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 15:10:51 2022 ] Mean training loss: 0.0143.
|
586 |
+
[ Thu Sep 8 15:10:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 15:10:51 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 15:17:35 2022 ] Epoch 105 Curr Acc: (28959/50919)56.87%
|
589 |
+
[ Thu Sep 8 15:17:35 2022 ] Epoch 59 Best Acc 57.48%
|
590 |
+
[ Thu Sep 8 15:17:35 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 15:17:35 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 15:24:10 2022 ] Mean training loss: 0.0137.
|
593 |
+
[ Thu Sep 8 15:24:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 15:24:10 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 15:30:53 2022 ] Epoch 106 Curr Acc: (29126/50919)57.20%
|
596 |
+
[ Thu Sep 8 15:30:53 2022 ] Epoch 59 Best Acc 57.48%
|
597 |
+
[ Thu Sep 8 15:30:53 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 15:30:53 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 15:37:29 2022 ] Mean training loss: 0.0153.
|
600 |
+
[ Thu Sep 8 15:37:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 15:37:29 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 15:44:13 2022 ] Epoch 107 Curr Acc: (29225/50919)57.40%
|
603 |
+
[ Thu Sep 8 15:44:13 2022 ] Epoch 59 Best Acc 57.48%
|
604 |
+
[ Thu Sep 8 15:44:13 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 15:44:13 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 15:50:49 2022 ] Mean training loss: 0.0148.
|
607 |
+
[ Thu Sep 8 15:50:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 15:50:49 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 15:57:32 2022 ] Epoch 108 Curr Acc: (29271/50919)57.49%
|
610 |
+
[ Thu Sep 8 15:57:32 2022 ] Epoch 108 Best Acc 57.49%
|
611 |
+
[ Thu Sep 8 15:57:32 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 15:57:32 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 16:04:07 2022 ] Mean training loss: 0.0138.
|
614 |
+
[ Thu Sep 8 16:04:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 16:04:07 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 16:10:51 2022 ] Epoch 109 Curr Acc: (28907/50919)56.77%
|
617 |
+
[ Thu Sep 8 16:10:51 2022 ] Epoch 108 Best Acc 57.49%
|
618 |
+
[ Thu Sep 8 16:10:51 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 16:10:51 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 16:17:26 2022 ] Mean training loss: 0.0146.
|
621 |
+
[ Thu Sep 8 16:17:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 16:17:26 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 16:24:10 2022 ] Epoch 110 Curr Acc: (28645/50919)56.26%
|
624 |
+
[ Thu Sep 8 16:24:10 2022 ] Epoch 108 Best Acc 57.49%
|
625 |
+
[ Thu Sep 8 16:24:10 2022 ] epoch: 108, best accuracy: 0.5748541801685029
|
626 |
+
[ Thu Sep 8 16:24:10 2022 ] Experiment: ./work_dir/ntu120/xsub_j
|
627 |
+
[ Thu Sep 8 16:24:10 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 16:24:10 2022 ] Load weights from ./runs/ntu120/xsub_j/runs-107-210600.pt.
|
629 |
+
[ Thu Sep 8 16:24:10 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 16:30:53 2022 ] Epoch 1 Curr Acc: (29271/50919)57.49%
|
631 |
+
[ Thu Sep 8 16:30:53 2022 ] Epoch 108 Best Acc 57.49%
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu120/xsub_jm.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 120
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu120/xsub_jm/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint_motion.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint_motion.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu120/xsub_jm
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ffc874015dadb8c222a343c24de209c0fea9259c1445b38a61d0d35bd29ef7
|
3 |
+
size 29946137
|
ckpt/Others/MST-GCN/ntu120_xsub/xsub_jm/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 7 21:34:56 2022 ] # generator parameters: 2.922995 M.
|
2 |
+
[ Wed Sep 7 21:34:57 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu120/xsub_jm', 'model_saved_name': './runs/ntu120/xsub_jm/runs', 'config': 'config/ntu120/xsub_jm.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Wed Sep 7 21:34:57 2022 ] Training epoch: 1
|
6 |
+
[ Wed Sep 7 21:34:57 2022 ] Learning rate: 0.015
|
7 |
+
[ Wed Sep 7 21:41:33 2022 ] Mean training loss: 3.5505.
|
8 |
+
[ Wed Sep 7 21:41:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
9 |
+
[ Wed Sep 7 21:41:33 2022 ] Training epoch: 2
|
10 |
+
[ Wed Sep 7 21:41:33 2022 ] Learning rate: 0.03
|
11 |
+
[ Wed Sep 7 21:48:10 2022 ] Mean training loss: 2.5463.
|
12 |
+
[ Wed Sep 7 21:48:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Wed Sep 7 21:48:10 2022 ] Training epoch: 3
|
14 |
+
[ Wed Sep 7 21:48:10 2022 ] Learning rate: 0.045
|
15 |
+
[ Wed Sep 7 21:54:48 2022 ] Mean training loss: 1.9928.
|
16 |
+
[ Wed Sep 7 21:54:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Wed Sep 7 21:54:48 2022 ] Training epoch: 4
|
18 |
+
[ Wed Sep 7 21:54:48 2022 ] Learning rate: 0.06
|
19 |
+
[ Wed Sep 7 22:01:25 2022 ] Mean training loss: 1.6971.
|
20 |
+
[ Wed Sep 7 22:01:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Wed Sep 7 22:01:25 2022 ] Training epoch: 5
|
22 |
+
[ Wed Sep 7 22:01:25 2022 ] Learning rate: 0.075
|
23 |
+
[ Wed Sep 7 22:08:02 2022 ] Mean training loss: 1.5555.
|
24 |
+
[ Wed Sep 7 22:08:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Wed Sep 7 22:08:02 2022 ] Training epoch: 6
|
26 |
+
[ Wed Sep 7 22:08:02 2022 ] Learning rate: 0.09
|
27 |
+
[ Wed Sep 7 22:14:38 2022 ] Mean training loss: 1.4570.
|
28 |
+
[ Wed Sep 7 22:14:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Wed Sep 7 22:14:38 2022 ] Training epoch: 7
|
30 |
+
[ Wed Sep 7 22:14:38 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Wed Sep 7 22:21:16 2022 ] Mean training loss: 1.3999.
|
32 |
+
[ Wed Sep 7 22:21:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Wed Sep 7 22:21:16 2022 ] Training epoch: 8
|
34 |
+
[ Wed Sep 7 22:21:16 2022 ] Learning rate: 0.12
|
35 |
+
[ Wed Sep 7 22:27:54 2022 ] Mean training loss: 1.3780.
|
36 |
+
[ Wed Sep 7 22:27:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Wed Sep 7 22:27:54 2022 ] Training epoch: 9
|
38 |
+
[ Wed Sep 7 22:27:54 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Wed Sep 7 22:34:31 2022 ] Mean training loss: 1.3462.
|
40 |
+
[ Wed Sep 7 22:34:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Wed Sep 7 22:34:31 2022 ] Training epoch: 10
|
42 |
+
[ Wed Sep 7 22:34:31 2022 ] Learning rate: 0.15
|
43 |
+
[ Wed Sep 7 22:41:08 2022 ] Mean training loss: 1.3458.
|
44 |
+
[ Wed Sep 7 22:41:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Wed Sep 7 22:41:08 2022 ] Training epoch: 11
|
46 |
+
[ Wed Sep 7 22:41:08 2022 ] Learning rate: 0.15
|
47 |
+
[ Wed Sep 7 22:47:45 2022 ] Mean training loss: 1.2974.
|
48 |
+
[ Wed Sep 7 22:47:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Wed Sep 7 22:47:45 2022 ] Training epoch: 12
|
50 |
+
[ Wed Sep 7 22:47:45 2022 ] Learning rate: 0.15
|
51 |
+
[ Wed Sep 7 22:54:22 2022 ] Mean training loss: 1.2424.
|
52 |
+
[ Wed Sep 7 22:54:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Wed Sep 7 22:54:22 2022 ] Training epoch: 13
|
54 |
+
[ Wed Sep 7 22:54:22 2022 ] Learning rate: 0.15
|
55 |
+
[ Wed Sep 7 23:00:59 2022 ] Mean training loss: 1.2103.
|
56 |
+
[ Wed Sep 7 23:00:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Wed Sep 7 23:00:59 2022 ] Training epoch: 14
|
58 |
+
[ Wed Sep 7 23:00:59 2022 ] Learning rate: 0.15
|
59 |
+
[ Wed Sep 7 23:07:37 2022 ] Mean training loss: 1.1999.
|
60 |
+
[ Wed Sep 7 23:07:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Wed Sep 7 23:07:37 2022 ] Training epoch: 15
|
62 |
+
[ Wed Sep 7 23:07:37 2022 ] Learning rate: 0.15
|
63 |
+
[ Wed Sep 7 23:14:14 2022 ] Mean training loss: 1.1591.
|
64 |
+
[ Wed Sep 7 23:14:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Wed Sep 7 23:14:14 2022 ] Training epoch: 16
|
66 |
+
[ Wed Sep 7 23:14:14 2022 ] Learning rate: 0.15
|
67 |
+
[ Wed Sep 7 23:20:51 2022 ] Mean training loss: 1.1549.
|
68 |
+
[ Wed Sep 7 23:20:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Wed Sep 7 23:20:51 2022 ] Training epoch: 17
|
70 |
+
[ Wed Sep 7 23:20:51 2022 ] Learning rate: 0.15
|
71 |
+
[ Wed Sep 7 23:27:28 2022 ] Mean training loss: 1.1448.
|
72 |
+
[ Wed Sep 7 23:27:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Wed Sep 7 23:27:28 2022 ] Training epoch: 18
|
74 |
+
[ Wed Sep 7 23:27:28 2022 ] Learning rate: 0.15
|
75 |
+
[ Wed Sep 7 23:34:05 2022 ] Mean training loss: 1.1075.
|
76 |
+
[ Wed Sep 7 23:34:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Wed Sep 7 23:34:05 2022 ] Training epoch: 19
|
78 |
+
[ Wed Sep 7 23:34:05 2022 ] Learning rate: 0.15
|
79 |
+
[ Wed Sep 7 23:40:40 2022 ] Mean training loss: 1.1084.
|
80 |
+
[ Wed Sep 7 23:40:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Wed Sep 7 23:40:40 2022 ] Training epoch: 20
|
82 |
+
[ Wed Sep 7 23:40:40 2022 ] Learning rate: 0.15
|
83 |
+
[ Wed Sep 7 23:47:16 2022 ] Mean training loss: 1.0991.
|
84 |
+
[ Wed Sep 7 23:47:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Wed Sep 7 23:47:16 2022 ] Training epoch: 21
|
86 |
+
[ Wed Sep 7 23:47:16 2022 ] Learning rate: 0.15
|
87 |
+
[ Wed Sep 7 23:53:54 2022 ] Mean training loss: 1.0842.
|
88 |
+
[ Wed Sep 7 23:53:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Wed Sep 7 23:53:54 2022 ] Training epoch: 22
|
90 |
+
[ Wed Sep 7 23:53:54 2022 ] Learning rate: 0.15
|
91 |
+
[ Thu Sep 8 00:00:32 2022 ] Mean training loss: 1.0714.
|
92 |
+
[ Thu Sep 8 00:00:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Thu Sep 8 00:00:32 2022 ] Training epoch: 23
|
94 |
+
[ Thu Sep 8 00:00:32 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 00:07:10 2022 ] Mean training loss: 1.0559.
|
96 |
+
[ Thu Sep 8 00:07:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Thu Sep 8 00:07:10 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 00:07:10 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 00:13:46 2022 ] Mean training loss: 1.0471.
|
100 |
+
[ Thu Sep 8 00:13:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Thu Sep 8 00:13:46 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 00:13:46 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 00:20:23 2022 ] Mean training loss: 1.0418.
|
104 |
+
[ Thu Sep 8 00:20:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Thu Sep 8 00:20:23 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 00:20:23 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 00:27:00 2022 ] Mean training loss: 1.0377.
|
108 |
+
[ Thu Sep 8 00:27:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Thu Sep 8 00:27:00 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 00:27:00 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 00:33:37 2022 ] Mean training loss: 1.0365.
|
112 |
+
[ Thu Sep 8 00:33:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Thu Sep 8 00:33:37 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 00:33:37 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 00:40:14 2022 ] Mean training loss: 1.0270.
|
116 |
+
[ Thu Sep 8 00:40:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Thu Sep 8 00:40:14 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 00:40:14 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 00:46:52 2022 ] Mean training loss: 1.0189.
|
120 |
+
[ Thu Sep 8 00:46:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Thu Sep 8 00:46:52 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 00:46:52 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 00:53:28 2022 ] Mean training loss: 1.0129.
|
124 |
+
[ Thu Sep 8 00:53:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Thu Sep 8 00:53:28 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 00:53:28 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 01:00:05 2022 ] Mean training loss: 1.0095.
|
128 |
+
[ Thu Sep 8 01:00:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Thu Sep 8 01:00:05 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 01:00:05 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 01:06:41 2022 ] Mean training loss: 1.0034.
|
132 |
+
[ Thu Sep 8 01:06:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Thu Sep 8 01:06:41 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 01:06:41 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 01:13:16 2022 ] Mean training loss: 1.0090.
|
136 |
+
[ Thu Sep 8 01:13:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 01:13:16 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 01:13:16 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 01:19:53 2022 ] Mean training loss: 0.9960.
|
140 |
+
[ Thu Sep 8 01:19:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 01:19:53 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 01:19:53 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 01:26:30 2022 ] Mean training loss: 1.0126.
|
144 |
+
[ Thu Sep 8 01:26:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 01:26:30 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 01:26:30 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 01:33:08 2022 ] Mean training loss: 0.9907.
|
148 |
+
[ Thu Sep 8 01:33:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 01:33:08 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 01:33:08 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 01:39:47 2022 ] Mean training loss: 0.9857.
|
152 |
+
[ Thu Sep 8 01:39:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 01:39:47 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 01:39:47 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 01:46:26 2022 ] Mean training loss: 0.9833.
|
156 |
+
[ Thu Sep 8 01:46:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 01:46:26 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 01:46:26 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 01:53:05 2022 ] Mean training loss: 0.9808.
|
160 |
+
[ Thu Sep 8 01:53:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 01:53:05 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 01:53:05 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 01:59:44 2022 ] Mean training loss: 0.9796.
|
164 |
+
[ Thu Sep 8 01:59:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 01:59:44 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 01:59:44 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 02:06:23 2022 ] Mean training loss: 0.9781.
|
168 |
+
[ Thu Sep 8 02:06:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 02:06:23 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 02:06:23 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 02:13:02 2022 ] Mean training loss: 0.9829.
|
172 |
+
[ Thu Sep 8 02:13:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 02:13:02 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 02:13:02 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 02:19:40 2022 ] Mean training loss: 0.9875.
|
176 |
+
[ Thu Sep 8 02:19:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 02:19:40 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 02:19:40 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 02:26:17 2022 ] Mean training loss: 0.9765.
|
180 |
+
[ Thu Sep 8 02:26:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 02:26:17 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 02:26:17 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 02:32:55 2022 ] Mean training loss: 0.9734.
|
184 |
+
[ Thu Sep 8 02:32:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 02:32:55 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 02:32:55 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 02:39:33 2022 ] Mean training loss: 0.9846.
|
188 |
+
[ Thu Sep 8 02:39:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 02:39:33 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 02:39:33 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 02:46:11 2022 ] Mean training loss: 0.9679.
|
192 |
+
[ Thu Sep 8 02:46:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 02:46:11 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 02:46:11 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 02:52:48 2022 ] Mean training loss: 0.9770.
|
196 |
+
[ Thu Sep 8 02:52:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 02:52:48 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 02:52:48 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 02:59:25 2022 ] Mean training loss: 0.9773.
|
200 |
+
[ Thu Sep 8 02:59:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 02:59:25 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 02:59:25 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 03:06:03 2022 ] Mean training loss: 0.9652.
|
204 |
+
[ Thu Sep 8 03:06:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 03:06:03 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 03:06:03 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 03:12:39 2022 ] Mean training loss: 0.5024.
|
208 |
+
[ Thu Sep 8 03:12:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 03:12:39 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 03:19:30 2022 ] Epoch 51 Curr Acc: (26427/50919)51.90%
|
211 |
+
[ Thu Sep 8 03:19:30 2022 ] Epoch 51 Best Acc 51.90%
|
212 |
+
[ Thu Sep 8 03:19:30 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 03:19:30 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 03:26:05 2022 ] Mean training loss: 0.3750.
|
215 |
+
[ Thu Sep 8 03:26:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 03:26:05 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 03:32:48 2022 ] Epoch 52 Curr Acc: (27217/50919)53.45%
|
218 |
+
[ Thu Sep 8 03:32:48 2022 ] Epoch 52 Best Acc 53.45%
|
219 |
+
[ Thu Sep 8 03:32:48 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 03:32:48 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 03:39:23 2022 ] Mean training loss: 0.3166.
|
222 |
+
[ Thu Sep 8 03:39:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 03:39:24 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 03:46:06 2022 ] Epoch 53 Curr Acc: (27711/50919)54.42%
|
225 |
+
[ Thu Sep 8 03:46:06 2022 ] Epoch 53 Best Acc 54.42%
|
226 |
+
[ Thu Sep 8 03:46:06 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 03:46:06 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 03:52:42 2022 ] Mean training loss: 0.2698.
|
229 |
+
[ Thu Sep 8 03:52:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 03:52:43 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 03:59:25 2022 ] Epoch 54 Curr Acc: (27776/50919)54.55%
|
232 |
+
[ Thu Sep 8 03:59:25 2022 ] Epoch 54 Best Acc 54.55%
|
233 |
+
[ Thu Sep 8 03:59:25 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 03:59:25 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 04:06:01 2022 ] Mean training loss: 0.2366.
|
236 |
+
[ Thu Sep 8 04:06:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 04:06:02 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 04:12:44 2022 ] Epoch 55 Curr Acc: (27484/50919)53.98%
|
239 |
+
[ Thu Sep 8 04:12:44 2022 ] Epoch 54 Best Acc 54.55%
|
240 |
+
[ Thu Sep 8 04:12:44 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 04:12:44 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 04:19:21 2022 ] Mean training loss: 0.2079.
|
243 |
+
[ Thu Sep 8 04:19:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 04:19:21 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 04:26:03 2022 ] Epoch 56 Curr Acc: (26107/50919)51.27%
|
246 |
+
[ Thu Sep 8 04:26:03 2022 ] Epoch 54 Best Acc 54.55%
|
247 |
+
[ Thu Sep 8 04:26:03 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 04:26:03 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 04:32:38 2022 ] Mean training loss: 0.1758.
|
250 |
+
[ Thu Sep 8 04:32:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 04:32:38 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 04:39:21 2022 ] Epoch 57 Curr Acc: (27395/50919)53.80%
|
253 |
+
[ Thu Sep 8 04:39:21 2022 ] Epoch 54 Best Acc 54.55%
|
254 |
+
[ Thu Sep 8 04:39:21 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 04:39:21 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 04:45:55 2022 ] Mean training loss: 0.1576.
|
257 |
+
[ Thu Sep 8 04:45:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 04:45:55 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 04:52:38 2022 ] Epoch 58 Curr Acc: (26128/50919)51.31%
|
260 |
+
[ Thu Sep 8 04:52:38 2022 ] Epoch 54 Best Acc 54.55%
|
261 |
+
[ Thu Sep 8 04:52:38 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 04:52:38 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 04:59:12 2022 ] Mean training loss: 0.1435.
|
264 |
+
[ Thu Sep 8 04:59:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 04:59:12 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 05:05:55 2022 ] Epoch 59 Curr Acc: (27495/50919)54.00%
|
267 |
+
[ Thu Sep 8 05:05:55 2022 ] Epoch 54 Best Acc 54.55%
|
268 |
+
[ Thu Sep 8 05:05:55 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 05:05:55 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 05:12:31 2022 ] Mean training loss: 0.1249.
|
271 |
+
[ Thu Sep 8 05:12:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 05:12:31 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 05:19:14 2022 ] Epoch 60 Curr Acc: (26375/50919)51.80%
|
274 |
+
[ Thu Sep 8 05:19:14 2022 ] Epoch 54 Best Acc 54.55%
|
275 |
+
[ Thu Sep 8 05:19:14 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 05:19:14 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 05:25:49 2022 ] Mean training loss: 0.1140.
|
278 |
+
[ Thu Sep 8 05:25:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 05:25:49 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 05:32:32 2022 ] Epoch 61 Curr Acc: (26778/50919)52.59%
|
281 |
+
[ Thu Sep 8 05:32:32 2022 ] Epoch 54 Best Acc 54.55%
|
282 |
+
[ Thu Sep 8 05:32:32 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 05:32:32 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 05:39:08 2022 ] Mean training loss: 0.1064.
|
285 |
+
[ Thu Sep 8 05:39:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 05:39:08 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 05:45:51 2022 ] Epoch 62 Curr Acc: (27000/50919)53.03%
|
288 |
+
[ Thu Sep 8 05:45:51 2022 ] Epoch 54 Best Acc 54.55%
|
289 |
+
[ Thu Sep 8 05:45:51 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 05:45:51 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 05:52:26 2022 ] Mean training loss: 0.1195.
|
292 |
+
[ Thu Sep 8 05:52:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 05:52:26 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 05:59:09 2022 ] Epoch 63 Curr Acc: (26677/50919)52.39%
|
295 |
+
[ Thu Sep 8 05:59:09 2022 ] Epoch 54 Best Acc 54.55%
|
296 |
+
[ Thu Sep 8 05:59:09 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 05:59:09 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 06:05:45 2022 ] Mean training loss: 0.1119.
|
299 |
+
[ Thu Sep 8 06:05:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 06:05:45 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 06:12:28 2022 ] Epoch 64 Curr Acc: (25515/50919)50.11%
|
302 |
+
[ Thu Sep 8 06:12:28 2022 ] Epoch 54 Best Acc 54.55%
|
303 |
+
[ Thu Sep 8 06:12:28 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 06:12:28 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 06:19:01 2022 ] Mean training loss: 0.1071.
|
306 |
+
[ Thu Sep 8 06:19:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 06:19:01 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 06:25:43 2022 ] Epoch 65 Curr Acc: (26535/50919)52.11%
|
309 |
+
[ Thu Sep 8 06:25:43 2022 ] Epoch 54 Best Acc 54.55%
|
310 |
+
[ Thu Sep 8 06:25:44 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 06:25:44 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 06:32:19 2022 ] Mean training loss: 0.1063.
|
313 |
+
[ Thu Sep 8 06:32:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 06:32:19 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 06:39:01 2022 ] Epoch 66 Curr Acc: (26613/50919)52.27%
|
316 |
+
[ Thu Sep 8 06:39:01 2022 ] Epoch 54 Best Acc 54.55%
|
317 |
+
[ Thu Sep 8 06:39:01 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 06:39:01 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 06:45:37 2022 ] Mean training loss: 0.1039.
|
320 |
+
[ Thu Sep 8 06:45:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 06:45:37 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 06:52:20 2022 ] Epoch 67 Curr Acc: (25165/50919)49.42%
|
323 |
+
[ Thu Sep 8 06:52:20 2022 ] Epoch 54 Best Acc 54.55%
|
324 |
+
[ Thu Sep 8 06:52:20 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 06:52:20 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 06:58:55 2022 ] Mean training loss: 0.1104.
|
327 |
+
[ Thu Sep 8 06:58:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 06:58:55 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 07:05:38 2022 ] Epoch 68 Curr Acc: (26270/50919)51.59%
|
330 |
+
[ Thu Sep 8 07:05:38 2022 ] Epoch 54 Best Acc 54.55%
|
331 |
+
[ Thu Sep 8 07:05:38 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 07:05:38 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 07:12:13 2022 ] Mean training loss: 0.0960.
|
334 |
+
[ Thu Sep 8 07:12:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 07:12:13 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 07:18:55 2022 ] Epoch 69 Curr Acc: (26027/50919)51.11%
|
337 |
+
[ Thu Sep 8 07:18:55 2022 ] Epoch 54 Best Acc 54.55%
|
338 |
+
[ Thu Sep 8 07:18:55 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 07:18:55 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 07:25:31 2022 ] Mean training loss: 0.1008.
|
341 |
+
[ Thu Sep 8 07:25:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 07:25:31 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 07:32:13 2022 ] Epoch 70 Curr Acc: (25435/50919)49.95%
|
344 |
+
[ Thu Sep 8 07:32:13 2022 ] Epoch 54 Best Acc 54.55%
|
345 |
+
[ Thu Sep 8 07:32:13 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 07:32:13 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 07:38:48 2022 ] Mean training loss: 0.0533.
|
348 |
+
[ Thu Sep 8 07:38:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 07:38:48 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 07:45:31 2022 ] Epoch 71 Curr Acc: (27067/50919)53.16%
|
351 |
+
[ Thu Sep 8 07:45:31 2022 ] Epoch 54 Best Acc 54.55%
|
352 |
+
[ Thu Sep 8 07:45:31 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 07:45:31 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 07:52:07 2022 ] Mean training loss: 0.0343.
|
355 |
+
[ Thu Sep 8 07:52:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 07:52:07 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 07:58:50 2022 ] Epoch 72 Curr Acc: (27244/50919)53.50%
|
358 |
+
[ Thu Sep 8 07:58:50 2022 ] Epoch 54 Best Acc 54.55%
|
359 |
+
[ Thu Sep 8 07:58:50 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 07:58:50 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 08:05:26 2022 ] Mean training loss: 0.0275.
|
362 |
+
[ Thu Sep 8 08:05:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 08:05:26 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 08:12:08 2022 ] Epoch 73 Curr Acc: (27387/50919)53.79%
|
365 |
+
[ Thu Sep 8 08:12:08 2022 ] Epoch 54 Best Acc 54.55%
|
366 |
+
[ Thu Sep 8 08:12:08 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 08:12:08 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 08:18:44 2022 ] Mean training loss: 0.0236.
|
369 |
+
[ Thu Sep 8 08:18:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 08:18:44 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 08:25:27 2022 ] Epoch 74 Curr Acc: (26749/50919)52.53%
|
372 |
+
[ Thu Sep 8 08:25:27 2022 ] Epoch 54 Best Acc 54.55%
|
373 |
+
[ Thu Sep 8 08:25:27 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 08:25:27 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 08:32:03 2022 ] Mean training loss: 0.0219.
|
376 |
+
[ Thu Sep 8 08:32:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 08:32:03 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 08:38:45 2022 ] Epoch 75 Curr Acc: (27462/50919)53.93%
|
379 |
+
[ Thu Sep 8 08:38:45 2022 ] Epoch 54 Best Acc 54.55%
|
380 |
+
[ Thu Sep 8 08:38:45 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 08:38:45 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 08:45:21 2022 ] Mean training loss: 0.0225.
|
383 |
+
[ Thu Sep 8 08:45:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 08:45:21 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 08:52:04 2022 ] Epoch 76 Curr Acc: (26647/50919)52.33%
|
386 |
+
[ Thu Sep 8 08:52:04 2022 ] Epoch 54 Best Acc 54.55%
|
387 |
+
[ Thu Sep 8 08:52:04 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 08:52:04 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 08:58:40 2022 ] Mean training loss: 0.0201.
|
390 |
+
[ Thu Sep 8 08:58:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 08:58:40 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 09:05:22 2022 ] Epoch 77 Curr Acc: (27279/50919)53.57%
|
393 |
+
[ Thu Sep 8 09:05:22 2022 ] Epoch 54 Best Acc 54.55%
|
394 |
+
[ Thu Sep 8 09:05:22 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 09:05:22 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 09:11:58 2022 ] Mean training loss: 0.0191.
|
397 |
+
[ Thu Sep 8 09:11:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 09:11:58 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 09:18:40 2022 ] Epoch 78 Curr Acc: (27376/50919)53.76%
|
400 |
+
[ Thu Sep 8 09:18:40 2022 ] Epoch 54 Best Acc 54.55%
|
401 |
+
[ Thu Sep 8 09:18:41 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 09:18:41 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 09:25:16 2022 ] Mean training loss: 0.0169.
|
404 |
+
[ Thu Sep 8 09:25:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 09:25:16 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 09:31:59 2022 ] Epoch 79 Curr Acc: (27226/50919)53.47%
|
407 |
+
[ Thu Sep 8 09:31:59 2022 ] Epoch 54 Best Acc 54.55%
|
408 |
+
[ Thu Sep 8 09:31:59 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 09:31:59 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 09:38:34 2022 ] Mean training loss: 0.0154.
|
411 |
+
[ Thu Sep 8 09:38:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 09:38:34 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 09:45:16 2022 ] Epoch 80 Curr Acc: (26624/50919)52.29%
|
414 |
+
[ Thu Sep 8 09:45:16 2022 ] Epoch 54 Best Acc 54.55%
|
415 |
+
[ Thu Sep 8 09:45:16 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 09:45:16 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 09:51:52 2022 ] Mean training loss: 0.0160.
|
418 |
+
[ Thu Sep 8 09:51:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 09:51:52 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 09:58:34 2022 ] Epoch 81 Curr Acc: (27010/50919)53.05%
|
421 |
+
[ Thu Sep 8 09:58:34 2022 ] Epoch 54 Best Acc 54.55%
|
422 |
+
[ Thu Sep 8 09:58:34 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 09:58:34 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 10:05:09 2022 ] Mean training loss: 0.0151.
|
425 |
+
[ Thu Sep 8 10:05:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 10:05:09 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 10:11:52 2022 ] Epoch 82 Curr Acc: (27009/50919)53.04%
|
428 |
+
[ Thu Sep 8 10:11:52 2022 ] Epoch 54 Best Acc 54.55%
|
429 |
+
[ Thu Sep 8 10:11:52 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 10:11:52 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 10:18:27 2022 ] Mean training loss: 0.0148.
|
432 |
+
[ Thu Sep 8 10:18:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 10:18:27 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 10:25:10 2022 ] Epoch 83 Curr Acc: (27217/50919)53.45%
|
435 |
+
[ Thu Sep 8 10:25:10 2022 ] Epoch 54 Best Acc 54.55%
|
436 |
+
[ Thu Sep 8 10:25:10 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 10:25:10 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 10:31:44 2022 ] Mean training loss: 0.0149.
|
439 |
+
[ Thu Sep 8 10:31:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 10:31:44 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 10:38:27 2022 ] Epoch 84 Curr Acc: (27020/50919)53.06%
|
442 |
+
[ Thu Sep 8 10:38:27 2022 ] Epoch 54 Best Acc 54.55%
|
443 |
+
[ Thu Sep 8 10:38:27 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 10:38:27 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 10:45:01 2022 ] Mean training loss: 0.0148.
|
446 |
+
[ Thu Sep 8 10:45:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 10:45:01 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 10:51:44 2022 ] Epoch 85 Curr Acc: (27510/50919)54.03%
|
449 |
+
[ Thu Sep 8 10:51:44 2022 ] Epoch 54 Best Acc 54.55%
|
450 |
+
[ Thu Sep 8 10:51:44 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 10:51:44 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 10:58:19 2022 ] Mean training loss: 0.0138.
|
453 |
+
[ Thu Sep 8 10:58:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 10:58:19 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 11:05:02 2022 ] Epoch 86 Curr Acc: (27559/50919)54.12%
|
456 |
+
[ Thu Sep 8 11:05:02 2022 ] Epoch 54 Best Acc 54.55%
|
457 |
+
[ Thu Sep 8 11:05:02 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 11:05:02 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 11:11:38 2022 ] Mean training loss: 0.0150.
|
460 |
+
[ Thu Sep 8 11:11:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 11:11:38 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 11:18:21 2022 ] Epoch 87 Curr Acc: (27731/50919)54.46%
|
463 |
+
[ Thu Sep 8 11:18:21 2022 ] Epoch 54 Best Acc 54.55%
|
464 |
+
[ Thu Sep 8 11:18:21 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 11:18:21 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 11:24:56 2022 ] Mean training loss: 0.0126.
|
467 |
+
[ Thu Sep 8 11:24:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 11:24:56 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 11:31:39 2022 ] Epoch 88 Curr Acc: (27229/50919)53.48%
|
470 |
+
[ Thu Sep 8 11:31:39 2022 ] Epoch 54 Best Acc 54.55%
|
471 |
+
[ Thu Sep 8 11:31:39 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 11:31:39 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 11:38:15 2022 ] Mean training loss: 0.0139.
|
474 |
+
[ Thu Sep 8 11:38:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 11:38:15 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 11:44:58 2022 ] Epoch 89 Curr Acc: (27607/50919)54.22%
|
477 |
+
[ Thu Sep 8 11:44:58 2022 ] Epoch 54 Best Acc 54.55%
|
478 |
+
[ Thu Sep 8 11:44:58 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 11:44:58 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 11:51:34 2022 ] Mean training loss: 0.0133.
|
481 |
+
[ Thu Sep 8 11:51:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 11:51:34 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 11:58:17 2022 ] Epoch 90 Curr Acc: (27307/50919)53.63%
|
484 |
+
[ Thu Sep 8 11:58:17 2022 ] Epoch 54 Best Acc 54.55%
|
485 |
+
[ Thu Sep 8 11:58:17 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 11:58:17 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 12:04:54 2022 ] Mean training loss: 0.0128.
|
488 |
+
[ Thu Sep 8 12:04:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 12:04:54 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 12:11:37 2022 ] Epoch 91 Curr Acc: (27251/50919)53.52%
|
491 |
+
[ Thu Sep 8 12:11:37 2022 ] Epoch 54 Best Acc 54.55%
|
492 |
+
[ Thu Sep 8 12:11:37 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 12:11:37 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 12:18:13 2022 ] Mean training loss: 0.0131.
|
495 |
+
[ Thu Sep 8 12:18:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 12:18:13 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 12:24:56 2022 ] Epoch 92 Curr Acc: (27446/50919)53.90%
|
498 |
+
[ Thu Sep 8 12:24:56 2022 ] Epoch 54 Best Acc 54.55%
|
499 |
+
[ Thu Sep 8 12:24:56 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 12:24:56 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 12:31:32 2022 ] Mean training loss: 0.0135.
|
502 |
+
[ Thu Sep 8 12:31:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 12:31:32 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 12:38:16 2022 ] Epoch 93 Curr Acc: (26946/50919)52.92%
|
505 |
+
[ Thu Sep 8 12:38:16 2022 ] Epoch 54 Best Acc 54.55%
|
506 |
+
[ Thu Sep 8 12:38:16 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 12:38:16 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 12:44:51 2022 ] Mean training loss: 0.0133.
|
509 |
+
[ Thu Sep 8 12:44:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Thu Sep 8 12:44:51 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 12:51:34 2022 ] Epoch 94 Curr Acc: (27578/50919)54.16%
|
512 |
+
[ Thu Sep 8 12:51:34 2022 ] Epoch 54 Best Acc 54.55%
|
513 |
+
[ Thu Sep 8 12:51:35 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 12:51:35 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Thu Sep 8 12:58:10 2022 ] Mean training loss: 0.0123.
|
516 |
+
[ Thu Sep 8 12:58:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Thu Sep 8 12:58:10 2022 ] Eval epoch: 95
|
518 |
+
[ Thu Sep 8 13:04:53 2022 ] Epoch 95 Curr Acc: (26810/50919)52.65%
|
519 |
+
[ Thu Sep 8 13:04:53 2022 ] Epoch 54 Best Acc 54.55%
|
520 |
+
[ Thu Sep 8 13:04:53 2022 ] Training epoch: 96
|
521 |
+
[ Thu Sep 8 13:04:53 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Thu Sep 8 13:11:27 2022 ] Mean training loss: 0.0134.
|
523 |
+
[ Thu Sep 8 13:11:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Thu Sep 8 13:11:27 2022 ] Eval epoch: 96
|
525 |
+
[ Thu Sep 8 13:18:09 2022 ] Epoch 96 Curr Acc: (25210/50919)49.51%
|
526 |
+
[ Thu Sep 8 13:18:09 2022 ] Epoch 54 Best Acc 54.55%
|
527 |
+
[ Thu Sep 8 13:18:09 2022 ] Training epoch: 97
|
528 |
+
[ Thu Sep 8 13:18:09 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Thu Sep 8 13:24:44 2022 ] Mean training loss: 0.0124.
|
530 |
+
[ Thu Sep 8 13:24:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Thu Sep 8 13:24:44 2022 ] Eval epoch: 97
|
532 |
+
[ Thu Sep 8 13:31:27 2022 ] Epoch 97 Curr Acc: (27151/50919)53.32%
|
533 |
+
[ Thu Sep 8 13:31:27 2022 ] Epoch 54 Best Acc 54.55%
|
534 |
+
[ Thu Sep 8 13:31:27 2022 ] Training epoch: 98
|
535 |
+
[ Thu Sep 8 13:31:27 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Thu Sep 8 13:38:02 2022 ] Mean training loss: 0.0127.
|
537 |
+
[ Thu Sep 8 13:38:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Thu Sep 8 13:38:02 2022 ] Eval epoch: 98
|
539 |
+
[ Thu Sep 8 13:44:45 2022 ] Epoch 98 Curr Acc: (27226/50919)53.47%
|
540 |
+
[ Thu Sep 8 13:44:45 2022 ] Epoch 54 Best Acc 54.55%
|
541 |
+
[ Thu Sep 8 13:44:45 2022 ] Training epoch: 99
|
542 |
+
[ Thu Sep 8 13:44:45 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Thu Sep 8 13:51:18 2022 ] Mean training loss: 0.0125.
|
544 |
+
[ Thu Sep 8 13:51:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Thu Sep 8 13:51:18 2022 ] Eval epoch: 99
|
546 |
+
[ Thu Sep 8 13:58:01 2022 ] Epoch 99 Curr Acc: (26979/50919)52.98%
|
547 |
+
[ Thu Sep 8 13:58:01 2022 ] Epoch 54 Best Acc 54.55%
|
548 |
+
[ Thu Sep 8 13:58:01 2022 ] Training epoch: 100
|
549 |
+
[ Thu Sep 8 13:58:01 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Thu Sep 8 14:04:34 2022 ] Mean training loss: 0.0120.
|
551 |
+
[ Thu Sep 8 14:04:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Thu Sep 8 14:04:35 2022 ] Eval epoch: 100
|
553 |
+
[ Thu Sep 8 14:11:17 2022 ] Epoch 100 Curr Acc: (27486/50919)53.98%
|
554 |
+
[ Thu Sep 8 14:11:17 2022 ] Epoch 54 Best Acc 54.55%
|
555 |
+
[ Thu Sep 8 14:11:17 2022 ] Training epoch: 101
|
556 |
+
[ Thu Sep 8 14:11:17 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Thu Sep 8 14:17:50 2022 ] Mean training loss: 0.0120.
|
558 |
+
[ Thu Sep 8 14:17:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Thu Sep 8 14:17:50 2022 ] Eval epoch: 101
|
560 |
+
[ Thu Sep 8 14:24:33 2022 ] Epoch 101 Curr Acc: (27276/50919)53.57%
|
561 |
+
[ Thu Sep 8 14:24:33 2022 ] Epoch 54 Best Acc 54.55%
|
562 |
+
[ Thu Sep 8 14:24:33 2022 ] Training epoch: 102
|
563 |
+
[ Thu Sep 8 14:24:33 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Thu Sep 8 14:31:06 2022 ] Mean training loss: 0.0124.
|
565 |
+
[ Thu Sep 8 14:31:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Thu Sep 8 14:31:06 2022 ] Eval epoch: 102
|
567 |
+
[ Thu Sep 8 14:37:49 2022 ] Epoch 102 Curr Acc: (27455/50919)53.92%
|
568 |
+
[ Thu Sep 8 14:37:49 2022 ] Epoch 54 Best Acc 54.55%
|
569 |
+
[ Thu Sep 8 14:37:49 2022 ] Training epoch: 103
|
570 |
+
[ Thu Sep 8 14:37:49 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Thu Sep 8 14:44:24 2022 ] Mean training loss: 0.0122.
|
572 |
+
[ Thu Sep 8 14:44:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Thu Sep 8 14:44:24 2022 ] Eval epoch: 103
|
574 |
+
[ Thu Sep 8 14:51:06 2022 ] Epoch 103 Curr Acc: (27485/50919)53.98%
|
575 |
+
[ Thu Sep 8 14:51:06 2022 ] Epoch 54 Best Acc 54.55%
|
576 |
+
[ Thu Sep 8 14:51:06 2022 ] Training epoch: 104
|
577 |
+
[ Thu Sep 8 14:51:06 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Thu Sep 8 14:57:41 2022 ] Mean training loss: 0.0123.
|
579 |
+
[ Thu Sep 8 14:57:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Thu Sep 8 14:57:41 2022 ] Eval epoch: 104
|
581 |
+
[ Thu Sep 8 15:04:23 2022 ] Epoch 104 Curr Acc: (27552/50919)54.11%
|
582 |
+
[ Thu Sep 8 15:04:23 2022 ] Epoch 54 Best Acc 54.55%
|
583 |
+
[ Thu Sep 8 15:04:23 2022 ] Training epoch: 105
|
584 |
+
[ Thu Sep 8 15:04:23 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Thu Sep 8 15:10:58 2022 ] Mean training loss: 0.0117.
|
586 |
+
[ Thu Sep 8 15:10:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Thu Sep 8 15:10:58 2022 ] Eval epoch: 105
|
588 |
+
[ Thu Sep 8 15:17:41 2022 ] Epoch 105 Curr Acc: (27374/50919)53.76%
|
589 |
+
[ Thu Sep 8 15:17:41 2022 ] Epoch 54 Best Acc 54.55%
|
590 |
+
[ Thu Sep 8 15:17:41 2022 ] Training epoch: 106
|
591 |
+
[ Thu Sep 8 15:17:41 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Thu Sep 8 15:24:15 2022 ] Mean training loss: 0.0133.
|
593 |
+
[ Thu Sep 8 15:24:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Thu Sep 8 15:24:15 2022 ] Eval epoch: 106
|
595 |
+
[ Thu Sep 8 15:30:57 2022 ] Epoch 106 Curr Acc: (27505/50919)54.02%
|
596 |
+
[ Thu Sep 8 15:30:57 2022 ] Epoch 54 Best Acc 54.55%
|
597 |
+
[ Thu Sep 8 15:30:57 2022 ] Training epoch: 107
|
598 |
+
[ Thu Sep 8 15:30:57 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Thu Sep 8 15:37:32 2022 ] Mean training loss: 0.0120.
|
600 |
+
[ Thu Sep 8 15:37:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Thu Sep 8 15:37:32 2022 ] Eval epoch: 107
|
602 |
+
[ Thu Sep 8 15:44:15 2022 ] Epoch 107 Curr Acc: (27720/50919)54.44%
|
603 |
+
[ Thu Sep 8 15:44:15 2022 ] Epoch 54 Best Acc 54.55%
|
604 |
+
[ Thu Sep 8 15:44:15 2022 ] Training epoch: 108
|
605 |
+
[ Thu Sep 8 15:44:15 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Thu Sep 8 15:50:48 2022 ] Mean training loss: 0.0119.
|
607 |
+
[ Thu Sep 8 15:50:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Thu Sep 8 15:50:48 2022 ] Eval epoch: 108
|
609 |
+
[ Thu Sep 8 15:57:30 2022 ] Epoch 108 Curr Acc: (27437/50919)53.88%
|
610 |
+
[ Thu Sep 8 15:57:30 2022 ] Epoch 54 Best Acc 54.55%
|
611 |
+
[ Thu Sep 8 15:57:30 2022 ] Training epoch: 109
|
612 |
+
[ Thu Sep 8 15:57:30 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Thu Sep 8 16:04:04 2022 ] Mean training loss: 0.0114.
|
614 |
+
[ Thu Sep 8 16:04:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Thu Sep 8 16:04:04 2022 ] Eval epoch: 109
|
616 |
+
[ Thu Sep 8 16:10:47 2022 ] Epoch 109 Curr Acc: (27373/50919)53.76%
|
617 |
+
[ Thu Sep 8 16:10:47 2022 ] Epoch 54 Best Acc 54.55%
|
618 |
+
[ Thu Sep 8 16:10:47 2022 ] Training epoch: 110
|
619 |
+
[ Thu Sep 8 16:10:47 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Thu Sep 8 16:17:21 2022 ] Mean training loss: 0.0129.
|
621 |
+
[ Thu Sep 8 16:17:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Thu Sep 8 16:17:21 2022 ] Eval epoch: 110
|
623 |
+
[ Thu Sep 8 16:24:03 2022 ] Epoch 110 Curr Acc: (27047/50919)53.12%
|
624 |
+
[ Thu Sep 8 16:24:03 2022 ] Epoch 54 Best Acc 54.55%
|
625 |
+
[ Thu Sep 8 16:24:03 2022 ] epoch: 54, best accuracy: 0.5454938235236356
|
626 |
+
[ Thu Sep 8 16:24:03 2022 ] Experiment: ./work_dir/ntu120/xsub_jm
|
627 |
+
[ Thu Sep 8 16:24:04 2022 ] # generator parameters: 2.922995 M.
|
628 |
+
[ Thu Sep 8 16:24:04 2022 ] Load weights from ./runs/ntu120/xsub_jm/runs-53-105300.pt.
|
629 |
+
[ Thu Sep 8 16:24:04 2022 ] Eval epoch: 1
|
630 |
+
[ Thu Sep 8 16:30:46 2022 ] Epoch 1 Curr Acc: (27776/50919)54.55%
|
631 |
+
[ Thu Sep 8 16:30:46 2022 ] Epoch 54 Best Acc 54.55%
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu/xsub_b.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 60
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu/xsub_b/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu/xsub_b
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c48c593e2b823f8bd9f72279376db1fd09671dcb5378ac83302708c76e5c8882
|
3 |
+
size 4979902
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_b/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 8 17:07:44 2022 ] # generator parameters: 2.896055 M.
|
2 |
+
[ Thu Sep 8 17:07:44 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu/xsub_b', 'model_saved_name': './runs/ntu/xsub_b/runs', 'config': 'config/ntu/xsub_b.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Thu Sep 8 17:07:44 2022 ] Training epoch: 1
|
6 |
+
[ Thu Sep 8 17:07:44 2022 ] Learning rate: 0.015
|
7 |
+
[ Thu Sep 8 17:11:06 2022 ] Mean training loss: 3.1116.
|
8 |
+
[ Thu Sep 8 17:11:06 2022 ] Time consumption: [Data]02%, [Network]98%
|
9 |
+
[ Thu Sep 8 17:11:06 2022 ] Training epoch: 2
|
10 |
+
[ Thu Sep 8 17:11:06 2022 ] Learning rate: 0.03
|
11 |
+
[ Thu Sep 8 17:14:28 2022 ] Mean training loss: 2.2707.
|
12 |
+
[ Thu Sep 8 17:14:28 2022 ] Time consumption: [Data]01%, [Network]98%
|
13 |
+
[ Thu Sep 8 17:14:28 2022 ] Training epoch: 3
|
14 |
+
[ Thu Sep 8 17:14:28 2022 ] Learning rate: 0.045
|
15 |
+
[ Thu Sep 8 17:17:49 2022 ] Mean training loss: 1.8360.
|
16 |
+
[ Thu Sep 8 17:17:49 2022 ] Time consumption: [Data]01%, [Network]98%
|
17 |
+
[ Thu Sep 8 17:17:49 2022 ] Training epoch: 4
|
18 |
+
[ Thu Sep 8 17:17:49 2022 ] Learning rate: 0.06
|
19 |
+
[ Thu Sep 8 17:21:11 2022 ] Mean training loss: 1.6257.
|
20 |
+
[ Thu Sep 8 17:21:11 2022 ] Time consumption: [Data]01%, [Network]98%
|
21 |
+
[ Thu Sep 8 17:21:11 2022 ] Training epoch: 5
|
22 |
+
[ Thu Sep 8 17:21:11 2022 ] Learning rate: 0.075
|
23 |
+
[ Thu Sep 8 17:24:32 2022 ] Mean training loss: 1.4463.
|
24 |
+
[ Thu Sep 8 17:24:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Thu Sep 8 17:24:32 2022 ] Training epoch: 6
|
26 |
+
[ Thu Sep 8 17:24:32 2022 ] Learning rate: 0.09
|
27 |
+
[ Thu Sep 8 17:27:53 2022 ] Mean training loss: 1.3583.
|
28 |
+
[ Thu Sep 8 17:27:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Thu Sep 8 17:27:53 2022 ] Training epoch: 7
|
30 |
+
[ Thu Sep 8 17:27:53 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Thu Sep 8 17:31:14 2022 ] Mean training loss: 1.2543.
|
32 |
+
[ Thu Sep 8 17:31:14 2022 ] Time consumption: [Data]01%, [Network]98%
|
33 |
+
[ Thu Sep 8 17:31:14 2022 ] Training epoch: 8
|
34 |
+
[ Thu Sep 8 17:31:14 2022 ] Learning rate: 0.12
|
35 |
+
[ Thu Sep 8 17:34:35 2022 ] Mean training loss: 1.1767.
|
36 |
+
[ Thu Sep 8 17:34:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Thu Sep 8 17:34:35 2022 ] Training epoch: 9
|
38 |
+
[ Thu Sep 8 17:34:35 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Thu Sep 8 17:37:56 2022 ] Mean training loss: 1.1567.
|
40 |
+
[ Thu Sep 8 17:37:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Thu Sep 8 17:37:56 2022 ] Training epoch: 10
|
42 |
+
[ Thu Sep 8 17:37:56 2022 ] Learning rate: 0.15
|
43 |
+
[ Thu Sep 8 17:41:17 2022 ] Mean training loss: 1.1013.
|
44 |
+
[ Thu Sep 8 17:41:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Thu Sep 8 17:41:17 2022 ] Training epoch: 11
|
46 |
+
[ Thu Sep 8 17:41:17 2022 ] Learning rate: 0.15
|
47 |
+
[ Thu Sep 8 17:44:38 2022 ] Mean training loss: 1.0563.
|
48 |
+
[ Thu Sep 8 17:44:38 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Thu Sep 8 17:44:38 2022 ] Training epoch: 12
|
50 |
+
[ Thu Sep 8 17:44:38 2022 ] Learning rate: 0.15
|
51 |
+
[ Thu Sep 8 17:48:00 2022 ] Mean training loss: 1.0204.
|
52 |
+
[ Thu Sep 8 17:48:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Thu Sep 8 17:48:00 2022 ] Training epoch: 13
|
54 |
+
[ Thu Sep 8 17:48:00 2022 ] Learning rate: 0.15
|
55 |
+
[ Thu Sep 8 17:51:21 2022 ] Mean training loss: 0.9678.
|
56 |
+
[ Thu Sep 8 17:51:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Thu Sep 8 17:51:21 2022 ] Training epoch: 14
|
58 |
+
[ Thu Sep 8 17:51:21 2022 ] Learning rate: 0.15
|
59 |
+
[ Thu Sep 8 17:54:42 2022 ] Mean training loss: 0.9507.
|
60 |
+
[ Thu Sep 8 17:54:42 2022 ] Time consumption: [Data]01%, [Network]98%
|
61 |
+
[ Thu Sep 8 17:54:42 2022 ] Training epoch: 15
|
62 |
+
[ Thu Sep 8 17:54:42 2022 ] Learning rate: 0.15
|
63 |
+
[ Thu Sep 8 17:58:03 2022 ] Mean training loss: 0.9140.
|
64 |
+
[ Thu Sep 8 17:58:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Thu Sep 8 17:58:03 2022 ] Training epoch: 16
|
66 |
+
[ Thu Sep 8 17:58:03 2022 ] Learning rate: 0.15
|
67 |
+
[ Thu Sep 8 18:01:22 2022 ] Mean training loss: 0.8949.
|
68 |
+
[ Thu Sep 8 18:01:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Thu Sep 8 18:01:22 2022 ] Training epoch: 17
|
70 |
+
[ Thu Sep 8 18:01:22 2022 ] Learning rate: 0.15
|
71 |
+
[ Thu Sep 8 18:04:42 2022 ] Mean training loss: 0.8668.
|
72 |
+
[ Thu Sep 8 18:04:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Thu Sep 8 18:04:42 2022 ] Training epoch: 18
|
74 |
+
[ Thu Sep 8 18:04:42 2022 ] Learning rate: 0.15
|
75 |
+
[ Thu Sep 8 18:08:03 2022 ] Mean training loss: 0.8622.
|
76 |
+
[ Thu Sep 8 18:08:03 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Thu Sep 8 18:08:03 2022 ] Training epoch: 19
|
78 |
+
[ Thu Sep 8 18:08:03 2022 ] Learning rate: 0.15
|
79 |
+
[ Thu Sep 8 18:11:22 2022 ] Mean training loss: 0.8276.
|
80 |
+
[ Thu Sep 8 18:11:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Thu Sep 8 18:11:22 2022 ] Training epoch: 20
|
82 |
+
[ Thu Sep 8 18:11:22 2022 ] Learning rate: 0.15
|
83 |
+
[ Thu Sep 8 18:14:43 2022 ] Mean training loss: 0.8280.
|
84 |
+
[ Thu Sep 8 18:14:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Thu Sep 8 18:14:43 2022 ] Training epoch: 21
|
86 |
+
[ Thu Sep 8 18:14:43 2022 ] Learning rate: 0.15
|
87 |
+
[ Thu Sep 8 18:18:04 2022 ] Mean training loss: 0.8205.
|
88 |
+
[ Thu Sep 8 18:18:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Thu Sep 8 18:18:04 2022 ] Training epoch: 22
|
90 |
+
[ Thu Sep 8 18:18:04 2022 ] Learning rate: 0.15
|
91 |
+
[ Thu Sep 8 18:21:26 2022 ] Mean training loss: 0.8259.
|
92 |
+
[ Thu Sep 8 18:21:26 2022 ] Time consumption: [Data]01%, [Network]98%
|
93 |
+
[ Thu Sep 8 18:21:26 2022 ] Training epoch: 23
|
94 |
+
[ Thu Sep 8 18:21:26 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 18:24:47 2022 ] Mean training loss: 0.8165.
|
96 |
+
[ Thu Sep 8 18:24:47 2022 ] Time consumption: [Data]01%, [Network]98%
|
97 |
+
[ Thu Sep 8 18:24:47 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 18:24:47 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 18:28:09 2022 ] Mean training loss: 0.7833.
|
100 |
+
[ Thu Sep 8 18:28:09 2022 ] Time consumption: [Data]01%, [Network]98%
|
101 |
+
[ Thu Sep 8 18:28:09 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 18:28:09 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 18:31:32 2022 ] Mean training loss: 0.7724.
|
104 |
+
[ Thu Sep 8 18:31:32 2022 ] Time consumption: [Data]01%, [Network]98%
|
105 |
+
[ Thu Sep 8 18:31:32 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 18:31:32 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 18:34:53 2022 ] Mean training loss: 0.7551.
|
108 |
+
[ Thu Sep 8 18:34:53 2022 ] Time consumption: [Data]01%, [Network]98%
|
109 |
+
[ Thu Sep 8 18:34:53 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 18:34:53 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 18:38:13 2022 ] Mean training loss: 0.7380.
|
112 |
+
[ Thu Sep 8 18:38:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Thu Sep 8 18:38:13 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 18:38:13 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 18:41:33 2022 ] Mean training loss: 0.7460.
|
116 |
+
[ Thu Sep 8 18:41:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Thu Sep 8 18:41:33 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 18:41:33 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 18:44:54 2022 ] Mean training loss: 0.7339.
|
120 |
+
[ Thu Sep 8 18:44:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Thu Sep 8 18:44:54 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 18:44:54 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 18:48:15 2022 ] Mean training loss: 0.7232.
|
124 |
+
[ Thu Sep 8 18:48:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Thu Sep 8 18:48:15 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 18:48:15 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 18:51:37 2022 ] Mean training loss: 0.7467.
|
128 |
+
[ Thu Sep 8 18:51:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Thu Sep 8 18:51:37 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 18:51:37 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 18:54:58 2022 ] Mean training loss: 0.7282.
|
132 |
+
[ Thu Sep 8 18:54:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Thu Sep 8 18:54:58 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 18:54:58 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 18:58:19 2022 ] Mean training loss: 0.7132.
|
136 |
+
[ Thu Sep 8 18:58:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 18:58:19 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 18:58:19 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 19:01:40 2022 ] Mean training loss: 0.7012.
|
140 |
+
[ Thu Sep 8 19:01:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 19:01:40 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 19:01:40 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 19:05:01 2022 ] Mean training loss: 0.7128.
|
144 |
+
[ Thu Sep 8 19:05:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 19:05:01 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 19:05:01 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 19:08:22 2022 ] Mean training loss: 0.6946.
|
148 |
+
[ Thu Sep 8 19:08:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 19:08:22 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 19:08:22 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 19:11:43 2022 ] Mean training loss: 0.7103.
|
152 |
+
[ Thu Sep 8 19:11:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 19:11:43 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 19:11:43 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 19:15:05 2022 ] Mean training loss: 0.6890.
|
156 |
+
[ Thu Sep 8 19:15:05 2022 ] Time consumption: [Data]02%, [Network]98%
|
157 |
+
[ Thu Sep 8 19:15:05 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 19:15:05 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 19:18:24 2022 ] Mean training loss: 0.6835.
|
160 |
+
[ Thu Sep 8 19:18:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 19:18:24 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 19:18:24 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 19:21:45 2022 ] Mean training loss: 0.6812.
|
164 |
+
[ Thu Sep 8 19:21:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 19:21:45 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 19:21:45 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 19:25:04 2022 ] Mean training loss: 0.6613.
|
168 |
+
[ Thu Sep 8 19:25:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 19:25:04 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 19:25:04 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 19:28:24 2022 ] Mean training loss: 0.6751.
|
172 |
+
[ Thu Sep 8 19:28:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 19:28:24 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 19:28:24 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 19:31:45 2022 ] Mean training loss: 0.6819.
|
176 |
+
[ Thu Sep 8 19:31:45 2022 ] Time consumption: [Data]01%, [Network]98%
|
177 |
+
[ Thu Sep 8 19:31:45 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 19:31:45 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 19:35:06 2022 ] Mean training loss: 0.6711.
|
180 |
+
[ Thu Sep 8 19:35:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 19:35:06 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 19:35:06 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 19:38:26 2022 ] Mean training loss: 0.6602.
|
184 |
+
[ Thu Sep 8 19:38:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 19:38:26 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 19:38:26 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 19:41:48 2022 ] Mean training loss: 0.6408.
|
188 |
+
[ Thu Sep 8 19:41:48 2022 ] Time consumption: [Data]01%, [Network]98%
|
189 |
+
[ Thu Sep 8 19:41:48 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 19:41:48 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 19:45:10 2022 ] Mean training loss: 0.6448.
|
192 |
+
[ Thu Sep 8 19:45:10 2022 ] Time consumption: [Data]02%, [Network]98%
|
193 |
+
[ Thu Sep 8 19:45:10 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 19:45:10 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 19:48:33 2022 ] Mean training loss: 0.6538.
|
196 |
+
[ Thu Sep 8 19:48:33 2022 ] Time consumption: [Data]02%, [Network]98%
|
197 |
+
[ Thu Sep 8 19:48:33 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 19:48:33 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 19:51:55 2022 ] Mean training loss: 0.6332.
|
200 |
+
[ Thu Sep 8 19:51:55 2022 ] Time consumption: [Data]02%, [Network]98%
|
201 |
+
[ Thu Sep 8 19:51:55 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 19:51:55 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 19:55:17 2022 ] Mean training loss: 0.6572.
|
204 |
+
[ Thu Sep 8 19:55:17 2022 ] Time consumption: [Data]02%, [Network]98%
|
205 |
+
[ Thu Sep 8 19:55:17 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 19:55:17 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 19:58:39 2022 ] Mean training loss: 0.3288.
|
208 |
+
[ Thu Sep 8 19:58:39 2022 ] Time consumption: [Data]02%, [Network]98%
|
209 |
+
[ Thu Sep 8 19:58:39 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 20:00:51 2022 ] Epoch 51 Curr Acc: (11075/16487)67.17%
|
211 |
+
[ Thu Sep 8 20:00:51 2022 ] Epoch 51 Best Acc 67.17%
|
212 |
+
[ Thu Sep 8 20:00:51 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 20:00:51 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 20:04:13 2022 ] Mean training loss: 0.2253.
|
215 |
+
[ Thu Sep 8 20:04:13 2022 ] Time consumption: [Data]02%, [Network]98%
|
216 |
+
[ Thu Sep 8 20:04:13 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 20:06:26 2022 ] Epoch 52 Curr Acc: (11423/16487)69.28%
|
218 |
+
[ Thu Sep 8 20:06:26 2022 ] Epoch 52 Best Acc 69.28%
|
219 |
+
[ Thu Sep 8 20:06:26 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 20:06:26 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 20:09:47 2022 ] Mean training loss: 0.1931.
|
222 |
+
[ Thu Sep 8 20:09:47 2022 ] Time consumption: [Data]02%, [Network]98%
|
223 |
+
[ Thu Sep 8 20:09:47 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 20:12:00 2022 ] Epoch 53 Curr Acc: (11412/16487)69.22%
|
225 |
+
[ Thu Sep 8 20:12:00 2022 ] Epoch 52 Best Acc 69.28%
|
226 |
+
[ Thu Sep 8 20:12:00 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 20:12:00 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 20:15:21 2022 ] Mean training loss: 0.1663.
|
229 |
+
[ Thu Sep 8 20:15:21 2022 ] Time consumption: [Data]02%, [Network]98%
|
230 |
+
[ Thu Sep 8 20:15:21 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 20:17:33 2022 ] Epoch 54 Curr Acc: (10686/16487)64.81%
|
232 |
+
[ Thu Sep 8 20:17:33 2022 ] Epoch 52 Best Acc 69.28%
|
233 |
+
[ Thu Sep 8 20:17:33 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 20:17:33 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 20:20:55 2022 ] Mean training loss: 0.1412.
|
236 |
+
[ Thu Sep 8 20:20:55 2022 ] Time consumption: [Data]02%, [Network]98%
|
237 |
+
[ Thu Sep 8 20:20:55 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 20:23:07 2022 ] Epoch 55 Curr Acc: (11452/16487)69.46%
|
239 |
+
[ Thu Sep 8 20:23:07 2022 ] Epoch 55 Best Acc 69.46%
|
240 |
+
[ Thu Sep 8 20:23:07 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 20:23:07 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 20:26:29 2022 ] Mean training loss: 0.1234.
|
243 |
+
[ Thu Sep 8 20:26:29 2022 ] Time consumption: [Data]02%, [Network]98%
|
244 |
+
[ Thu Sep 8 20:26:29 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 20:28:41 2022 ] Epoch 56 Curr Acc: (10908/16487)66.16%
|
246 |
+
[ Thu Sep 8 20:28:41 2022 ] Epoch 55 Best Acc 69.46%
|
247 |
+
[ Thu Sep 8 20:28:41 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 20:28:41 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 20:32:04 2022 ] Mean training loss: 0.1122.
|
250 |
+
[ Thu Sep 8 20:32:04 2022 ] Time consumption: [Data]02%, [Network]98%
|
251 |
+
[ Thu Sep 8 20:32:04 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 20:34:16 2022 ] Epoch 57 Curr Acc: (11402/16487)69.16%
|
253 |
+
[ Thu Sep 8 20:34:16 2022 ] Epoch 55 Best Acc 69.46%
|
254 |
+
[ Thu Sep 8 20:34:16 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 20:34:16 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 20:37:37 2022 ] Mean training loss: 0.0942.
|
257 |
+
[ Thu Sep 8 20:37:37 2022 ] Time consumption: [Data]02%, [Network]98%
|
258 |
+
[ Thu Sep 8 20:37:37 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 20:39:49 2022 ] Epoch 58 Curr Acc: (11409/16487)69.20%
|
260 |
+
[ Thu Sep 8 20:39:49 2022 ] Epoch 55 Best Acc 69.46%
|
261 |
+
[ Thu Sep 8 20:39:49 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 20:39:49 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 20:43:11 2022 ] Mean training loss: 0.0820.
|
264 |
+
[ Thu Sep 8 20:43:11 2022 ] Time consumption: [Data]02%, [Network]98%
|
265 |
+
[ Thu Sep 8 20:43:11 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 20:45:23 2022 ] Epoch 59 Curr Acc: (11000/16487)66.72%
|
267 |
+
[ Thu Sep 8 20:45:23 2022 ] Epoch 55 Best Acc 69.46%
|
268 |
+
[ Thu Sep 8 20:45:23 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 20:45:23 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 20:48:44 2022 ] Mean training loss: 0.0771.
|
271 |
+
[ Thu Sep 8 20:48:44 2022 ] Time consumption: [Data]02%, [Network]98%
|
272 |
+
[ Thu Sep 8 20:48:44 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 20:50:56 2022 ] Epoch 60 Curr Acc: (11084/16487)67.23%
|
274 |
+
[ Thu Sep 8 20:50:56 2022 ] Epoch 55 Best Acc 69.46%
|
275 |
+
[ Thu Sep 8 20:50:56 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 20:50:56 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 20:54:18 2022 ] Mean training loss: 0.0672.
|
278 |
+
[ Thu Sep 8 20:54:18 2022 ] Time consumption: [Data]02%, [Network]98%
|
279 |
+
[ Thu Sep 8 20:54:18 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 20:56:30 2022 ] Epoch 61 Curr Acc: (11192/16487)67.88%
|
281 |
+
[ Thu Sep 8 20:56:30 2022 ] Epoch 55 Best Acc 69.46%
|
282 |
+
[ Thu Sep 8 20:56:30 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 20:56:30 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 20:59:52 2022 ] Mean training loss: 0.0621.
|
285 |
+
[ Thu Sep 8 20:59:52 2022 ] Time consumption: [Data]02%, [Network]98%
|
286 |
+
[ Thu Sep 8 20:59:52 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 21:02:04 2022 ] Epoch 62 Curr Acc: (10289/16487)62.41%
|
288 |
+
[ Thu Sep 8 21:02:04 2022 ] Epoch 55 Best Acc 69.46%
|
289 |
+
[ Thu Sep 8 21:02:04 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 21:02:04 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 21:05:25 2022 ] Mean training loss: 0.0567.
|
292 |
+
[ Thu Sep 8 21:05:25 2022 ] Time consumption: [Data]02%, [Network]98%
|
293 |
+
[ Thu Sep 8 21:05:25 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 21:07:37 2022 ] Epoch 63 Curr Acc: (10353/16487)62.79%
|
295 |
+
[ Thu Sep 8 21:07:37 2022 ] Epoch 55 Best Acc 69.46%
|
296 |
+
[ Thu Sep 8 21:07:37 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 21:07:37 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 21:10:59 2022 ] Mean training loss: 0.0561.
|
299 |
+
[ Thu Sep 8 21:10:59 2022 ] Time consumption: [Data]02%, [Network]98%
|
300 |
+
[ Thu Sep 8 21:10:59 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 21:13:11 2022 ] Epoch 64 Curr Acc: (9955/16487)60.38%
|
302 |
+
[ Thu Sep 8 21:13:11 2022 ] Epoch 55 Best Acc 69.46%
|
303 |
+
[ Thu Sep 8 21:13:11 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 21:13:11 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 21:16:32 2022 ] Mean training loss: 0.0475.
|
306 |
+
[ Thu Sep 8 21:16:32 2022 ] Time consumption: [Data]02%, [Network]98%
|
307 |
+
[ Thu Sep 8 21:16:32 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 21:18:45 2022 ] Epoch 65 Curr Acc: (11008/16487)66.77%
|
309 |
+
[ Thu Sep 8 21:18:45 2022 ] Epoch 55 Best Acc 69.46%
|
310 |
+
[ Thu Sep 8 21:18:45 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 21:18:45 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 21:22:06 2022 ] Mean training loss: 0.0453.
|
313 |
+
[ Thu Sep 8 21:22:06 2022 ] Time consumption: [Data]02%, [Network]98%
|
314 |
+
[ Thu Sep 8 21:22:06 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 21:24:18 2022 ] Epoch 66 Curr Acc: (11337/16487)68.76%
|
316 |
+
[ Thu Sep 8 21:24:18 2022 ] Epoch 55 Best Acc 69.46%
|
317 |
+
[ Thu Sep 8 21:24:18 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 21:24:18 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 21:27:40 2022 ] Mean training loss: 0.0457.
|
320 |
+
[ Thu Sep 8 21:27:40 2022 ] Time consumption: [Data]02%, [Network]98%
|
321 |
+
[ Thu Sep 8 21:27:40 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 21:29:53 2022 ] Epoch 67 Curr Acc: (10638/16487)64.52%
|
323 |
+
[ Thu Sep 8 21:29:53 2022 ] Epoch 55 Best Acc 69.46%
|
324 |
+
[ Thu Sep 8 21:29:53 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 21:29:53 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 21:33:14 2022 ] Mean training loss: 0.0494.
|
327 |
+
[ Thu Sep 8 21:33:14 2022 ] Time consumption: [Data]02%, [Network]98%
|
328 |
+
[ Thu Sep 8 21:33:14 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 21:35:26 2022 ] Epoch 68 Curr Acc: (11151/16487)67.64%
|
330 |
+
[ Thu Sep 8 21:35:26 2022 ] Epoch 55 Best Acc 69.46%
|
331 |
+
[ Thu Sep 8 21:35:26 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 21:35:26 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 21:38:47 2022 ] Mean training loss: 0.0378.
|
334 |
+
[ Thu Sep 8 21:38:47 2022 ] Time consumption: [Data]02%, [Network]98%
|
335 |
+
[ Thu Sep 8 21:38:48 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 21:41:00 2022 ] Epoch 69 Curr Acc: (11160/16487)67.69%
|
337 |
+
[ Thu Sep 8 21:41:00 2022 ] Epoch 55 Best Acc 69.46%
|
338 |
+
[ Thu Sep 8 21:41:00 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 21:41:00 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 21:44:21 2022 ] Mean training loss: 0.0363.
|
341 |
+
[ Thu Sep 8 21:44:21 2022 ] Time consumption: [Data]02%, [Network]98%
|
342 |
+
[ Thu Sep 8 21:44:21 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 21:46:34 2022 ] Epoch 70 Curr Acc: (10514/16487)63.77%
|
344 |
+
[ Thu Sep 8 21:46:34 2022 ] Epoch 55 Best Acc 69.46%
|
345 |
+
[ Thu Sep 8 21:46:34 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 21:46:34 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 21:49:55 2022 ] Mean training loss: 0.0281.
|
348 |
+
[ Thu Sep 8 21:49:55 2022 ] Time consumption: [Data]02%, [Network]98%
|
349 |
+
[ Thu Sep 8 21:49:55 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 21:52:07 2022 ] Epoch 71 Curr Acc: (11203/16487)67.95%
|
351 |
+
[ Thu Sep 8 21:52:07 2022 ] Epoch 55 Best Acc 69.46%
|
352 |
+
[ Thu Sep 8 21:52:07 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 21:52:07 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 21:55:28 2022 ] Mean training loss: 0.0247.
|
355 |
+
[ Thu Sep 8 21:55:28 2022 ] Time consumption: [Data]02%, [Network]98%
|
356 |
+
[ Thu Sep 8 21:55:28 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 21:57:40 2022 ] Epoch 72 Curr Acc: (10075/16487)61.11%
|
358 |
+
[ Thu Sep 8 21:57:40 2022 ] Epoch 55 Best Acc 69.46%
|
359 |
+
[ Thu Sep 8 21:57:40 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 21:57:40 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 22:01:01 2022 ] Mean training loss: 0.0245.
|
362 |
+
[ Thu Sep 8 22:01:01 2022 ] Time consumption: [Data]02%, [Network]98%
|
363 |
+
[ Thu Sep 8 22:01:01 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 22:03:14 2022 ] Epoch 73 Curr Acc: (10729/16487)65.08%
|
365 |
+
[ Thu Sep 8 22:03:14 2022 ] Epoch 55 Best Acc 69.46%
|
366 |
+
[ Thu Sep 8 22:03:14 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 22:03:14 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 22:06:35 2022 ] Mean training loss: 0.0211.
|
369 |
+
[ Thu Sep 8 22:06:35 2022 ] Time consumption: [Data]02%, [Network]98%
|
370 |
+
[ Thu Sep 8 22:06:35 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 22:08:47 2022 ] Epoch 74 Curr Acc: (10541/16487)63.94%
|
372 |
+
[ Thu Sep 8 22:08:47 2022 ] Epoch 55 Best Acc 69.46%
|
373 |
+
[ Thu Sep 8 22:08:47 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 22:08:47 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 22:12:08 2022 ] Mean training loss: 0.0194.
|
376 |
+
[ Thu Sep 8 22:12:08 2022 ] Time consumption: [Data]02%, [Network]98%
|
377 |
+
[ Thu Sep 8 22:12:08 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 22:14:20 2022 ] Epoch 75 Curr Acc: (9983/16487)60.55%
|
379 |
+
[ Thu Sep 8 22:14:20 2022 ] Epoch 55 Best Acc 69.46%
|
380 |
+
[ Thu Sep 8 22:14:20 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 22:14:20 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 22:17:41 2022 ] Mean training loss: 0.0206.
|
383 |
+
[ Thu Sep 8 22:17:41 2022 ] Time consumption: [Data]02%, [Network]98%
|
384 |
+
[ Thu Sep 8 22:17:42 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 22:19:54 2022 ] Epoch 76 Curr Acc: (11450/16487)69.45%
|
386 |
+
[ Thu Sep 8 22:19:54 2022 ] Epoch 55 Best Acc 69.46%
|
387 |
+
[ Thu Sep 8 22:19:54 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 22:19:54 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 22:23:15 2022 ] Mean training loss: 0.0160.
|
390 |
+
[ Thu Sep 8 22:23:15 2022 ] Time consumption: [Data]02%, [Network]98%
|
391 |
+
[ Thu Sep 8 22:23:15 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 22:25:27 2022 ] Epoch 77 Curr Acc: (9984/16487)60.56%
|
393 |
+
[ Thu Sep 8 22:25:27 2022 ] Epoch 55 Best Acc 69.46%
|
394 |
+
[ Thu Sep 8 22:25:27 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 22:25:27 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 22:28:48 2022 ] Mean training loss: 0.0171.
|
397 |
+
[ Thu Sep 8 22:28:48 2022 ] Time consumption: [Data]02%, [Network]98%
|
398 |
+
[ Thu Sep 8 22:28:48 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 22:31:01 2022 ] Epoch 78 Curr Acc: (10708/16487)64.95%
|
400 |
+
[ Thu Sep 8 22:31:01 2022 ] Epoch 55 Best Acc 69.46%
|
401 |
+
[ Thu Sep 8 22:31:01 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 22:31:01 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 22:34:21 2022 ] Mean training loss: 0.0179.
|
404 |
+
[ Thu Sep 8 22:34:21 2022 ] Time consumption: [Data]02%, [Network]98%
|
405 |
+
[ Thu Sep 8 22:34:21 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 22:36:34 2022 ] Epoch 79 Curr Acc: (10084/16487)61.16%
|
407 |
+
[ Thu Sep 8 22:36:34 2022 ] Epoch 55 Best Acc 69.46%
|
408 |
+
[ Thu Sep 8 22:36:34 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 22:36:34 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 22:39:54 2022 ] Mean training loss: 0.0162.
|
411 |
+
[ Thu Sep 8 22:39:54 2022 ] Time consumption: [Data]02%, [Network]98%
|
412 |
+
[ Thu Sep 8 22:39:55 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 22:42:07 2022 ] Epoch 80 Curr Acc: (10999/16487)66.71%
|
414 |
+
[ Thu Sep 8 22:42:07 2022 ] Epoch 55 Best Acc 69.46%
|
415 |
+
[ Thu Sep 8 22:42:07 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 22:42:07 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 22:45:28 2022 ] Mean training loss: 0.0190.
|
418 |
+
[ Thu Sep 8 22:45:28 2022 ] Time consumption: [Data]02%, [Network]98%
|
419 |
+
[ Thu Sep 8 22:45:28 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 22:47:40 2022 ] Epoch 81 Curr Acc: (11188/16487)67.86%
|
421 |
+
[ Thu Sep 8 22:47:40 2022 ] Epoch 55 Best Acc 69.46%
|
422 |
+
[ Thu Sep 8 22:47:40 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 22:47:40 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 22:51:01 2022 ] Mean training loss: 0.0153.
|
425 |
+
[ Thu Sep 8 22:51:01 2022 ] Time consumption: [Data]02%, [Network]98%
|
426 |
+
[ Thu Sep 8 22:51:01 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 22:53:13 2022 ] Epoch 82 Curr Acc: (9668/16487)58.64%
|
428 |
+
[ Thu Sep 8 22:53:13 2022 ] Epoch 55 Best Acc 69.46%
|
429 |
+
[ Thu Sep 8 22:53:13 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 22:53:13 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 22:56:35 2022 ] Mean training loss: 0.0170.
|
432 |
+
[ Thu Sep 8 22:56:35 2022 ] Time consumption: [Data]02%, [Network]98%
|
433 |
+
[ Thu Sep 8 22:56:35 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 22:58:47 2022 ] Epoch 83 Curr Acc: (11192/16487)67.88%
|
435 |
+
[ Thu Sep 8 22:58:47 2022 ] Epoch 55 Best Acc 69.46%
|
436 |
+
[ Thu Sep 8 22:58:47 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 22:58:47 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 23:02:09 2022 ] Mean training loss: 0.0166.
|
439 |
+
[ Thu Sep 8 23:02:09 2022 ] Time consumption: [Data]02%, [Network]98%
|
440 |
+
[ Thu Sep 8 23:02:09 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 23:04:21 2022 ] Epoch 84 Curr Acc: (10297/16487)62.46%
|
442 |
+
[ Thu Sep 8 23:04:21 2022 ] Epoch 55 Best Acc 69.46%
|
443 |
+
[ Thu Sep 8 23:04:21 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 23:04:21 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 23:07:43 2022 ] Mean training loss: 0.0164.
|
446 |
+
[ Thu Sep 8 23:07:43 2022 ] Time consumption: [Data]02%, [Network]98%
|
447 |
+
[ Thu Sep 8 23:07:43 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 23:09:56 2022 ] Epoch 85 Curr Acc: (11152/16487)67.64%
|
449 |
+
[ Thu Sep 8 23:09:56 2022 ] Epoch 55 Best Acc 69.46%
|
450 |
+
[ Thu Sep 8 23:09:56 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 23:09:56 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 23:13:17 2022 ] Mean training loss: 0.0149.
|
453 |
+
[ Thu Sep 8 23:13:17 2022 ] Time consumption: [Data]02%, [Network]98%
|
454 |
+
[ Thu Sep 8 23:13:17 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 23:15:29 2022 ] Epoch 86 Curr Acc: (10591/16487)64.24%
|
456 |
+
[ Thu Sep 8 23:15:29 2022 ] Epoch 55 Best Acc 69.46%
|
457 |
+
[ Thu Sep 8 23:15:29 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 23:15:29 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 23:18:51 2022 ] Mean training loss: 0.0143.
|
460 |
+
[ Thu Sep 8 23:18:51 2022 ] Time consumption: [Data]02%, [Network]98%
|
461 |
+
[ Thu Sep 8 23:18:51 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 23:21:03 2022 ] Epoch 87 Curr Acc: (11437/16487)69.37%
|
463 |
+
[ Thu Sep 8 23:21:03 2022 ] Epoch 55 Best Acc 69.46%
|
464 |
+
[ Thu Sep 8 23:21:03 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 23:21:03 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 23:24:24 2022 ] Mean training loss: 0.0148.
|
467 |
+
[ Thu Sep 8 23:24:24 2022 ] Time consumption: [Data]02%, [Network]98%
|
468 |
+
[ Thu Sep 8 23:24:24 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 23:26:37 2022 ] Epoch 88 Curr Acc: (11322/16487)68.67%
|
470 |
+
[ Thu Sep 8 23:26:37 2022 ] Epoch 55 Best Acc 69.46%
|
471 |
+
[ Thu Sep 8 23:26:37 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 23:26:37 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 23:29:57 2022 ] Mean training loss: 0.0160.
|
474 |
+
[ Thu Sep 8 23:29:57 2022 ] Time consumption: [Data]02%, [Network]98%
|
475 |
+
[ Thu Sep 8 23:29:58 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 23:32:10 2022 ] Epoch 89 Curr Acc: (11235/16487)68.14%
|
477 |
+
[ Thu Sep 8 23:32:10 2022 ] Epoch 55 Best Acc 69.46%
|
478 |
+
[ Thu Sep 8 23:32:10 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 23:32:10 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 23:35:31 2022 ] Mean training loss: 0.0160.
|
481 |
+
[ Thu Sep 8 23:35:31 2022 ] Time consumption: [Data]02%, [Network]98%
|
482 |
+
[ Thu Sep 8 23:35:31 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 23:37:43 2022 ] Epoch 90 Curr Acc: (11088/16487)67.25%
|
484 |
+
[ Thu Sep 8 23:37:43 2022 ] Epoch 55 Best Acc 69.46%
|
485 |
+
[ Thu Sep 8 23:37:43 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 23:37:43 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 23:41:05 2022 ] Mean training loss: 0.0152.
|
488 |
+
[ Thu Sep 8 23:41:05 2022 ] Time consumption: [Data]02%, [Network]98%
|
489 |
+
[ Thu Sep 8 23:41:05 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 23:43:17 2022 ] Epoch 91 Curr Acc: (11576/16487)70.21%
|
491 |
+
[ Thu Sep 8 23:43:17 2022 ] Epoch 91 Best Acc 70.21%
|
492 |
+
[ Thu Sep 8 23:43:17 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 23:43:17 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 23:46:38 2022 ] Mean training loss: 0.0156.
|
495 |
+
[ Thu Sep 8 23:46:38 2022 ] Time consumption: [Data]02%, [Network]98%
|
496 |
+
[ Thu Sep 8 23:46:38 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 23:48:51 2022 ] Epoch 92 Curr Acc: (9849/16487)59.74%
|
498 |
+
[ Thu Sep 8 23:48:51 2022 ] Epoch 91 Best Acc 70.21%
|
499 |
+
[ Thu Sep 8 23:48:51 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 23:48:51 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 23:52:12 2022 ] Mean training loss: 0.0135.
|
502 |
+
[ Thu Sep 8 23:52:12 2022 ] Time consumption: [Data]02%, [Network]98%
|
503 |
+
[ Thu Sep 8 23:52:12 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 23:54:24 2022 ] Epoch 93 Curr Acc: (11271/16487)68.36%
|
505 |
+
[ Thu Sep 8 23:54:24 2022 ] Epoch 91 Best Acc 70.21%
|
506 |
+
[ Thu Sep 8 23:54:24 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 23:54:24 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 23:57:46 2022 ] Mean training loss: 0.0134.
|
509 |
+
[ Thu Sep 8 23:57:46 2022 ] Time consumption: [Data]02%, [Network]98%
|
510 |
+
[ Thu Sep 8 23:57:46 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 23:59:59 2022 ] Epoch 94 Curr Acc: (10530/16487)63.87%
|
512 |
+
[ Thu Sep 8 23:59:59 2022 ] Epoch 91 Best Acc 70.21%
|
513 |
+
[ Thu Sep 8 23:59:59 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 23:59:59 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Fri Sep 9 00:03:20 2022 ] Mean training loss: 0.0135.
|
516 |
+
[ Fri Sep 9 00:03:20 2022 ] Time consumption: [Data]02%, [Network]98%
|
517 |
+
[ Fri Sep 9 00:03:20 2022 ] Eval epoch: 95
|
518 |
+
[ Fri Sep 9 00:05:33 2022 ] Epoch 95 Curr Acc: (10177/16487)61.73%
|
519 |
+
[ Fri Sep 9 00:05:33 2022 ] Epoch 91 Best Acc 70.21%
|
520 |
+
[ Fri Sep 9 00:05:33 2022 ] Training epoch: 96
|
521 |
+
[ Fri Sep 9 00:05:33 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Fri Sep 9 00:08:54 2022 ] Mean training loss: 0.0145.
|
523 |
+
[ Fri Sep 9 00:08:54 2022 ] Time consumption: [Data]02%, [Network]98%
|
524 |
+
[ Fri Sep 9 00:08:54 2022 ] Eval epoch: 96
|
525 |
+
[ Fri Sep 9 00:11:06 2022 ] Epoch 96 Curr Acc: (11439/16487)69.38%
|
526 |
+
[ Fri Sep 9 00:11:06 2022 ] Epoch 91 Best Acc 70.21%
|
527 |
+
[ Fri Sep 9 00:11:06 2022 ] Training epoch: 97
|
528 |
+
[ Fri Sep 9 00:11:06 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Fri Sep 9 00:14:28 2022 ] Mean training loss: 0.0128.
|
530 |
+
[ Fri Sep 9 00:14:28 2022 ] Time consumption: [Data]02%, [Network]98%
|
531 |
+
[ Fri Sep 9 00:14:28 2022 ] Eval epoch: 97
|
532 |
+
[ Fri Sep 9 00:16:40 2022 ] Epoch 97 Curr Acc: (10205/16487)61.90%
|
533 |
+
[ Fri Sep 9 00:16:40 2022 ] Epoch 91 Best Acc 70.21%
|
534 |
+
[ Fri Sep 9 00:16:40 2022 ] Training epoch: 98
|
535 |
+
[ Fri Sep 9 00:16:40 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Fri Sep 9 00:20:01 2022 ] Mean training loss: 0.0156.
|
537 |
+
[ Fri Sep 9 00:20:01 2022 ] Time consumption: [Data]02%, [Network]98%
|
538 |
+
[ Fri Sep 9 00:20:01 2022 ] Eval epoch: 98
|
539 |
+
[ Fri Sep 9 00:22:13 2022 ] Epoch 98 Curr Acc: (11479/16487)69.62%
|
540 |
+
[ Fri Sep 9 00:22:13 2022 ] Epoch 91 Best Acc 70.21%
|
541 |
+
[ Fri Sep 9 00:22:13 2022 ] Training epoch: 99
|
542 |
+
[ Fri Sep 9 00:22:13 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Fri Sep 9 00:25:35 2022 ] Mean training loss: 0.0147.
|
544 |
+
[ Fri Sep 9 00:25:35 2022 ] Time consumption: [Data]02%, [Network]98%
|
545 |
+
[ Fri Sep 9 00:25:35 2022 ] Eval epoch: 99
|
546 |
+
[ Fri Sep 9 00:27:47 2022 ] Epoch 99 Curr Acc: (9911/16487)60.11%
|
547 |
+
[ Fri Sep 9 00:27:47 2022 ] Epoch 91 Best Acc 70.21%
|
548 |
+
[ Fri Sep 9 00:27:47 2022 ] Training epoch: 100
|
549 |
+
[ Fri Sep 9 00:27:47 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Fri Sep 9 00:31:08 2022 ] Mean training loss: 0.0143.
|
551 |
+
[ Fri Sep 9 00:31:08 2022 ] Time consumption: [Data]02%, [Network]98%
|
552 |
+
[ Fri Sep 9 00:31:08 2022 ] Eval epoch: 100
|
553 |
+
[ Fri Sep 9 00:33:20 2022 ] Epoch 100 Curr Acc: (11292/16487)68.49%
|
554 |
+
[ Fri Sep 9 00:33:20 2022 ] Epoch 91 Best Acc 70.21%
|
555 |
+
[ Fri Sep 9 00:33:21 2022 ] Training epoch: 101
|
556 |
+
[ Fri Sep 9 00:33:21 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Fri Sep 9 00:36:41 2022 ] Mean training loss: 0.0164.
|
558 |
+
[ Fri Sep 9 00:36:41 2022 ] Time consumption: [Data]02%, [Network]98%
|
559 |
+
[ Fri Sep 9 00:36:41 2022 ] Eval epoch: 101
|
560 |
+
[ Fri Sep 9 00:38:54 2022 ] Epoch 101 Curr Acc: (11442/16487)69.40%
|
561 |
+
[ Fri Sep 9 00:38:54 2022 ] Epoch 91 Best Acc 70.21%
|
562 |
+
[ Fri Sep 9 00:38:54 2022 ] Training epoch: 102
|
563 |
+
[ Fri Sep 9 00:38:54 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Fri Sep 9 00:42:15 2022 ] Mean training loss: 0.0159.
|
565 |
+
[ Fri Sep 9 00:42:15 2022 ] Time consumption: [Data]02%, [Network]98%
|
566 |
+
[ Fri Sep 9 00:42:15 2022 ] Eval epoch: 102
|
567 |
+
[ Fri Sep 9 00:44:27 2022 ] Epoch 102 Curr Acc: (10232/16487)62.06%
|
568 |
+
[ Fri Sep 9 00:44:27 2022 ] Epoch 91 Best Acc 70.21%
|
569 |
+
[ Fri Sep 9 00:44:27 2022 ] Training epoch: 103
|
570 |
+
[ Fri Sep 9 00:44:27 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Fri Sep 9 00:47:48 2022 ] Mean training loss: 0.0156.
|
572 |
+
[ Fri Sep 9 00:47:48 2022 ] Time consumption: [Data]02%, [Network]98%
|
573 |
+
[ Fri Sep 9 00:47:48 2022 ] Eval epoch: 103
|
574 |
+
[ Fri Sep 9 00:50:01 2022 ] Epoch 103 Curr Acc: (10424/16487)63.23%
|
575 |
+
[ Fri Sep 9 00:50:01 2022 ] Epoch 91 Best Acc 70.21%
|
576 |
+
[ Fri Sep 9 00:50:01 2022 ] Training epoch: 104
|
577 |
+
[ Fri Sep 9 00:50:01 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Fri Sep 9 00:53:22 2022 ] Mean training loss: 0.0147.
|
579 |
+
[ Fri Sep 9 00:53:22 2022 ] Time consumption: [Data]02%, [Network]98%
|
580 |
+
[ Fri Sep 9 00:53:22 2022 ] Eval epoch: 104
|
581 |
+
[ Fri Sep 9 00:55:34 2022 ] Epoch 104 Curr Acc: (10890/16487)66.05%
|
582 |
+
[ Fri Sep 9 00:55:34 2022 ] Epoch 91 Best Acc 70.21%
|
583 |
+
[ Fri Sep 9 00:55:34 2022 ] Training epoch: 105
|
584 |
+
[ Fri Sep 9 00:55:34 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Fri Sep 9 00:58:55 2022 ] Mean training loss: 0.0152.
|
586 |
+
[ Fri Sep 9 00:58:55 2022 ] Time consumption: [Data]02%, [Network]98%
|
587 |
+
[ Fri Sep 9 00:58:55 2022 ] Eval epoch: 105
|
588 |
+
[ Fri Sep 9 01:01:07 2022 ] Epoch 105 Curr Acc: (10402/16487)63.09%
|
589 |
+
[ Fri Sep 9 01:01:07 2022 ] Epoch 91 Best Acc 70.21%
|
590 |
+
[ Fri Sep 9 01:01:07 2022 ] Training epoch: 106
|
591 |
+
[ Fri Sep 9 01:01:07 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Fri Sep 9 01:04:29 2022 ] Mean training loss: 0.0138.
|
593 |
+
[ Fri Sep 9 01:04:29 2022 ] Time consumption: [Data]02%, [Network]98%
|
594 |
+
[ Fri Sep 9 01:04:29 2022 ] Eval epoch: 106
|
595 |
+
[ Fri Sep 9 01:06:42 2022 ] Epoch 106 Curr Acc: (11271/16487)68.36%
|
596 |
+
[ Fri Sep 9 01:06:42 2022 ] Epoch 91 Best Acc 70.21%
|
597 |
+
[ Fri Sep 9 01:06:42 2022 ] Training epoch: 107
|
598 |
+
[ Fri Sep 9 01:06:42 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Fri Sep 9 01:10:03 2022 ] Mean training loss: 0.0148.
|
600 |
+
[ Fri Sep 9 01:10:03 2022 ] Time consumption: [Data]02%, [Network]98%
|
601 |
+
[ Fri Sep 9 01:10:03 2022 ] Eval epoch: 107
|
602 |
+
[ Fri Sep 9 01:12:16 2022 ] Epoch 107 Curr Acc: (9807/16487)59.48%
|
603 |
+
[ Fri Sep 9 01:12:16 2022 ] Epoch 91 Best Acc 70.21%
|
604 |
+
[ Fri Sep 9 01:12:16 2022 ] Training epoch: 108
|
605 |
+
[ Fri Sep 9 01:12:16 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Fri Sep 9 01:15:37 2022 ] Mean training loss: 0.0147.
|
607 |
+
[ Fri Sep 9 01:15:37 2022 ] Time consumption: [Data]02%, [Network]98%
|
608 |
+
[ Fri Sep 9 01:15:37 2022 ] Eval epoch: 108
|
609 |
+
[ Fri Sep 9 01:17:49 2022 ] Epoch 108 Curr Acc: (10299/16487)62.47%
|
610 |
+
[ Fri Sep 9 01:17:49 2022 ] Epoch 91 Best Acc 70.21%
|
611 |
+
[ Fri Sep 9 01:17:49 2022 ] Training epoch: 109
|
612 |
+
[ Fri Sep 9 01:17:49 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Fri Sep 9 01:21:11 2022 ] Mean training loss: 0.0153.
|
614 |
+
[ Fri Sep 9 01:21:11 2022 ] Time consumption: [Data]02%, [Network]98%
|
615 |
+
[ Fri Sep 9 01:21:11 2022 ] Eval epoch: 109
|
616 |
+
[ Fri Sep 9 01:23:23 2022 ] Epoch 109 Curr Acc: (9934/16487)60.25%
|
617 |
+
[ Fri Sep 9 01:23:23 2022 ] Epoch 91 Best Acc 70.21%
|
618 |
+
[ Fri Sep 9 01:23:23 2022 ] Training epoch: 110
|
619 |
+
[ Fri Sep 9 01:23:23 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Fri Sep 9 01:26:44 2022 ] Mean training loss: 0.0146.
|
621 |
+
[ Fri Sep 9 01:26:44 2022 ] Time consumption: [Data]02%, [Network]98%
|
622 |
+
[ Fri Sep 9 01:26:44 2022 ] Eval epoch: 110
|
623 |
+
[ Fri Sep 9 01:28:56 2022 ] Epoch 110 Curr Acc: (10218/16487)61.98%
|
624 |
+
[ Fri Sep 9 01:28:56 2022 ] Epoch 91 Best Acc 70.21%
|
625 |
+
[ Fri Sep 9 01:28:56 2022 ] epoch: 91, best accuracy: 0.7021289500818827
|
626 |
+
[ Fri Sep 9 01:28:56 2022 ] Experiment: ./work_dir/ntu/xsub_b
|
627 |
+
[ Fri Sep 9 01:28:57 2022 ] # generator parameters: 2.896055 M.
|
628 |
+
[ Fri Sep 9 01:28:57 2022 ] Load weights from ./runs/ntu/xsub_b/runs-90-89726.pt.
|
629 |
+
[ Fri Sep 9 01:28:57 2022 ] Eval epoch: 1
|
630 |
+
[ Fri Sep 9 01:31:09 2022 ] Epoch 1 Curr Acc: (11576/16487)70.21%
|
631 |
+
[ Fri Sep 9 01:31:09 2022 ] Epoch 91 Best Acc 70.21%
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu/xsub_bm.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 60
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu/xsub_bm/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone_motion.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone_motion.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu/xsub_bm
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:921660534cf8af04cc285195b7bc526ec1ef4809c15360c66fde68d2b45f53e7
|
3 |
+
size 4979902
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_bm/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 8 17:07:44 2022 ] # generator parameters: 2.896055 M.
|
2 |
+
[ Thu Sep 8 17:07:44 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu/xsub_bm', 'model_saved_name': './runs/ntu/xsub_bm/runs', 'config': 'config/ntu/xsub_bm.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Thu Sep 8 17:07:44 2022 ] Training epoch: 1
|
6 |
+
[ Thu Sep 8 17:07:44 2022 ] Learning rate: 0.015
|
7 |
+
[ Thu Sep 8 17:11:09 2022 ] Mean training loss: 3.2652.
|
8 |
+
[ Thu Sep 8 17:11:09 2022 ] Time consumption: [Data]02%, [Network]98%
|
9 |
+
[ Thu Sep 8 17:11:09 2022 ] Training epoch: 2
|
10 |
+
[ Thu Sep 8 17:11:09 2022 ] Learning rate: 0.03
|
11 |
+
[ Thu Sep 8 17:14:33 2022 ] Mean training loss: 2.4220.
|
12 |
+
[ Thu Sep 8 17:14:33 2022 ] Time consumption: [Data]01%, [Network]98%
|
13 |
+
[ Thu Sep 8 17:14:33 2022 ] Training epoch: 3
|
14 |
+
[ Thu Sep 8 17:14:33 2022 ] Learning rate: 0.045
|
15 |
+
[ Thu Sep 8 17:17:56 2022 ] Mean training loss: 2.0056.
|
16 |
+
[ Thu Sep 8 17:17:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Thu Sep 8 17:17:56 2022 ] Training epoch: 4
|
18 |
+
[ Thu Sep 8 17:17:56 2022 ] Learning rate: 0.06
|
19 |
+
[ Thu Sep 8 17:21:19 2022 ] Mean training loss: 1.6940.
|
20 |
+
[ Thu Sep 8 17:21:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Thu Sep 8 17:21:19 2022 ] Training epoch: 5
|
22 |
+
[ Thu Sep 8 17:21:19 2022 ] Learning rate: 0.075
|
23 |
+
[ Thu Sep 8 17:24:42 2022 ] Mean training loss: 1.5027.
|
24 |
+
[ Thu Sep 8 17:24:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Thu Sep 8 17:24:42 2022 ] Training epoch: 6
|
26 |
+
[ Thu Sep 8 17:24:42 2022 ] Learning rate: 0.09
|
27 |
+
[ Thu Sep 8 17:28:05 2022 ] Mean training loss: 1.3904.
|
28 |
+
[ Thu Sep 8 17:28:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Thu Sep 8 17:28:05 2022 ] Training epoch: 7
|
30 |
+
[ Thu Sep 8 17:28:05 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Thu Sep 8 17:31:28 2022 ] Mean training loss: 1.3177.
|
32 |
+
[ Thu Sep 8 17:31:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Thu Sep 8 17:31:28 2022 ] Training epoch: 8
|
34 |
+
[ Thu Sep 8 17:31:28 2022 ] Learning rate: 0.12
|
35 |
+
[ Thu Sep 8 17:34:51 2022 ] Mean training loss: 1.2143.
|
36 |
+
[ Thu Sep 8 17:34:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Thu Sep 8 17:34:51 2022 ] Training epoch: 9
|
38 |
+
[ Thu Sep 8 17:34:51 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Thu Sep 8 17:38:13 2022 ] Mean training loss: 1.1919.
|
40 |
+
[ Thu Sep 8 17:38:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Thu Sep 8 17:38:13 2022 ] Training epoch: 10
|
42 |
+
[ Thu Sep 8 17:38:13 2022 ] Learning rate: 0.15
|
43 |
+
[ Thu Sep 8 17:41:35 2022 ] Mean training loss: 1.1271.
|
44 |
+
[ Thu Sep 8 17:41:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Thu Sep 8 17:41:35 2022 ] Training epoch: 11
|
46 |
+
[ Thu Sep 8 17:41:35 2022 ] Learning rate: 0.15
|
47 |
+
[ Thu Sep 8 17:44:58 2022 ] Mean training loss: 1.0812.
|
48 |
+
[ Thu Sep 8 17:44:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Thu Sep 8 17:44:58 2022 ] Training epoch: 12
|
50 |
+
[ Thu Sep 8 17:44:58 2022 ] Learning rate: 0.15
|
51 |
+
[ Thu Sep 8 17:48:21 2022 ] Mean training loss: 1.0247.
|
52 |
+
[ Thu Sep 8 17:48:21 2022 ] Time consumption: [Data]01%, [Network]98%
|
53 |
+
[ Thu Sep 8 17:48:21 2022 ] Training epoch: 13
|
54 |
+
[ Thu Sep 8 17:48:21 2022 ] Learning rate: 0.15
|
55 |
+
[ Thu Sep 8 17:51:44 2022 ] Mean training loss: 0.9885.
|
56 |
+
[ Thu Sep 8 17:51:44 2022 ] Time consumption: [Data]01%, [Network]98%
|
57 |
+
[ Thu Sep 8 17:51:44 2022 ] Training epoch: 14
|
58 |
+
[ Thu Sep 8 17:51:44 2022 ] Learning rate: 0.15
|
59 |
+
[ Thu Sep 8 17:55:07 2022 ] Mean training loss: 0.9666.
|
60 |
+
[ Thu Sep 8 17:55:07 2022 ] Time consumption: [Data]01%, [Network]98%
|
61 |
+
[ Thu Sep 8 17:55:07 2022 ] Training epoch: 15
|
62 |
+
[ Thu Sep 8 17:55:07 2022 ] Learning rate: 0.15
|
63 |
+
[ Thu Sep 8 17:58:29 2022 ] Mean training loss: 0.9116.
|
64 |
+
[ Thu Sep 8 17:58:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Thu Sep 8 17:58:29 2022 ] Training epoch: 16
|
66 |
+
[ Thu Sep 8 17:58:29 2022 ] Learning rate: 0.15
|
67 |
+
[ Thu Sep 8 18:01:52 2022 ] Mean training loss: 0.9041.
|
68 |
+
[ Thu Sep 8 18:01:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Thu Sep 8 18:01:52 2022 ] Training epoch: 17
|
70 |
+
[ Thu Sep 8 18:01:52 2022 ] Learning rate: 0.15
|
71 |
+
[ Thu Sep 8 18:05:15 2022 ] Mean training loss: 0.8950.
|
72 |
+
[ Thu Sep 8 18:05:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Thu Sep 8 18:05:15 2022 ] Training epoch: 18
|
74 |
+
[ Thu Sep 8 18:05:15 2022 ] Learning rate: 0.15
|
75 |
+
[ Thu Sep 8 18:08:37 2022 ] Mean training loss: 0.8623.
|
76 |
+
[ Thu Sep 8 18:08:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Thu Sep 8 18:08:37 2022 ] Training epoch: 19
|
78 |
+
[ Thu Sep 8 18:08:37 2022 ] Learning rate: 0.15
|
79 |
+
[ Thu Sep 8 18:12:01 2022 ] Mean training loss: 0.8450.
|
80 |
+
[ Thu Sep 8 18:12:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Thu Sep 8 18:12:01 2022 ] Training epoch: 20
|
82 |
+
[ Thu Sep 8 18:12:01 2022 ] Learning rate: 0.15
|
83 |
+
[ Thu Sep 8 18:15:24 2022 ] Mean training loss: 0.8082.
|
84 |
+
[ Thu Sep 8 18:15:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Thu Sep 8 18:15:24 2022 ] Training epoch: 21
|
86 |
+
[ Thu Sep 8 18:15:24 2022 ] Learning rate: 0.15
|
87 |
+
[ Thu Sep 8 18:18:47 2022 ] Mean training loss: 0.7992.
|
88 |
+
[ Thu Sep 8 18:18:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Thu Sep 8 18:18:47 2022 ] Training epoch: 22
|
90 |
+
[ Thu Sep 8 18:18:47 2022 ] Learning rate: 0.15
|
91 |
+
[ Thu Sep 8 18:22:09 2022 ] Mean training loss: 0.7911.
|
92 |
+
[ Thu Sep 8 18:22:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Thu Sep 8 18:22:09 2022 ] Training epoch: 23
|
94 |
+
[ Thu Sep 8 18:22:09 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 18:25:32 2022 ] Mean training loss: 0.7590.
|
96 |
+
[ Thu Sep 8 18:25:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Thu Sep 8 18:25:32 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 18:25:32 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 18:28:54 2022 ] Mean training loss: 0.7569.
|
100 |
+
[ Thu Sep 8 18:28:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Thu Sep 8 18:28:54 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 18:28:54 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 18:32:16 2022 ] Mean training loss: 0.7495.
|
104 |
+
[ Thu Sep 8 18:32:16 2022 ] Time consumption: [Data]01%, [Network]99%
|
105 |
+
[ Thu Sep 8 18:32:16 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 18:32:16 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 18:35:39 2022 ] Mean training loss: 0.7439.
|
108 |
+
[ Thu Sep 8 18:35:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Thu Sep 8 18:35:39 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 18:35:39 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 18:39:01 2022 ] Mean training loss: 0.7216.
|
112 |
+
[ Thu Sep 8 18:39:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Thu Sep 8 18:39:01 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 18:39:01 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 18:42:24 2022 ] Mean training loss: 0.7199.
|
116 |
+
[ Thu Sep 8 18:42:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Thu Sep 8 18:42:24 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 18:42:24 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 18:45:48 2022 ] Mean training loss: 0.6933.
|
120 |
+
[ Thu Sep 8 18:45:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Thu Sep 8 18:45:48 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 18:45:48 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 18:49:11 2022 ] Mean training loss: 0.6866.
|
124 |
+
[ Thu Sep 8 18:49:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Thu Sep 8 18:49:11 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 18:49:11 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 18:52:34 2022 ] Mean training loss: 0.6778.
|
128 |
+
[ Thu Sep 8 18:52:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Thu Sep 8 18:52:34 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 18:52:34 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 18:55:57 2022 ] Mean training loss: 0.6950.
|
132 |
+
[ Thu Sep 8 18:55:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Thu Sep 8 18:55:57 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 18:55:57 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 18:59:20 2022 ] Mean training loss: 0.6740.
|
136 |
+
[ Thu Sep 8 18:59:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 18:59:20 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 18:59:20 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 19:02:44 2022 ] Mean training loss: 0.6846.
|
140 |
+
[ Thu Sep 8 19:02:44 2022 ] Time consumption: [Data]01%, [Network]98%
|
141 |
+
[ Thu Sep 8 19:02:44 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 19:02:44 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 19:06:08 2022 ] Mean training loss: 0.6776.
|
144 |
+
[ Thu Sep 8 19:06:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 19:06:08 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 19:06:08 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 19:09:31 2022 ] Mean training loss: 0.6309.
|
148 |
+
[ Thu Sep 8 19:09:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
149 |
+
[ Thu Sep 8 19:09:31 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 19:09:31 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 19:12:55 2022 ] Mean training loss: 0.6563.
|
152 |
+
[ Thu Sep 8 19:12:55 2022 ] Time consumption: [Data]01%, [Network]98%
|
153 |
+
[ Thu Sep 8 19:12:55 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 19:12:55 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 19:16:17 2022 ] Mean training loss: 0.6415.
|
156 |
+
[ Thu Sep 8 19:16:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 19:16:17 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 19:16:17 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 19:19:40 2022 ] Mean training loss: 0.6491.
|
160 |
+
[ Thu Sep 8 19:19:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 19:19:40 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 19:19:40 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 19:23:02 2022 ] Mean training loss: 0.6362.
|
164 |
+
[ Thu Sep 8 19:23:02 2022 ] Time consumption: [Data]01%, [Network]99%
|
165 |
+
[ Thu Sep 8 19:23:02 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 19:23:02 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 19:26:25 2022 ] Mean training loss: 0.6469.
|
168 |
+
[ Thu Sep 8 19:26:25 2022 ] Time consumption: [Data]01%, [Network]99%
|
169 |
+
[ Thu Sep 8 19:26:25 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 19:26:25 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 19:29:48 2022 ] Mean training loss: 0.6334.
|
172 |
+
[ Thu Sep 8 19:29:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 19:29:48 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 19:29:48 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 19:33:11 2022 ] Mean training loss: 0.6247.
|
176 |
+
[ Thu Sep 8 19:33:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 19:33:11 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 19:33:11 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 19:36:35 2022 ] Mean training loss: 0.6268.
|
180 |
+
[ Thu Sep 8 19:36:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 19:36:35 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 19:36:35 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 19:39:58 2022 ] Mean training loss: 0.6221.
|
184 |
+
[ Thu Sep 8 19:39:58 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 19:39:58 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 19:39:58 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 19:43:21 2022 ] Mean training loss: 0.5956.
|
188 |
+
[ Thu Sep 8 19:43:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 19:43:21 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 19:43:21 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 19:46:44 2022 ] Mean training loss: 0.6218.
|
192 |
+
[ Thu Sep 8 19:46:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 19:46:44 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 19:46:44 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 19:50:06 2022 ] Mean training loss: 0.6134.
|
196 |
+
[ Thu Sep 8 19:50:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 19:50:06 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 19:50:06 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 19:53:29 2022 ] Mean training loss: 0.6152.
|
200 |
+
[ Thu Sep 8 19:53:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 19:53:29 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 19:53:29 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 19:56:52 2022 ] Mean training loss: 0.6170.
|
204 |
+
[ Thu Sep 8 19:56:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 19:56:52 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 19:56:52 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 20:00:15 2022 ] Mean training loss: 0.2832.
|
208 |
+
[ Thu Sep 8 20:00:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 20:00:15 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 20:02:29 2022 ] Epoch 51 Curr Acc: (10756/16487)65.24%
|
211 |
+
[ Thu Sep 8 20:02:29 2022 ] Epoch 51 Best Acc 65.24%
|
212 |
+
[ Thu Sep 8 20:02:29 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 20:02:29 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 20:05:52 2022 ] Mean training loss: 0.1790.
|
215 |
+
[ Thu Sep 8 20:05:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 20:05:52 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 20:08:05 2022 ] Epoch 52 Curr Acc: (10904/16487)66.14%
|
218 |
+
[ Thu Sep 8 20:08:05 2022 ] Epoch 52 Best Acc 66.14%
|
219 |
+
[ Thu Sep 8 20:08:05 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 20:08:05 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 20:11:29 2022 ] Mean training loss: 0.1376.
|
222 |
+
[ Thu Sep 8 20:11:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 20:11:29 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 20:13:42 2022 ] Epoch 53 Curr Acc: (10856/16487)65.85%
|
225 |
+
[ Thu Sep 8 20:13:42 2022 ] Epoch 52 Best Acc 66.14%
|
226 |
+
[ Thu Sep 8 20:13:42 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 20:13:42 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 20:17:06 2022 ] Mean training loss: 0.1071.
|
229 |
+
[ Thu Sep 8 20:17:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 20:17:06 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 20:19:19 2022 ] Epoch 54 Curr Acc: (10995/16487)66.69%
|
232 |
+
[ Thu Sep 8 20:19:19 2022 ] Epoch 54 Best Acc 66.69%
|
233 |
+
[ Thu Sep 8 20:19:19 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 20:19:19 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 20:22:42 2022 ] Mean training loss: 0.0883.
|
236 |
+
[ Thu Sep 8 20:22:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 20:22:42 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 20:24:56 2022 ] Epoch 55 Curr Acc: (11004/16487)66.74%
|
239 |
+
[ Thu Sep 8 20:24:56 2022 ] Epoch 55 Best Acc 66.74%
|
240 |
+
[ Thu Sep 8 20:24:56 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 20:24:56 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 20:28:18 2022 ] Mean training loss: 0.0733.
|
243 |
+
[ Thu Sep 8 20:28:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 20:28:18 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 20:30:32 2022 ] Epoch 56 Curr Acc: (10605/16487)64.32%
|
246 |
+
[ Thu Sep 8 20:30:32 2022 ] Epoch 55 Best Acc 66.74%
|
247 |
+
[ Thu Sep 8 20:30:32 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 20:30:32 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 20:33:56 2022 ] Mean training loss: 0.0621.
|
250 |
+
[ Thu Sep 8 20:33:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 20:33:56 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 20:36:09 2022 ] Epoch 57 Curr Acc: (10745/16487)65.17%
|
253 |
+
[ Thu Sep 8 20:36:09 2022 ] Epoch 55 Best Acc 66.74%
|
254 |
+
[ Thu Sep 8 20:36:09 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 20:36:09 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 20:39:32 2022 ] Mean training loss: 0.0508.
|
257 |
+
[ Thu Sep 8 20:39:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 20:39:32 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 20:41:45 2022 ] Epoch 58 Curr Acc: (11035/16487)66.93%
|
260 |
+
[ Thu Sep 8 20:41:45 2022 ] Epoch 58 Best Acc 66.93%
|
261 |
+
[ Thu Sep 8 20:41:45 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 20:41:45 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 20:45:08 2022 ] Mean training loss: 0.0404.
|
264 |
+
[ Thu Sep 8 20:45:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 20:45:08 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 20:47:21 2022 ] Epoch 59 Curr Acc: (10968/16487)66.53%
|
267 |
+
[ Thu Sep 8 20:47:21 2022 ] Epoch 58 Best Acc 66.93%
|
268 |
+
[ Thu Sep 8 20:47:21 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 20:47:21 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 20:50:44 2022 ] Mean training loss: 0.0337.
|
271 |
+
[ Thu Sep 8 20:50:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 20:50:44 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 20:52:57 2022 ] Epoch 60 Curr Acc: (10982/16487)66.61%
|
274 |
+
[ Thu Sep 8 20:52:57 2022 ] Epoch 58 Best Acc 66.93%
|
275 |
+
[ Thu Sep 8 20:52:57 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 20:52:57 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 20:56:21 2022 ] Mean training loss: 0.0337.
|
278 |
+
[ Thu Sep 8 20:56:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 20:56:21 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 20:58:34 2022 ] Epoch 61 Curr Acc: (10856/16487)65.85%
|
281 |
+
[ Thu Sep 8 20:58:34 2022 ] Epoch 58 Best Acc 66.93%
|
282 |
+
[ Thu Sep 8 20:58:34 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 20:58:34 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 21:01:57 2022 ] Mean training loss: 0.0259.
|
285 |
+
[ Thu Sep 8 21:01:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 21:01:57 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 21:04:10 2022 ] Epoch 62 Curr Acc: (10751/16487)65.21%
|
288 |
+
[ Thu Sep 8 21:04:10 2022 ] Epoch 58 Best Acc 66.93%
|
289 |
+
[ Thu Sep 8 21:04:10 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 21:04:10 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 21:07:33 2022 ] Mean training loss: 0.0283.
|
292 |
+
[ Thu Sep 8 21:07:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 21:07:33 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 21:09:46 2022 ] Epoch 63 Curr Acc: (10894/16487)66.08%
|
295 |
+
[ Thu Sep 8 21:09:46 2022 ] Epoch 58 Best Acc 66.93%
|
296 |
+
[ Thu Sep 8 21:09:46 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 21:09:46 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 21:13:09 2022 ] Mean training loss: 0.0221.
|
299 |
+
[ Thu Sep 8 21:13:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 21:13:09 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 21:15:22 2022 ] Epoch 64 Curr Acc: (10604/16487)64.32%
|
302 |
+
[ Thu Sep 8 21:15:22 2022 ] Epoch 58 Best Acc 66.93%
|
303 |
+
[ Thu Sep 8 21:15:22 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 21:15:22 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 21:18:45 2022 ] Mean training loss: 0.0232.
|
306 |
+
[ Thu Sep 8 21:18:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 21:18:45 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 21:20:59 2022 ] Epoch 65 Curr Acc: (11056/16487)67.06%
|
309 |
+
[ Thu Sep 8 21:20:59 2022 ] Epoch 65 Best Acc 67.06%
|
310 |
+
[ Thu Sep 8 21:20:59 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 21:20:59 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 21:24:21 2022 ] Mean training loss: 0.0244.
|
313 |
+
[ Thu Sep 8 21:24:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 21:24:21 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 21:26:35 2022 ] Epoch 66 Curr Acc: (11123/16487)67.47%
|
316 |
+
[ Thu Sep 8 21:26:35 2022 ] Epoch 66 Best Acc 67.47%
|
317 |
+
[ Thu Sep 8 21:26:35 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 21:26:35 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 21:29:57 2022 ] Mean training loss: 0.0222.
|
320 |
+
[ Thu Sep 8 21:29:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 21:29:57 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 21:32:11 2022 ] Epoch 67 Curr Acc: (10701/16487)64.91%
|
323 |
+
[ Thu Sep 8 21:32:11 2022 ] Epoch 66 Best Acc 67.47%
|
324 |
+
[ Thu Sep 8 21:32:11 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 21:32:11 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 21:35:34 2022 ] Mean training loss: 0.0180.
|
327 |
+
[ Thu Sep 8 21:35:34 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 21:35:34 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 21:37:47 2022 ] Epoch 68 Curr Acc: (11027/16487)66.88%
|
330 |
+
[ Thu Sep 8 21:37:47 2022 ] Epoch 66 Best Acc 67.47%
|
331 |
+
[ Thu Sep 8 21:37:47 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 21:37:47 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 21:41:09 2022 ] Mean training loss: 0.0232.
|
334 |
+
[ Thu Sep 8 21:41:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 21:41:10 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 21:43:23 2022 ] Epoch 69 Curr Acc: (9883/16487)59.94%
|
337 |
+
[ Thu Sep 8 21:43:23 2022 ] Epoch 66 Best Acc 67.47%
|
338 |
+
[ Thu Sep 8 21:43:23 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 21:43:23 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 21:46:46 2022 ] Mean training loss: 0.0215.
|
341 |
+
[ Thu Sep 8 21:46:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 21:46:46 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 21:48:59 2022 ] Epoch 70 Curr Acc: (10901/16487)66.12%
|
344 |
+
[ Thu Sep 8 21:48:59 2022 ] Epoch 66 Best Acc 67.47%
|
345 |
+
[ Thu Sep 8 21:48:59 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 21:48:59 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 21:52:21 2022 ] Mean training loss: 0.0157.
|
348 |
+
[ Thu Sep 8 21:52:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 21:52:21 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 21:54:35 2022 ] Epoch 71 Curr Acc: (10940/16487)66.36%
|
351 |
+
[ Thu Sep 8 21:54:35 2022 ] Epoch 66 Best Acc 67.47%
|
352 |
+
[ Thu Sep 8 21:54:35 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 21:54:35 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 21:57:57 2022 ] Mean training loss: 0.0144.
|
355 |
+
[ Thu Sep 8 21:57:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 21:57:57 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 22:00:10 2022 ] Epoch 72 Curr Acc: (10979/16487)66.59%
|
358 |
+
[ Thu Sep 8 22:00:10 2022 ] Epoch 66 Best Acc 67.47%
|
359 |
+
[ Thu Sep 8 22:00:10 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 22:00:10 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 22:03:32 2022 ] Mean training loss: 0.0136.
|
362 |
+
[ Thu Sep 8 22:03:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 22:03:32 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 22:05:46 2022 ] Epoch 73 Curr Acc: (11004/16487)66.74%
|
365 |
+
[ Thu Sep 8 22:05:46 2022 ] Epoch 66 Best Acc 67.47%
|
366 |
+
[ Thu Sep 8 22:05:46 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 22:05:46 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 22:09:08 2022 ] Mean training loss: 0.0132.
|
369 |
+
[ Thu Sep 8 22:09:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 22:09:08 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 22:11:22 2022 ] Epoch 74 Curr Acc: (10837/16487)65.73%
|
372 |
+
[ Thu Sep 8 22:11:22 2022 ] Epoch 66 Best Acc 67.47%
|
373 |
+
[ Thu Sep 8 22:11:22 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 22:11:22 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 22:14:44 2022 ] Mean training loss: 0.0111.
|
376 |
+
[ Thu Sep 8 22:14:44 2022 ] Time consumption: [Data]01%, [Network]98%
|
377 |
+
[ Thu Sep 8 22:14:44 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 22:16:57 2022 ] Epoch 75 Curr Acc: (11048/16487)67.01%
|
379 |
+
[ Thu Sep 8 22:16:57 2022 ] Epoch 66 Best Acc 67.47%
|
380 |
+
[ Thu Sep 8 22:16:57 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 22:16:57 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 22:20:20 2022 ] Mean training loss: 0.0130.
|
383 |
+
[ Thu Sep 8 22:20:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 22:20:20 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 22:22:34 2022 ] Epoch 76 Curr Acc: (10994/16487)66.68%
|
386 |
+
[ Thu Sep 8 22:22:34 2022 ] Epoch 66 Best Acc 67.47%
|
387 |
+
[ Thu Sep 8 22:22:34 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 22:22:34 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 22:25:57 2022 ] Mean training loss: 0.0118.
|
390 |
+
[ Thu Sep 8 22:25:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 22:25:57 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 22:28:10 2022 ] Epoch 77 Curr Acc: (10816/16487)65.60%
|
393 |
+
[ Thu Sep 8 22:28:10 2022 ] Epoch 66 Best Acc 67.47%
|
394 |
+
[ Thu Sep 8 22:28:10 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 22:28:10 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 22:31:32 2022 ] Mean training loss: 0.0122.
|
397 |
+
[ Thu Sep 8 22:31:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 22:31:33 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 22:33:46 2022 ] Epoch 78 Curr Acc: (11105/16487)67.36%
|
400 |
+
[ Thu Sep 8 22:33:46 2022 ] Epoch 66 Best Acc 67.47%
|
401 |
+
[ Thu Sep 8 22:33:46 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 22:33:46 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 22:37:08 2022 ] Mean training loss: 0.0126.
|
404 |
+
[ Thu Sep 8 22:37:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 22:37:08 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 22:39:21 2022 ] Epoch 79 Curr Acc: (11131/16487)67.51%
|
407 |
+
[ Thu Sep 8 22:39:21 2022 ] Epoch 79 Best Acc 67.51%
|
408 |
+
[ Thu Sep 8 22:39:21 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 22:39:21 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 22:42:44 2022 ] Mean training loss: 0.0109.
|
411 |
+
[ Thu Sep 8 22:42:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 22:42:44 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 22:44:57 2022 ] Epoch 80 Curr Acc: (10881/16487)66.00%
|
414 |
+
[ Thu Sep 8 22:44:57 2022 ] Epoch 79 Best Acc 67.51%
|
415 |
+
[ Thu Sep 8 22:44:57 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 22:44:57 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 22:48:20 2022 ] Mean training loss: 0.0097.
|
418 |
+
[ Thu Sep 8 22:48:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 22:48:20 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 22:50:33 2022 ] Epoch 81 Curr Acc: (10938/16487)66.34%
|
421 |
+
[ Thu Sep 8 22:50:33 2022 ] Epoch 79 Best Acc 67.51%
|
422 |
+
[ Thu Sep 8 22:50:33 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 22:50:33 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 22:53:56 2022 ] Mean training loss: 0.0108.
|
425 |
+
[ Thu Sep 8 22:53:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 22:53:56 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 22:56:09 2022 ] Epoch 82 Curr Acc: (10571/16487)64.12%
|
428 |
+
[ Thu Sep 8 22:56:09 2022 ] Epoch 79 Best Acc 67.51%
|
429 |
+
[ Thu Sep 8 22:56:09 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 22:56:09 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 22:59:32 2022 ] Mean training loss: 0.0117.
|
432 |
+
[ Thu Sep 8 22:59:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 22:59:32 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 23:01:45 2022 ] Epoch 83 Curr Acc: (10818/16487)65.62%
|
435 |
+
[ Thu Sep 8 23:01:45 2022 ] Epoch 79 Best Acc 67.51%
|
436 |
+
[ Thu Sep 8 23:01:45 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 23:01:45 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 23:05:07 2022 ] Mean training loss: 0.0100.
|
439 |
+
[ Thu Sep 8 23:05:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 23:05:07 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 23:07:20 2022 ] Epoch 84 Curr Acc: (11069/16487)67.14%
|
442 |
+
[ Thu Sep 8 23:07:20 2022 ] Epoch 79 Best Acc 67.51%
|
443 |
+
[ Thu Sep 8 23:07:20 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 23:07:20 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 23:10:42 2022 ] Mean training loss: 0.0100.
|
446 |
+
[ Thu Sep 8 23:10:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 23:10:42 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 23:12:55 2022 ] Epoch 85 Curr Acc: (10897/16487)66.09%
|
449 |
+
[ Thu Sep 8 23:12:55 2022 ] Epoch 79 Best Acc 67.51%
|
450 |
+
[ Thu Sep 8 23:12:55 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 23:12:55 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 23:16:18 2022 ] Mean training loss: 0.0105.
|
453 |
+
[ Thu Sep 8 23:16:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 23:16:18 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 23:18:31 2022 ] Epoch 86 Curr Acc: (10906/16487)66.15%
|
456 |
+
[ Thu Sep 8 23:18:31 2022 ] Epoch 79 Best Acc 67.51%
|
457 |
+
[ Thu Sep 8 23:18:31 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 23:18:31 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 23:21:54 2022 ] Mean training loss: 0.0098.
|
460 |
+
[ Thu Sep 8 23:21:54 2022 ] Time consumption: [Data]01%, [Network]99%
|
461 |
+
[ Thu Sep 8 23:21:54 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 23:24:07 2022 ] Epoch 87 Curr Acc: (11064/16487)67.11%
|
463 |
+
[ Thu Sep 8 23:24:07 2022 ] Epoch 79 Best Acc 67.51%
|
464 |
+
[ Thu Sep 8 23:24:07 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 23:24:07 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 23:27:30 2022 ] Mean training loss: 0.0088.
|
467 |
+
[ Thu Sep 8 23:27:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 23:27:30 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 23:29:43 2022 ] Epoch 88 Curr Acc: (10900/16487)66.11%
|
470 |
+
[ Thu Sep 8 23:29:43 2022 ] Epoch 79 Best Acc 67.51%
|
471 |
+
[ Thu Sep 8 23:29:43 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 23:29:43 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 23:33:06 2022 ] Mean training loss: 0.0093.
|
474 |
+
[ Thu Sep 8 23:33:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 23:33:06 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 23:35:20 2022 ] Epoch 89 Curr Acc: (11142/16487)67.58%
|
477 |
+
[ Thu Sep 8 23:35:20 2022 ] Epoch 89 Best Acc 67.58%
|
478 |
+
[ Thu Sep 8 23:35:20 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 23:35:20 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 23:38:42 2022 ] Mean training loss: 0.0088.
|
481 |
+
[ Thu Sep 8 23:38:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 23:38:43 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 23:40:56 2022 ] Epoch 90 Curr Acc: (10824/16487)65.65%
|
484 |
+
[ Thu Sep 8 23:40:56 2022 ] Epoch 89 Best Acc 67.58%
|
485 |
+
[ Thu Sep 8 23:40:56 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 23:40:56 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 23:44:18 2022 ] Mean training loss: 0.0098.
|
488 |
+
[ Thu Sep 8 23:44:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 23:44:18 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 23:46:32 2022 ] Epoch 91 Curr Acc: (10916/16487)66.21%
|
491 |
+
[ Thu Sep 8 23:46:32 2022 ] Epoch 89 Best Acc 67.58%
|
492 |
+
[ Thu Sep 8 23:46:32 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 23:46:32 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 23:49:55 2022 ] Mean training loss: 0.0099.
|
495 |
+
[ Thu Sep 8 23:49:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 23:49:55 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 23:52:08 2022 ] Epoch 92 Curr Acc: (11208/16487)67.98%
|
498 |
+
[ Thu Sep 8 23:52:08 2022 ] Epoch 92 Best Acc 67.98%
|
499 |
+
[ Thu Sep 8 23:52:08 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 23:52:08 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 23:55:31 2022 ] Mean training loss: 0.0100.
|
502 |
+
[ Thu Sep 8 23:55:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 23:55:31 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 23:57:44 2022 ] Epoch 93 Curr Acc: (10882/16487)66.00%
|
505 |
+
[ Thu Sep 8 23:57:44 2022 ] Epoch 92 Best Acc 67.98%
|
506 |
+
[ Thu Sep 8 23:57:44 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 23:57:44 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Fri Sep 9 00:01:07 2022 ] Mean training loss: 0.0093.
|
509 |
+
[ Fri Sep 9 00:01:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
510 |
+
[ Fri Sep 9 00:01:07 2022 ] Eval epoch: 94
|
511 |
+
[ Fri Sep 9 00:03:21 2022 ] Epoch 94 Curr Acc: (11084/16487)67.23%
|
512 |
+
[ Fri Sep 9 00:03:21 2022 ] Epoch 92 Best Acc 67.98%
|
513 |
+
[ Fri Sep 9 00:03:21 2022 ] Training epoch: 95
|
514 |
+
[ Fri Sep 9 00:03:21 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Fri Sep 9 00:06:44 2022 ] Mean training loss: 0.0097.
|
516 |
+
[ Fri Sep 9 00:06:44 2022 ] Time consumption: [Data]01%, [Network]98%
|
517 |
+
[ Fri Sep 9 00:06:44 2022 ] Eval epoch: 95
|
518 |
+
[ Fri Sep 9 00:08:57 2022 ] Epoch 95 Curr Acc: (11150/16487)67.63%
|
519 |
+
[ Fri Sep 9 00:08:57 2022 ] Epoch 92 Best Acc 67.98%
|
520 |
+
[ Fri Sep 9 00:08:57 2022 ] Training epoch: 96
|
521 |
+
[ Fri Sep 9 00:08:57 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Fri Sep 9 00:12:20 2022 ] Mean training loss: 0.0093.
|
523 |
+
[ Fri Sep 9 00:12:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Fri Sep 9 00:12:20 2022 ] Eval epoch: 96
|
525 |
+
[ Fri Sep 9 00:14:33 2022 ] Epoch 96 Curr Acc: (11081/16487)67.21%
|
526 |
+
[ Fri Sep 9 00:14:33 2022 ] Epoch 92 Best Acc 67.98%
|
527 |
+
[ Fri Sep 9 00:14:33 2022 ] Training epoch: 97
|
528 |
+
[ Fri Sep 9 00:14:33 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Fri Sep 9 00:17:56 2022 ] Mean training loss: 0.0097.
|
530 |
+
[ Fri Sep 9 00:17:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
531 |
+
[ Fri Sep 9 00:17:56 2022 ] Eval epoch: 97
|
532 |
+
[ Fri Sep 9 00:20:09 2022 ] Epoch 97 Curr Acc: (10968/16487)66.53%
|
533 |
+
[ Fri Sep 9 00:20:09 2022 ] Epoch 92 Best Acc 67.98%
|
534 |
+
[ Fri Sep 9 00:20:09 2022 ] Training epoch: 98
|
535 |
+
[ Fri Sep 9 00:20:09 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Fri Sep 9 00:23:32 2022 ] Mean training loss: 0.0097.
|
537 |
+
[ Fri Sep 9 00:23:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Fri Sep 9 00:23:32 2022 ] Eval epoch: 98
|
539 |
+
[ Fri Sep 9 00:25:46 2022 ] Epoch 98 Curr Acc: (11041/16487)66.97%
|
540 |
+
[ Fri Sep 9 00:25:46 2022 ] Epoch 92 Best Acc 67.98%
|
541 |
+
[ Fri Sep 9 00:25:46 2022 ] Training epoch: 99
|
542 |
+
[ Fri Sep 9 00:25:46 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Fri Sep 9 00:29:09 2022 ] Mean training loss: 0.0093.
|
544 |
+
[ Fri Sep 9 00:29:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Fri Sep 9 00:29:09 2022 ] Eval epoch: 99
|
546 |
+
[ Fri Sep 9 00:31:22 2022 ] Epoch 99 Curr Acc: (11002/16487)66.73%
|
547 |
+
[ Fri Sep 9 00:31:22 2022 ] Epoch 92 Best Acc 67.98%
|
548 |
+
[ Fri Sep 9 00:31:22 2022 ] Training epoch: 100
|
549 |
+
[ Fri Sep 9 00:31:22 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Fri Sep 9 00:34:45 2022 ] Mean training loss: 0.0097.
|
551 |
+
[ Fri Sep 9 00:34:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Fri Sep 9 00:34:45 2022 ] Eval epoch: 100
|
553 |
+
[ Fri Sep 9 00:36:59 2022 ] Epoch 100 Curr Acc: (11154/16487)67.65%
|
554 |
+
[ Fri Sep 9 00:36:59 2022 ] Epoch 92 Best Acc 67.98%
|
555 |
+
[ Fri Sep 9 00:36:59 2022 ] Training epoch: 101
|
556 |
+
[ Fri Sep 9 00:36:59 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Fri Sep 9 00:40:22 2022 ] Mean training loss: 0.0089.
|
558 |
+
[ Fri Sep 9 00:40:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Fri Sep 9 00:40:22 2022 ] Eval epoch: 101
|
560 |
+
[ Fri Sep 9 00:42:35 2022 ] Epoch 101 Curr Acc: (10980/16487)66.60%
|
561 |
+
[ Fri Sep 9 00:42:35 2022 ] Epoch 92 Best Acc 67.98%
|
562 |
+
[ Fri Sep 9 00:42:35 2022 ] Training epoch: 102
|
563 |
+
[ Fri Sep 9 00:42:35 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Fri Sep 9 00:45:59 2022 ] Mean training loss: 0.0097.
|
565 |
+
[ Fri Sep 9 00:45:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Fri Sep 9 00:45:59 2022 ] Eval epoch: 102
|
567 |
+
[ Fri Sep 9 00:48:12 2022 ] Epoch 102 Curr Acc: (10838/16487)65.74%
|
568 |
+
[ Fri Sep 9 00:48:12 2022 ] Epoch 92 Best Acc 67.98%
|
569 |
+
[ Fri Sep 9 00:48:12 2022 ] Training epoch: 103
|
570 |
+
[ Fri Sep 9 00:48:12 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Fri Sep 9 00:51:35 2022 ] Mean training loss: 0.0100.
|
572 |
+
[ Fri Sep 9 00:51:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Fri Sep 9 00:51:35 2022 ] Eval epoch: 103
|
574 |
+
[ Fri Sep 9 00:53:48 2022 ] Epoch 103 Curr Acc: (10786/16487)65.42%
|
575 |
+
[ Fri Sep 9 00:53:48 2022 ] Epoch 92 Best Acc 67.98%
|
576 |
+
[ Fri Sep 9 00:53:48 2022 ] Training epoch: 104
|
577 |
+
[ Fri Sep 9 00:53:48 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Fri Sep 9 00:57:11 2022 ] Mean training loss: 0.0086.
|
579 |
+
[ Fri Sep 9 00:57:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Fri Sep 9 00:57:11 2022 ] Eval epoch: 104
|
581 |
+
[ Fri Sep 9 00:59:24 2022 ] Epoch 104 Curr Acc: (10835/16487)65.72%
|
582 |
+
[ Fri Sep 9 00:59:24 2022 ] Epoch 92 Best Acc 67.98%
|
583 |
+
[ Fri Sep 9 00:59:24 2022 ] Training epoch: 105
|
584 |
+
[ Fri Sep 9 00:59:24 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Fri Sep 9 01:02:47 2022 ] Mean training loss: 0.0086.
|
586 |
+
[ Fri Sep 9 01:02:47 2022 ] Time consumption: [Data]01%, [Network]98%
|
587 |
+
[ Fri Sep 9 01:02:47 2022 ] Eval epoch: 105
|
588 |
+
[ Fri Sep 9 01:05:00 2022 ] Epoch 105 Curr Acc: (10931/16487)66.30%
|
589 |
+
[ Fri Sep 9 01:05:00 2022 ] Epoch 92 Best Acc 67.98%
|
590 |
+
[ Fri Sep 9 01:05:00 2022 ] Training epoch: 106
|
591 |
+
[ Fri Sep 9 01:05:00 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Fri Sep 9 01:08:23 2022 ] Mean training loss: 0.0101.
|
593 |
+
[ Fri Sep 9 01:08:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Fri Sep 9 01:08:23 2022 ] Eval epoch: 106
|
595 |
+
[ Fri Sep 9 01:10:36 2022 ] Epoch 106 Curr Acc: (10672/16487)64.73%
|
596 |
+
[ Fri Sep 9 01:10:36 2022 ] Epoch 92 Best Acc 67.98%
|
597 |
+
[ Fri Sep 9 01:10:36 2022 ] Training epoch: 107
|
598 |
+
[ Fri Sep 9 01:10:36 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Fri Sep 9 01:13:59 2022 ] Mean training loss: 0.0087.
|
600 |
+
[ Fri Sep 9 01:13:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Fri Sep 9 01:13:59 2022 ] Eval epoch: 107
|
602 |
+
[ Fri Sep 9 01:16:12 2022 ] Epoch 107 Curr Acc: (10891/16487)66.06%
|
603 |
+
[ Fri Sep 9 01:16:12 2022 ] Epoch 92 Best Acc 67.98%
|
604 |
+
[ Fri Sep 9 01:16:12 2022 ] Training epoch: 108
|
605 |
+
[ Fri Sep 9 01:16:12 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Fri Sep 9 01:19:35 2022 ] Mean training loss: 0.0089.
|
607 |
+
[ Fri Sep 9 01:19:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Fri Sep 9 01:19:35 2022 ] Eval epoch: 108
|
609 |
+
[ Fri Sep 9 01:21:48 2022 ] Epoch 108 Curr Acc: (10792/16487)65.46%
|
610 |
+
[ Fri Sep 9 01:21:48 2022 ] Epoch 92 Best Acc 67.98%
|
611 |
+
[ Fri Sep 9 01:21:48 2022 ] Training epoch: 109
|
612 |
+
[ Fri Sep 9 01:21:48 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Fri Sep 9 01:25:10 2022 ] Mean training loss: 0.0100.
|
614 |
+
[ Fri Sep 9 01:25:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Fri Sep 9 01:25:11 2022 ] Eval epoch: 109
|
616 |
+
[ Fri Sep 9 01:27:24 2022 ] Epoch 109 Curr Acc: (10863/16487)65.89%
|
617 |
+
[ Fri Sep 9 01:27:24 2022 ] Epoch 92 Best Acc 67.98%
|
618 |
+
[ Fri Sep 9 01:27:24 2022 ] Training epoch: 110
|
619 |
+
[ Fri Sep 9 01:27:24 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Fri Sep 9 01:30:46 2022 ] Mean training loss: 0.0086.
|
621 |
+
[ Fri Sep 9 01:30:46 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Fri Sep 9 01:30:46 2022 ] Eval epoch: 110
|
623 |
+
[ Fri Sep 9 01:32:59 2022 ] Epoch 110 Curr Acc: (10705/16487)64.93%
|
624 |
+
[ Fri Sep 9 01:32:59 2022 ] Epoch 92 Best Acc 67.98%
|
625 |
+
[ Fri Sep 9 01:32:59 2022 ] epoch: 92, best accuracy: 0.679808333838782
|
626 |
+
[ Fri Sep 9 01:32:59 2022 ] Experiment: ./work_dir/ntu/xsub_bm
|
627 |
+
[ Fri Sep 9 01:33:00 2022 ] # generator parameters: 2.896055 M.
|
628 |
+
[ Fri Sep 9 01:33:00 2022 ] Load weights from ./runs/ntu/xsub_bm/runs-91-90712.pt.
|
629 |
+
[ Fri Sep 9 01:33:00 2022 ] Eval epoch: 1
|
630 |
+
[ Fri Sep 9 01:35:12 2022 ] Epoch 1 Curr Acc: (11208/16487)67.98%
|
631 |
+
[ Fri Sep 9 01:35:12 2022 ] Epoch 92 Best Acc 67.98%
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu/xsub_j.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 60
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu/xsub_j/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu/xsub_j
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67269cd275552d91bf25ddf60f2b6ff09b6b67c78439c39e1f342ee49ca819ec
|
3 |
+
size 4979902
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_j/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 8 17:07:45 2022 ] # generator parameters: 2.896055 M.
|
2 |
+
[ Thu Sep 8 17:07:45 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu/xsub_j', 'model_saved_name': './runs/ntu/xsub_j/runs', 'config': 'config/ntu/xsub_j.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Thu Sep 8 17:07:45 2022 ] Training epoch: 1
|
6 |
+
[ Thu Sep 8 17:07:45 2022 ] Learning rate: 0.015
|
7 |
+
[ Thu Sep 8 17:11:08 2022 ] Mean training loss: 3.0195.
|
8 |
+
[ Thu Sep 8 17:11:08 2022 ] Time consumption: [Data]02%, [Network]98%
|
9 |
+
[ Thu Sep 8 17:11:08 2022 ] Training epoch: 2
|
10 |
+
[ Thu Sep 8 17:11:08 2022 ] Learning rate: 0.03
|
11 |
+
[ Thu Sep 8 17:14:31 2022 ] Mean training loss: 2.1926.
|
12 |
+
[ Thu Sep 8 17:14:31 2022 ] Time consumption: [Data]02%, [Network]98%
|
13 |
+
[ Thu Sep 8 17:14:31 2022 ] Training epoch: 3
|
14 |
+
[ Thu Sep 8 17:14:31 2022 ] Learning rate: 0.045
|
15 |
+
[ Thu Sep 8 17:17:52 2022 ] Mean training loss: 1.8503.
|
16 |
+
[ Thu Sep 8 17:17:52 2022 ] Time consumption: [Data]02%, [Network]98%
|
17 |
+
[ Thu Sep 8 17:17:52 2022 ] Training epoch: 4
|
18 |
+
[ Thu Sep 8 17:17:52 2022 ] Learning rate: 0.06
|
19 |
+
[ Thu Sep 8 17:21:14 2022 ] Mean training loss: 1.6219.
|
20 |
+
[ Thu Sep 8 17:21:14 2022 ] Time consumption: [Data]01%, [Network]98%
|
21 |
+
[ Thu Sep 8 17:21:14 2022 ] Training epoch: 5
|
22 |
+
[ Thu Sep 8 17:21:14 2022 ] Learning rate: 0.075
|
23 |
+
[ Thu Sep 8 17:24:35 2022 ] Mean training loss: 1.4539.
|
24 |
+
[ Thu Sep 8 17:24:35 2022 ] Time consumption: [Data]01%, [Network]98%
|
25 |
+
[ Thu Sep 8 17:24:35 2022 ] Training epoch: 6
|
26 |
+
[ Thu Sep 8 17:24:35 2022 ] Learning rate: 0.09
|
27 |
+
[ Thu Sep 8 17:27:58 2022 ] Mean training loss: 1.3453.
|
28 |
+
[ Thu Sep 8 17:27:58 2022 ] Time consumption: [Data]01%, [Network]98%
|
29 |
+
[ Thu Sep 8 17:27:58 2022 ] Training epoch: 7
|
30 |
+
[ Thu Sep 8 17:27:58 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Thu Sep 8 17:31:19 2022 ] Mean training loss: 1.2608.
|
32 |
+
[ Thu Sep 8 17:31:19 2022 ] Time consumption: [Data]01%, [Network]98%
|
33 |
+
[ Thu Sep 8 17:31:19 2022 ] Training epoch: 8
|
34 |
+
[ Thu Sep 8 17:31:19 2022 ] Learning rate: 0.12
|
35 |
+
[ Thu Sep 8 17:34:41 2022 ] Mean training loss: 1.2075.
|
36 |
+
[ Thu Sep 8 17:34:41 2022 ] Time consumption: [Data]02%, [Network]98%
|
37 |
+
[ Thu Sep 8 17:34:41 2022 ] Training epoch: 9
|
38 |
+
[ Thu Sep 8 17:34:41 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Thu Sep 8 17:38:03 2022 ] Mean training loss: 1.1737.
|
40 |
+
[ Thu Sep 8 17:38:03 2022 ] Time consumption: [Data]01%, [Network]98%
|
41 |
+
[ Thu Sep 8 17:38:03 2022 ] Training epoch: 10
|
42 |
+
[ Thu Sep 8 17:38:03 2022 ] Learning rate: 0.15
|
43 |
+
[ Thu Sep 8 17:41:25 2022 ] Mean training loss: 1.1203.
|
44 |
+
[ Thu Sep 8 17:41:25 2022 ] Time consumption: [Data]01%, [Network]98%
|
45 |
+
[ Thu Sep 8 17:41:25 2022 ] Training epoch: 11
|
46 |
+
[ Thu Sep 8 17:41:25 2022 ] Learning rate: 0.15
|
47 |
+
[ Thu Sep 8 17:44:48 2022 ] Mean training loss: 1.0656.
|
48 |
+
[ Thu Sep 8 17:44:48 2022 ] Time consumption: [Data]02%, [Network]98%
|
49 |
+
[ Thu Sep 8 17:44:48 2022 ] Training epoch: 12
|
50 |
+
[ Thu Sep 8 17:44:48 2022 ] Learning rate: 0.15
|
51 |
+
[ Thu Sep 8 17:48:09 2022 ] Mean training loss: 1.0205.
|
52 |
+
[ Thu Sep 8 17:48:09 2022 ] Time consumption: [Data]01%, [Network]98%
|
53 |
+
[ Thu Sep 8 17:48:09 2022 ] Training epoch: 13
|
54 |
+
[ Thu Sep 8 17:48:09 2022 ] Learning rate: 0.15
|
55 |
+
[ Thu Sep 8 17:51:31 2022 ] Mean training loss: 0.9889.
|
56 |
+
[ Thu Sep 8 17:51:31 2022 ] Time consumption: [Data]01%, [Network]98%
|
57 |
+
[ Thu Sep 8 17:51:31 2022 ] Training epoch: 14
|
58 |
+
[ Thu Sep 8 17:51:31 2022 ] Learning rate: 0.15
|
59 |
+
[ Thu Sep 8 17:54:53 2022 ] Mean training loss: 0.9602.
|
60 |
+
[ Thu Sep 8 17:54:53 2022 ] Time consumption: [Data]02%, [Network]98%
|
61 |
+
[ Thu Sep 8 17:54:53 2022 ] Training epoch: 15
|
62 |
+
[ Thu Sep 8 17:54:53 2022 ] Learning rate: 0.15
|
63 |
+
[ Thu Sep 8 17:58:15 2022 ] Mean training loss: 0.9204.
|
64 |
+
[ Thu Sep 8 17:58:15 2022 ] Time consumption: [Data]01%, [Network]98%
|
65 |
+
[ Thu Sep 8 17:58:15 2022 ] Training epoch: 16
|
66 |
+
[ Thu Sep 8 17:58:15 2022 ] Learning rate: 0.15
|
67 |
+
[ Thu Sep 8 18:01:37 2022 ] Mean training loss: 0.8923.
|
68 |
+
[ Thu Sep 8 18:01:37 2022 ] Time consumption: [Data]02%, [Network]98%
|
69 |
+
[ Thu Sep 8 18:01:37 2022 ] Training epoch: 17
|
70 |
+
[ Thu Sep 8 18:01:37 2022 ] Learning rate: 0.15
|
71 |
+
[ Thu Sep 8 18:04:59 2022 ] Mean training loss: 0.8704.
|
72 |
+
[ Thu Sep 8 18:04:59 2022 ] Time consumption: [Data]02%, [Network]98%
|
73 |
+
[ Thu Sep 8 18:04:59 2022 ] Training epoch: 18
|
74 |
+
[ Thu Sep 8 18:04:59 2022 ] Learning rate: 0.15
|
75 |
+
[ Thu Sep 8 18:08:21 2022 ] Mean training loss: 0.8575.
|
76 |
+
[ Thu Sep 8 18:08:21 2022 ] Time consumption: [Data]01%, [Network]98%
|
77 |
+
[ Thu Sep 8 18:08:21 2022 ] Training epoch: 19
|
78 |
+
[ Thu Sep 8 18:08:21 2022 ] Learning rate: 0.15
|
79 |
+
[ Thu Sep 8 18:11:42 2022 ] Mean training loss: 0.8183.
|
80 |
+
[ Thu Sep 8 18:11:42 2022 ] Time consumption: [Data]01%, [Network]98%
|
81 |
+
[ Thu Sep 8 18:11:42 2022 ] Training epoch: 20
|
82 |
+
[ Thu Sep 8 18:11:42 2022 ] Learning rate: 0.15
|
83 |
+
[ Thu Sep 8 18:15:04 2022 ] Mean training loss: 0.8045.
|
84 |
+
[ Thu Sep 8 18:15:04 2022 ] Time consumption: [Data]01%, [Network]98%
|
85 |
+
[ Thu Sep 8 18:15:04 2022 ] Training epoch: 21
|
86 |
+
[ Thu Sep 8 18:15:04 2022 ] Learning rate: 0.15
|
87 |
+
[ Thu Sep 8 18:18:26 2022 ] Mean training loss: 0.8075.
|
88 |
+
[ Thu Sep 8 18:18:26 2022 ] Time consumption: [Data]02%, [Network]98%
|
89 |
+
[ Thu Sep 8 18:18:26 2022 ] Training epoch: 22
|
90 |
+
[ Thu Sep 8 18:18:26 2022 ] Learning rate: 0.15
|
91 |
+
[ Thu Sep 8 18:21:49 2022 ] Mean training loss: 0.7965.
|
92 |
+
[ Thu Sep 8 18:21:49 2022 ] Time consumption: [Data]02%, [Network]98%
|
93 |
+
[ Thu Sep 8 18:21:49 2022 ] Training epoch: 23
|
94 |
+
[ Thu Sep 8 18:21:49 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 18:25:11 2022 ] Mean training loss: 0.7809.
|
96 |
+
[ Thu Sep 8 18:25:11 2022 ] Time consumption: [Data]02%, [Network]98%
|
97 |
+
[ Thu Sep 8 18:25:11 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 18:25:11 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 18:28:32 2022 ] Mean training loss: 0.7482.
|
100 |
+
[ Thu Sep 8 18:28:32 2022 ] Time consumption: [Data]01%, [Network]98%
|
101 |
+
[ Thu Sep 8 18:28:32 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 18:28:32 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 18:31:54 2022 ] Mean training loss: 0.7497.
|
104 |
+
[ Thu Sep 8 18:31:54 2022 ] Time consumption: [Data]01%, [Network]98%
|
105 |
+
[ Thu Sep 8 18:31:54 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 18:31:54 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 18:35:16 2022 ] Mean training loss: 0.7401.
|
108 |
+
[ Thu Sep 8 18:35:16 2022 ] Time consumption: [Data]02%, [Network]98%
|
109 |
+
[ Thu Sep 8 18:35:16 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 18:35:16 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 18:38:38 2022 ] Mean training loss: 0.7310.
|
112 |
+
[ Thu Sep 8 18:38:38 2022 ] Time consumption: [Data]02%, [Network]98%
|
113 |
+
[ Thu Sep 8 18:38:38 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 18:38:38 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 18:42:00 2022 ] Mean training loss: 0.7214.
|
116 |
+
[ Thu Sep 8 18:42:00 2022 ] Time consumption: [Data]01%, [Network]98%
|
117 |
+
[ Thu Sep 8 18:42:00 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 18:42:00 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 18:45:22 2022 ] Mean training loss: 0.6995.
|
120 |
+
[ Thu Sep 8 18:45:22 2022 ] Time consumption: [Data]02%, [Network]98%
|
121 |
+
[ Thu Sep 8 18:45:22 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 18:45:22 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 18:48:44 2022 ] Mean training loss: 0.6931.
|
124 |
+
[ Thu Sep 8 18:48:44 2022 ] Time consumption: [Data]02%, [Network]98%
|
125 |
+
[ Thu Sep 8 18:48:44 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 18:48:44 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 18:52:06 2022 ] Mean training loss: 0.6972.
|
128 |
+
[ Thu Sep 8 18:52:06 2022 ] Time consumption: [Data]01%, [Network]98%
|
129 |
+
[ Thu Sep 8 18:52:06 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 18:52:06 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 18:55:28 2022 ] Mean training loss: 0.6870.
|
132 |
+
[ Thu Sep 8 18:55:28 2022 ] Time consumption: [Data]02%, [Network]98%
|
133 |
+
[ Thu Sep 8 18:55:28 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 18:55:28 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 18:58:49 2022 ] Mean training loss: 0.6716.
|
136 |
+
[ Thu Sep 8 18:58:49 2022 ] Time consumption: [Data]02%, [Network]98%
|
137 |
+
[ Thu Sep 8 18:58:49 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 18:58:49 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 19:02:11 2022 ] Mean training loss: 0.6840.
|
140 |
+
[ Thu Sep 8 19:02:11 2022 ] Time consumption: [Data]02%, [Network]98%
|
141 |
+
[ Thu Sep 8 19:02:11 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 19:02:11 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 19:05:33 2022 ] Mean training loss: 0.6804.
|
144 |
+
[ Thu Sep 8 19:05:33 2022 ] Time consumption: [Data]02%, [Network]98%
|
145 |
+
[ Thu Sep 8 19:05:33 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 19:05:33 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 19:08:55 2022 ] Mean training loss: 0.6658.
|
148 |
+
[ Thu Sep 8 19:08:55 2022 ] Time consumption: [Data]01%, [Network]98%
|
149 |
+
[ Thu Sep 8 19:08:55 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 19:08:55 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 19:12:17 2022 ] Mean training loss: 0.6654.
|
152 |
+
[ Thu Sep 8 19:12:17 2022 ] Time consumption: [Data]01%, [Network]98%
|
153 |
+
[ Thu Sep 8 19:12:17 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 19:12:17 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 19:15:38 2022 ] Mean training loss: 0.6568.
|
156 |
+
[ Thu Sep 8 19:15:38 2022 ] Time consumption: [Data]02%, [Network]98%
|
157 |
+
[ Thu Sep 8 19:15:38 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 19:15:38 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 19:19:00 2022 ] Mean training loss: 0.6439.
|
160 |
+
[ Thu Sep 8 19:19:00 2022 ] Time consumption: [Data]02%, [Network]98%
|
161 |
+
[ Thu Sep 8 19:19:00 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 19:19:00 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 19:22:21 2022 ] Mean training loss: 0.6398.
|
164 |
+
[ Thu Sep 8 19:22:21 2022 ] Time consumption: [Data]01%, [Network]98%
|
165 |
+
[ Thu Sep 8 19:22:21 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 19:22:21 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 19:25:42 2022 ] Mean training loss: 0.6464.
|
168 |
+
[ Thu Sep 8 19:25:42 2022 ] Time consumption: [Data]02%, [Network]98%
|
169 |
+
[ Thu Sep 8 19:25:42 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 19:25:42 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 19:29:02 2022 ] Mean training loss: 0.6393.
|
172 |
+
[ Thu Sep 8 19:29:02 2022 ] Time consumption: [Data]01%, [Network]98%
|
173 |
+
[ Thu Sep 8 19:29:02 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 19:29:02 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 19:32:24 2022 ] Mean training loss: 0.6244.
|
176 |
+
[ Thu Sep 8 19:32:24 2022 ] Time consumption: [Data]02%, [Network]98%
|
177 |
+
[ Thu Sep 8 19:32:24 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 19:32:24 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 19:35:44 2022 ] Mean training loss: 0.6277.
|
180 |
+
[ Thu Sep 8 19:35:44 2022 ] Time consumption: [Data]01%, [Network]98%
|
181 |
+
[ Thu Sep 8 19:35:44 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 19:35:44 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 19:39:05 2022 ] Mean training loss: 0.6040.
|
184 |
+
[ Thu Sep 8 19:39:05 2022 ] Time consumption: [Data]01%, [Network]98%
|
185 |
+
[ Thu Sep 8 19:39:05 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 19:39:05 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 19:42:27 2022 ] Mean training loss: 0.6229.
|
188 |
+
[ Thu Sep 8 19:42:27 2022 ] Time consumption: [Data]02%, [Network]98%
|
189 |
+
[ Thu Sep 8 19:42:27 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 19:42:27 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 19:45:49 2022 ] Mean training loss: 0.6233.
|
192 |
+
[ Thu Sep 8 19:45:49 2022 ] Time consumption: [Data]01%, [Network]98%
|
193 |
+
[ Thu Sep 8 19:45:49 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 19:45:49 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 19:49:11 2022 ] Mean training loss: 0.6187.
|
196 |
+
[ Thu Sep 8 19:49:11 2022 ] Time consumption: [Data]01%, [Network]98%
|
197 |
+
[ Thu Sep 8 19:49:11 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 19:49:11 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 19:52:33 2022 ] Mean training loss: 0.6209.
|
200 |
+
[ Thu Sep 8 19:52:33 2022 ] Time consumption: [Data]01%, [Network]98%
|
201 |
+
[ Thu Sep 8 19:52:33 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 19:52:33 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 19:55:55 2022 ] Mean training loss: 0.6215.
|
204 |
+
[ Thu Sep 8 19:55:55 2022 ] Time consumption: [Data]01%, [Network]98%
|
205 |
+
[ Thu Sep 8 19:55:55 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 19:55:55 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 19:59:17 2022 ] Mean training loss: 0.3007.
|
208 |
+
[ Thu Sep 8 19:59:17 2022 ] Time consumption: [Data]01%, [Network]98%
|
209 |
+
[ Thu Sep 8 19:59:17 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 20:01:29 2022 ] Epoch 51 Curr Acc: (10902/16487)66.12%
|
211 |
+
[ Thu Sep 8 20:01:29 2022 ] Epoch 51 Best Acc 66.12%
|
212 |
+
[ Thu Sep 8 20:01:29 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 20:01:29 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 20:04:51 2022 ] Mean training loss: 0.2042.
|
215 |
+
[ Thu Sep 8 20:04:51 2022 ] Time consumption: [Data]02%, [Network]98%
|
216 |
+
[ Thu Sep 8 20:04:51 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 20:07:04 2022 ] Epoch 52 Curr Acc: (11412/16487)69.22%
|
218 |
+
[ Thu Sep 8 20:07:04 2022 ] Epoch 52 Best Acc 69.22%
|
219 |
+
[ Thu Sep 8 20:07:04 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 20:07:04 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 20:10:26 2022 ] Mean training loss: 0.1695.
|
222 |
+
[ Thu Sep 8 20:10:26 2022 ] Time consumption: [Data]02%, [Network]98%
|
223 |
+
[ Thu Sep 8 20:10:26 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 20:12:38 2022 ] Epoch 53 Curr Acc: (11367/16487)68.95%
|
225 |
+
[ Thu Sep 8 20:12:38 2022 ] Epoch 52 Best Acc 69.22%
|
226 |
+
[ Thu Sep 8 20:12:38 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 20:12:38 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 20:16:00 2022 ] Mean training loss: 0.1382.
|
229 |
+
[ Thu Sep 8 20:16:00 2022 ] Time consumption: [Data]02%, [Network]98%
|
230 |
+
[ Thu Sep 8 20:16:00 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 20:18:13 2022 ] Epoch 54 Curr Acc: (11563/16487)70.13%
|
232 |
+
[ Thu Sep 8 20:18:13 2022 ] Epoch 54 Best Acc 70.13%
|
233 |
+
[ Thu Sep 8 20:18:13 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 20:18:13 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 20:21:35 2022 ] Mean training loss: 0.1144.
|
236 |
+
[ Thu Sep 8 20:21:35 2022 ] Time consumption: [Data]02%, [Network]98%
|
237 |
+
[ Thu Sep 8 20:21:35 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 20:23:47 2022 ] Epoch 55 Curr Acc: (11322/16487)68.67%
|
239 |
+
[ Thu Sep 8 20:23:47 2022 ] Epoch 54 Best Acc 70.13%
|
240 |
+
[ Thu Sep 8 20:23:47 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 20:23:47 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 20:27:09 2022 ] Mean training loss: 0.1028.
|
243 |
+
[ Thu Sep 8 20:27:09 2022 ] Time consumption: [Data]02%, [Network]98%
|
244 |
+
[ Thu Sep 8 20:27:09 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 20:29:22 2022 ] Epoch 56 Curr Acc: (11107/16487)67.37%
|
246 |
+
[ Thu Sep 8 20:29:22 2022 ] Epoch 54 Best Acc 70.13%
|
247 |
+
[ Thu Sep 8 20:29:22 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 20:29:22 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 20:32:44 2022 ] Mean training loss: 0.0895.
|
250 |
+
[ Thu Sep 8 20:32:44 2022 ] Time consumption: [Data]02%, [Network]98%
|
251 |
+
[ Thu Sep 8 20:32:44 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 20:34:56 2022 ] Epoch 57 Curr Acc: (11374/16487)68.99%
|
253 |
+
[ Thu Sep 8 20:34:56 2022 ] Epoch 54 Best Acc 70.13%
|
254 |
+
[ Thu Sep 8 20:34:56 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 20:34:56 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 20:38:18 2022 ] Mean training loss: 0.0792.
|
257 |
+
[ Thu Sep 8 20:38:18 2022 ] Time consumption: [Data]02%, [Network]98%
|
258 |
+
[ Thu Sep 8 20:38:18 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 20:40:31 2022 ] Epoch 58 Curr Acc: (11445/16487)69.42%
|
260 |
+
[ Thu Sep 8 20:40:31 2022 ] Epoch 54 Best Acc 70.13%
|
261 |
+
[ Thu Sep 8 20:40:31 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 20:40:31 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 20:43:52 2022 ] Mean training loss: 0.0660.
|
264 |
+
[ Thu Sep 8 20:43:52 2022 ] Time consumption: [Data]02%, [Network]98%
|
265 |
+
[ Thu Sep 8 20:43:52 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 20:46:04 2022 ] Epoch 59 Curr Acc: (11110/16487)67.39%
|
267 |
+
[ Thu Sep 8 20:46:04 2022 ] Epoch 54 Best Acc 70.13%
|
268 |
+
[ Thu Sep 8 20:46:04 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 20:46:04 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 20:49:26 2022 ] Mean training loss: 0.0554.
|
271 |
+
[ Thu Sep 8 20:49:26 2022 ] Time consumption: [Data]02%, [Network]98%
|
272 |
+
[ Thu Sep 8 20:49:26 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 20:51:38 2022 ] Epoch 60 Curr Acc: (10888/16487)66.04%
|
274 |
+
[ Thu Sep 8 20:51:38 2022 ] Epoch 54 Best Acc 70.13%
|
275 |
+
[ Thu Sep 8 20:51:38 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 20:51:38 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 20:55:00 2022 ] Mean training loss: 0.0540.
|
278 |
+
[ Thu Sep 8 20:55:00 2022 ] Time consumption: [Data]02%, [Network]98%
|
279 |
+
[ Thu Sep 8 20:55:00 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 20:57:13 2022 ] Epoch 61 Curr Acc: (11119/16487)67.44%
|
281 |
+
[ Thu Sep 8 20:57:13 2022 ] Epoch 54 Best Acc 70.13%
|
282 |
+
[ Thu Sep 8 20:57:13 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 20:57:13 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 21:00:34 2022 ] Mean training loss: 0.0477.
|
285 |
+
[ Thu Sep 8 21:00:34 2022 ] Time consumption: [Data]02%, [Network]98%
|
286 |
+
[ Thu Sep 8 21:00:34 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 21:02:47 2022 ] Epoch 62 Curr Acc: (11069/16487)67.14%
|
288 |
+
[ Thu Sep 8 21:02:47 2022 ] Epoch 54 Best Acc 70.13%
|
289 |
+
[ Thu Sep 8 21:02:47 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 21:02:47 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 21:06:09 2022 ] Mean training loss: 0.0419.
|
292 |
+
[ Thu Sep 8 21:06:09 2022 ] Time consumption: [Data]02%, [Network]98%
|
293 |
+
[ Thu Sep 8 21:06:09 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 21:08:21 2022 ] Epoch 63 Curr Acc: (10941/16487)66.36%
|
295 |
+
[ Thu Sep 8 21:08:21 2022 ] Epoch 54 Best Acc 70.13%
|
296 |
+
[ Thu Sep 8 21:08:21 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 21:08:21 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 21:11:43 2022 ] Mean training loss: 0.0414.
|
299 |
+
[ Thu Sep 8 21:11:43 2022 ] Time consumption: [Data]02%, [Network]98%
|
300 |
+
[ Thu Sep 8 21:11:43 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 21:13:56 2022 ] Epoch 64 Curr Acc: (11043/16487)66.98%
|
302 |
+
[ Thu Sep 8 21:13:56 2022 ] Epoch 54 Best Acc 70.13%
|
303 |
+
[ Thu Sep 8 21:13:56 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 21:13:56 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 21:17:17 2022 ] Mean training loss: 0.0403.
|
306 |
+
[ Thu Sep 8 21:17:17 2022 ] Time consumption: [Data]01%, [Network]98%
|
307 |
+
[ Thu Sep 8 21:17:17 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 21:19:30 2022 ] Epoch 65 Curr Acc: (11271/16487)68.36%
|
309 |
+
[ Thu Sep 8 21:19:30 2022 ] Epoch 54 Best Acc 70.13%
|
310 |
+
[ Thu Sep 8 21:19:30 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 21:19:30 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 21:22:52 2022 ] Mean training loss: 0.0337.
|
313 |
+
[ Thu Sep 8 21:22:52 2022 ] Time consumption: [Data]02%, [Network]98%
|
314 |
+
[ Thu Sep 8 21:22:52 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 21:25:04 2022 ] Epoch 66 Curr Acc: (11390/16487)69.08%
|
316 |
+
[ Thu Sep 8 21:25:04 2022 ] Epoch 54 Best Acc 70.13%
|
317 |
+
[ Thu Sep 8 21:25:04 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 21:25:04 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 21:28:26 2022 ] Mean training loss: 0.0312.
|
320 |
+
[ Thu Sep 8 21:28:26 2022 ] Time consumption: [Data]01%, [Network]98%
|
321 |
+
[ Thu Sep 8 21:28:26 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 21:30:38 2022 ] Epoch 67 Curr Acc: (11022/16487)66.85%
|
323 |
+
[ Thu Sep 8 21:30:38 2022 ] Epoch 54 Best Acc 70.13%
|
324 |
+
[ Thu Sep 8 21:30:38 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 21:30:38 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 21:34:00 2022 ] Mean training loss: 0.0294.
|
327 |
+
[ Thu Sep 8 21:34:00 2022 ] Time consumption: [Data]01%, [Network]98%
|
328 |
+
[ Thu Sep 8 21:34:00 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 21:36:13 2022 ] Epoch 68 Curr Acc: (11086/16487)67.24%
|
330 |
+
[ Thu Sep 8 21:36:13 2022 ] Epoch 54 Best Acc 70.13%
|
331 |
+
[ Thu Sep 8 21:36:13 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 21:36:13 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 21:39:34 2022 ] Mean training loss: 0.0278.
|
334 |
+
[ Thu Sep 8 21:39:34 2022 ] Time consumption: [Data]02%, [Network]98%
|
335 |
+
[ Thu Sep 8 21:39:34 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 21:41:47 2022 ] Epoch 69 Curr Acc: (11356/16487)68.88%
|
337 |
+
[ Thu Sep 8 21:41:47 2022 ] Epoch 54 Best Acc 70.13%
|
338 |
+
[ Thu Sep 8 21:41:47 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 21:41:47 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 21:45:09 2022 ] Mean training loss: 0.0266.
|
341 |
+
[ Thu Sep 8 21:45:09 2022 ] Time consumption: [Data]01%, [Network]98%
|
342 |
+
[ Thu Sep 8 21:45:09 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 21:47:21 2022 ] Epoch 70 Curr Acc: (11207/16487)67.97%
|
344 |
+
[ Thu Sep 8 21:47:21 2022 ] Epoch 54 Best Acc 70.13%
|
345 |
+
[ Thu Sep 8 21:47:21 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 21:47:21 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 21:50:43 2022 ] Mean training loss: 0.0207.
|
348 |
+
[ Thu Sep 8 21:50:43 2022 ] Time consumption: [Data]02%, [Network]98%
|
349 |
+
[ Thu Sep 8 21:50:43 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 21:52:55 2022 ] Epoch 71 Curr Acc: (11328/16487)68.71%
|
351 |
+
[ Thu Sep 8 21:52:55 2022 ] Epoch 54 Best Acc 70.13%
|
352 |
+
[ Thu Sep 8 21:52:55 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 21:52:55 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 21:56:18 2022 ] Mean training loss: 0.0185.
|
355 |
+
[ Thu Sep 8 21:56:18 2022 ] Time consumption: [Data]01%, [Network]98%
|
356 |
+
[ Thu Sep 8 21:56:18 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 21:58:30 2022 ] Epoch 72 Curr Acc: (11160/16487)67.69%
|
358 |
+
[ Thu Sep 8 21:58:30 2022 ] Epoch 54 Best Acc 70.13%
|
359 |
+
[ Thu Sep 8 21:58:30 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 21:58:30 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 22:01:51 2022 ] Mean training loss: 0.0202.
|
362 |
+
[ Thu Sep 8 22:01:51 2022 ] Time consumption: [Data]02%, [Network]98%
|
363 |
+
[ Thu Sep 8 22:01:51 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 22:04:04 2022 ] Epoch 73 Curr Acc: (11321/16487)68.67%
|
365 |
+
[ Thu Sep 8 22:04:04 2022 ] Epoch 54 Best Acc 70.13%
|
366 |
+
[ Thu Sep 8 22:04:04 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 22:04:04 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 22:07:25 2022 ] Mean training loss: 0.0174.
|
369 |
+
[ Thu Sep 8 22:07:25 2022 ] Time consumption: [Data]02%, [Network]98%
|
370 |
+
[ Thu Sep 8 22:07:26 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 22:09:38 2022 ] Epoch 74 Curr Acc: (11098/16487)67.31%
|
372 |
+
[ Thu Sep 8 22:09:38 2022 ] Epoch 54 Best Acc 70.13%
|
373 |
+
[ Thu Sep 8 22:09:38 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 22:09:38 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 22:13:00 2022 ] Mean training loss: 0.0149.
|
376 |
+
[ Thu Sep 8 22:13:00 2022 ] Time consumption: [Data]02%, [Network]98%
|
377 |
+
[ Thu Sep 8 22:13:00 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 22:15:12 2022 ] Epoch 75 Curr Acc: (11172/16487)67.76%
|
379 |
+
[ Thu Sep 8 22:15:12 2022 ] Epoch 54 Best Acc 70.13%
|
380 |
+
[ Thu Sep 8 22:15:13 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 22:15:13 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 22:18:34 2022 ] Mean training loss: 0.0162.
|
383 |
+
[ Thu Sep 8 22:18:34 2022 ] Time consumption: [Data]02%, [Network]98%
|
384 |
+
[ Thu Sep 8 22:18:34 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 22:20:47 2022 ] Epoch 76 Curr Acc: (11432/16487)69.34%
|
386 |
+
[ Thu Sep 8 22:20:47 2022 ] Epoch 54 Best Acc 70.13%
|
387 |
+
[ Thu Sep 8 22:20:47 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 22:20:47 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 22:24:08 2022 ] Mean training loss: 0.0139.
|
390 |
+
[ Thu Sep 8 22:24:08 2022 ] Time consumption: [Data]02%, [Network]98%
|
391 |
+
[ Thu Sep 8 22:24:09 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 22:26:21 2022 ] Epoch 77 Curr Acc: (11165/16487)67.72%
|
393 |
+
[ Thu Sep 8 22:26:21 2022 ] Epoch 54 Best Acc 70.13%
|
394 |
+
[ Thu Sep 8 22:26:21 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 22:26:21 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 22:29:43 2022 ] Mean training loss: 0.0148.
|
397 |
+
[ Thu Sep 8 22:29:43 2022 ] Time consumption: [Data]02%, [Network]98%
|
398 |
+
[ Thu Sep 8 22:29:43 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 22:31:55 2022 ] Epoch 78 Curr Acc: (11269/16487)68.35%
|
400 |
+
[ Thu Sep 8 22:31:55 2022 ] Epoch 54 Best Acc 70.13%
|
401 |
+
[ Thu Sep 8 22:31:55 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 22:31:55 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 22:35:17 2022 ] Mean training loss: 0.0151.
|
404 |
+
[ Thu Sep 8 22:35:17 2022 ] Time consumption: [Data]02%, [Network]98%
|
405 |
+
[ Thu Sep 8 22:35:17 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 22:37:30 2022 ] Epoch 79 Curr Acc: (11329/16487)68.71%
|
407 |
+
[ Thu Sep 8 22:37:30 2022 ] Epoch 54 Best Acc 70.13%
|
408 |
+
[ Thu Sep 8 22:37:30 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 22:37:30 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 22:40:52 2022 ] Mean training loss: 0.0136.
|
411 |
+
[ Thu Sep 8 22:40:52 2022 ] Time consumption: [Data]01%, [Network]98%
|
412 |
+
[ Thu Sep 8 22:40:52 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 22:43:04 2022 ] Epoch 80 Curr Acc: (11280/16487)68.42%
|
414 |
+
[ Thu Sep 8 22:43:04 2022 ] Epoch 54 Best Acc 70.13%
|
415 |
+
[ Thu Sep 8 22:43:04 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 22:43:04 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 22:46:26 2022 ] Mean training loss: 0.0149.
|
418 |
+
[ Thu Sep 8 22:46:26 2022 ] Time consumption: [Data]02%, [Network]98%
|
419 |
+
[ Thu Sep 8 22:46:26 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 22:48:38 2022 ] Epoch 81 Curr Acc: (11301/16487)68.54%
|
421 |
+
[ Thu Sep 8 22:48:38 2022 ] Epoch 54 Best Acc 70.13%
|
422 |
+
[ Thu Sep 8 22:48:38 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 22:48:38 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 22:52:00 2022 ] Mean training loss: 0.0144.
|
425 |
+
[ Thu Sep 8 22:52:00 2022 ] Time consumption: [Data]01%, [Network]98%
|
426 |
+
[ Thu Sep 8 22:52:00 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 22:54:12 2022 ] Epoch 82 Curr Acc: (10996/16487)66.69%
|
428 |
+
[ Thu Sep 8 22:54:12 2022 ] Epoch 54 Best Acc 70.13%
|
429 |
+
[ Thu Sep 8 22:54:12 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 22:54:12 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 22:57:34 2022 ] Mean training loss: 0.0143.
|
432 |
+
[ Thu Sep 8 22:57:34 2022 ] Time consumption: [Data]02%, [Network]98%
|
433 |
+
[ Thu Sep 8 22:57:34 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 22:59:47 2022 ] Epoch 83 Curr Acc: (11310/16487)68.60%
|
435 |
+
[ Thu Sep 8 22:59:47 2022 ] Epoch 54 Best Acc 70.13%
|
436 |
+
[ Thu Sep 8 22:59:47 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 22:59:47 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 23:03:09 2022 ] Mean training loss: 0.0149.
|
439 |
+
[ Thu Sep 8 23:03:09 2022 ] Time consumption: [Data]02%, [Network]98%
|
440 |
+
[ Thu Sep 8 23:03:09 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 23:05:21 2022 ] Epoch 84 Curr Acc: (11367/16487)68.95%
|
442 |
+
[ Thu Sep 8 23:05:21 2022 ] Epoch 54 Best Acc 70.13%
|
443 |
+
[ Thu Sep 8 23:05:21 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 23:05:21 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 23:08:43 2022 ] Mean training loss: 0.0117.
|
446 |
+
[ Thu Sep 8 23:08:43 2022 ] Time consumption: [Data]02%, [Network]98%
|
447 |
+
[ Thu Sep 8 23:08:43 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 23:10:56 2022 ] Epoch 85 Curr Acc: (11345/16487)68.81%
|
449 |
+
[ Thu Sep 8 23:10:56 2022 ] Epoch 54 Best Acc 70.13%
|
450 |
+
[ Thu Sep 8 23:10:56 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 23:10:56 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 23:14:17 2022 ] Mean training loss: 0.0130.
|
453 |
+
[ Thu Sep 8 23:14:17 2022 ] Time consumption: [Data]02%, [Network]98%
|
454 |
+
[ Thu Sep 8 23:14:17 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 23:16:30 2022 ] Epoch 86 Curr Acc: (11269/16487)68.35%
|
456 |
+
[ Thu Sep 8 23:16:30 2022 ] Epoch 54 Best Acc 70.13%
|
457 |
+
[ Thu Sep 8 23:16:30 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 23:16:30 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 23:19:51 2022 ] Mean training loss: 0.0118.
|
460 |
+
[ Thu Sep 8 23:19:51 2022 ] Time consumption: [Data]01%, [Network]98%
|
461 |
+
[ Thu Sep 8 23:19:51 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 23:22:03 2022 ] Epoch 87 Curr Acc: (11509/16487)69.81%
|
463 |
+
[ Thu Sep 8 23:22:03 2022 ] Epoch 54 Best Acc 70.13%
|
464 |
+
[ Thu Sep 8 23:22:03 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 23:22:03 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 23:25:25 2022 ] Mean training loss: 0.0112.
|
467 |
+
[ Thu Sep 8 23:25:25 2022 ] Time consumption: [Data]01%, [Network]98%
|
468 |
+
[ Thu Sep 8 23:25:25 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 23:27:38 2022 ] Epoch 88 Curr Acc: (11416/16487)69.24%
|
470 |
+
[ Thu Sep 8 23:27:38 2022 ] Epoch 54 Best Acc 70.13%
|
471 |
+
[ Thu Sep 8 23:27:38 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 23:27:38 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 23:31:00 2022 ] Mean training loss: 0.0118.
|
474 |
+
[ Thu Sep 8 23:31:00 2022 ] Time consumption: [Data]02%, [Network]98%
|
475 |
+
[ Thu Sep 8 23:31:00 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 23:33:12 2022 ] Epoch 89 Curr Acc: (11423/16487)69.28%
|
477 |
+
[ Thu Sep 8 23:33:12 2022 ] Epoch 54 Best Acc 70.13%
|
478 |
+
[ Thu Sep 8 23:33:12 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 23:33:12 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 23:36:34 2022 ] Mean training loss: 0.0142.
|
481 |
+
[ Thu Sep 8 23:36:34 2022 ] Time consumption: [Data]02%, [Network]98%
|
482 |
+
[ Thu Sep 8 23:36:34 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 23:38:46 2022 ] Epoch 90 Curr Acc: (11305/16487)68.57%
|
484 |
+
[ Thu Sep 8 23:38:46 2022 ] Epoch 54 Best Acc 70.13%
|
485 |
+
[ Thu Sep 8 23:38:46 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 23:38:46 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 23:42:08 2022 ] Mean training loss: 0.0120.
|
488 |
+
[ Thu Sep 8 23:42:08 2022 ] Time consumption: [Data]02%, [Network]98%
|
489 |
+
[ Thu Sep 8 23:42:08 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 23:44:20 2022 ] Epoch 91 Curr Acc: (11478/16487)69.62%
|
491 |
+
[ Thu Sep 8 23:44:20 2022 ] Epoch 54 Best Acc 70.13%
|
492 |
+
[ Thu Sep 8 23:44:20 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 23:44:20 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 23:47:42 2022 ] Mean training loss: 0.0129.
|
495 |
+
[ Thu Sep 8 23:47:42 2022 ] Time consumption: [Data]02%, [Network]98%
|
496 |
+
[ Thu Sep 8 23:47:42 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 23:49:54 2022 ] Epoch 92 Curr Acc: (11338/16487)68.77%
|
498 |
+
[ Thu Sep 8 23:49:54 2022 ] Epoch 54 Best Acc 70.13%
|
499 |
+
[ Thu Sep 8 23:49:54 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 23:49:54 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 23:53:16 2022 ] Mean training loss: 0.0124.
|
502 |
+
[ Thu Sep 8 23:53:16 2022 ] Time consumption: [Data]02%, [Network]98%
|
503 |
+
[ Thu Sep 8 23:53:16 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 23:55:28 2022 ] Epoch 93 Curr Acc: (11374/16487)68.99%
|
505 |
+
[ Thu Sep 8 23:55:28 2022 ] Epoch 54 Best Acc 70.13%
|
506 |
+
[ Thu Sep 8 23:55:28 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 23:55:28 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 23:58:50 2022 ] Mean training loss: 0.0114.
|
509 |
+
[ Thu Sep 8 23:58:50 2022 ] Time consumption: [Data]02%, [Network]98%
|
510 |
+
[ Thu Sep 8 23:58:50 2022 ] Eval epoch: 94
|
511 |
+
[ Fri Sep 9 00:01:03 2022 ] Epoch 94 Curr Acc: (11406/16487)69.18%
|
512 |
+
[ Fri Sep 9 00:01:03 2022 ] Epoch 54 Best Acc 70.13%
|
513 |
+
[ Fri Sep 9 00:01:03 2022 ] Training epoch: 95
|
514 |
+
[ Fri Sep 9 00:01:03 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Fri Sep 9 00:04:25 2022 ] Mean training loss: 0.0121.
|
516 |
+
[ Fri Sep 9 00:04:25 2022 ] Time consumption: [Data]02%, [Network]98%
|
517 |
+
[ Fri Sep 9 00:04:25 2022 ] Eval epoch: 95
|
518 |
+
[ Fri Sep 9 00:06:38 2022 ] Epoch 95 Curr Acc: (11247/16487)68.22%
|
519 |
+
[ Fri Sep 9 00:06:38 2022 ] Epoch 54 Best Acc 70.13%
|
520 |
+
[ Fri Sep 9 00:06:38 2022 ] Training epoch: 96
|
521 |
+
[ Fri Sep 9 00:06:38 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Fri Sep 9 00:10:00 2022 ] Mean training loss: 0.0120.
|
523 |
+
[ Fri Sep 9 00:10:00 2022 ] Time consumption: [Data]02%, [Network]98%
|
524 |
+
[ Fri Sep 9 00:10:00 2022 ] Eval epoch: 96
|
525 |
+
[ Fri Sep 9 00:12:12 2022 ] Epoch 96 Curr Acc: (11538/16487)69.98%
|
526 |
+
[ Fri Sep 9 00:12:12 2022 ] Epoch 54 Best Acc 70.13%
|
527 |
+
[ Fri Sep 9 00:12:12 2022 ] Training epoch: 97
|
528 |
+
[ Fri Sep 9 00:12:12 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Fri Sep 9 00:15:34 2022 ] Mean training loss: 0.0118.
|
530 |
+
[ Fri Sep 9 00:15:34 2022 ] Time consumption: [Data]02%, [Network]98%
|
531 |
+
[ Fri Sep 9 00:15:34 2022 ] Eval epoch: 97
|
532 |
+
[ Fri Sep 9 00:17:47 2022 ] Epoch 97 Curr Acc: (11263/16487)68.31%
|
533 |
+
[ Fri Sep 9 00:17:47 2022 ] Epoch 54 Best Acc 70.13%
|
534 |
+
[ Fri Sep 9 00:17:47 2022 ] Training epoch: 98
|
535 |
+
[ Fri Sep 9 00:17:47 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Fri Sep 9 00:21:09 2022 ] Mean training loss: 0.0121.
|
537 |
+
[ Fri Sep 9 00:21:09 2022 ] Time consumption: [Data]02%, [Network]98%
|
538 |
+
[ Fri Sep 9 00:21:09 2022 ] Eval epoch: 98
|
539 |
+
[ Fri Sep 9 00:23:22 2022 ] Epoch 98 Curr Acc: (11427/16487)69.31%
|
540 |
+
[ Fri Sep 9 00:23:22 2022 ] Epoch 54 Best Acc 70.13%
|
541 |
+
[ Fri Sep 9 00:23:22 2022 ] Training epoch: 99
|
542 |
+
[ Fri Sep 9 00:23:22 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Fri Sep 9 00:26:44 2022 ] Mean training loss: 0.0116.
|
544 |
+
[ Fri Sep 9 00:26:44 2022 ] Time consumption: [Data]02%, [Network]98%
|
545 |
+
[ Fri Sep 9 00:26:44 2022 ] Eval epoch: 99
|
546 |
+
[ Fri Sep 9 00:28:57 2022 ] Epoch 99 Curr Acc: (11217/16487)68.04%
|
547 |
+
[ Fri Sep 9 00:28:57 2022 ] Epoch 54 Best Acc 70.13%
|
548 |
+
[ Fri Sep 9 00:28:57 2022 ] Training epoch: 100
|
549 |
+
[ Fri Sep 9 00:28:57 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Fri Sep 9 00:32:18 2022 ] Mean training loss: 0.0122.
|
551 |
+
[ Fri Sep 9 00:32:18 2022 ] Time consumption: [Data]02%, [Network]98%
|
552 |
+
[ Fri Sep 9 00:32:18 2022 ] Eval epoch: 100
|
553 |
+
[ Fri Sep 9 00:34:31 2022 ] Epoch 100 Curr Acc: (11455/16487)69.48%
|
554 |
+
[ Fri Sep 9 00:34:31 2022 ] Epoch 54 Best Acc 70.13%
|
555 |
+
[ Fri Sep 9 00:34:31 2022 ] Training epoch: 101
|
556 |
+
[ Fri Sep 9 00:34:31 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Fri Sep 9 00:37:52 2022 ] Mean training loss: 0.0125.
|
558 |
+
[ Fri Sep 9 00:37:52 2022 ] Time consumption: [Data]02%, [Network]98%
|
559 |
+
[ Fri Sep 9 00:37:52 2022 ] Eval epoch: 101
|
560 |
+
[ Fri Sep 9 00:40:05 2022 ] Epoch 101 Curr Acc: (11545/16487)70.02%
|
561 |
+
[ Fri Sep 9 00:40:05 2022 ] Epoch 54 Best Acc 70.13%
|
562 |
+
[ Fri Sep 9 00:40:05 2022 ] Training epoch: 102
|
563 |
+
[ Fri Sep 9 00:40:05 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Fri Sep 9 00:43:27 2022 ] Mean training loss: 0.0123.
|
565 |
+
[ Fri Sep 9 00:43:27 2022 ] Time consumption: [Data]02%, [Network]98%
|
566 |
+
[ Fri Sep 9 00:43:27 2022 ] Eval epoch: 102
|
567 |
+
[ Fri Sep 9 00:45:39 2022 ] Epoch 102 Curr Acc: (11452/16487)69.46%
|
568 |
+
[ Fri Sep 9 00:45:39 2022 ] Epoch 54 Best Acc 70.13%
|
569 |
+
[ Fri Sep 9 00:45:39 2022 ] Training epoch: 103
|
570 |
+
[ Fri Sep 9 00:45:39 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Fri Sep 9 00:49:01 2022 ] Mean training loss: 0.0130.
|
572 |
+
[ Fri Sep 9 00:49:01 2022 ] Time consumption: [Data]02%, [Network]98%
|
573 |
+
[ Fri Sep 9 00:49:01 2022 ] Eval epoch: 103
|
574 |
+
[ Fri Sep 9 00:51:13 2022 ] Epoch 103 Curr Acc: (11380/16487)69.02%
|
575 |
+
[ Fri Sep 9 00:51:13 2022 ] Epoch 54 Best Acc 70.13%
|
576 |
+
[ Fri Sep 9 00:51:13 2022 ] Training epoch: 104
|
577 |
+
[ Fri Sep 9 00:51:13 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Fri Sep 9 00:54:34 2022 ] Mean training loss: 0.0120.
|
579 |
+
[ Fri Sep 9 00:54:34 2022 ] Time consumption: [Data]02%, [Network]98%
|
580 |
+
[ Fri Sep 9 00:54:34 2022 ] Eval epoch: 104
|
581 |
+
[ Fri Sep 9 00:56:47 2022 ] Epoch 104 Curr Acc: (11517/16487)69.86%
|
582 |
+
[ Fri Sep 9 00:56:47 2022 ] Epoch 54 Best Acc 70.13%
|
583 |
+
[ Fri Sep 9 00:56:47 2022 ] Training epoch: 105
|
584 |
+
[ Fri Sep 9 00:56:47 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Fri Sep 9 01:00:08 2022 ] Mean training loss: 0.0142.
|
586 |
+
[ Fri Sep 9 01:00:08 2022 ] Time consumption: [Data]02%, [Network]98%
|
587 |
+
[ Fri Sep 9 01:00:08 2022 ] Eval epoch: 105
|
588 |
+
[ Fri Sep 9 01:02:21 2022 ] Epoch 105 Curr Acc: (11195/16487)67.90%
|
589 |
+
[ Fri Sep 9 01:02:21 2022 ] Epoch 54 Best Acc 70.13%
|
590 |
+
[ Fri Sep 9 01:02:21 2022 ] Training epoch: 106
|
591 |
+
[ Fri Sep 9 01:02:21 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Fri Sep 9 01:05:42 2022 ] Mean training loss: 0.0107.
|
593 |
+
[ Fri Sep 9 01:05:42 2022 ] Time consumption: [Data]02%, [Network]98%
|
594 |
+
[ Fri Sep 9 01:05:42 2022 ] Eval epoch: 106
|
595 |
+
[ Fri Sep 9 01:07:55 2022 ] Epoch 106 Curr Acc: (11496/16487)69.73%
|
596 |
+
[ Fri Sep 9 01:07:55 2022 ] Epoch 54 Best Acc 70.13%
|
597 |
+
[ Fri Sep 9 01:07:55 2022 ] Training epoch: 107
|
598 |
+
[ Fri Sep 9 01:07:55 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Fri Sep 9 01:11:17 2022 ] Mean training loss: 0.0116.
|
600 |
+
[ Fri Sep 9 01:11:17 2022 ] Time consumption: [Data]01%, [Network]98%
|
601 |
+
[ Fri Sep 9 01:11:17 2022 ] Eval epoch: 107
|
602 |
+
[ Fri Sep 9 01:13:29 2022 ] Epoch 107 Curr Acc: (11146/16487)67.60%
|
603 |
+
[ Fri Sep 9 01:13:29 2022 ] Epoch 54 Best Acc 70.13%
|
604 |
+
[ Fri Sep 9 01:13:29 2022 ] Training epoch: 108
|
605 |
+
[ Fri Sep 9 01:13:29 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Fri Sep 9 01:16:51 2022 ] Mean training loss: 0.0110.
|
607 |
+
[ Fri Sep 9 01:16:51 2022 ] Time consumption: [Data]01%, [Network]98%
|
608 |
+
[ Fri Sep 9 01:16:51 2022 ] Eval epoch: 108
|
609 |
+
[ Fri Sep 9 01:19:03 2022 ] Epoch 108 Curr Acc: (11175/16487)67.78%
|
610 |
+
[ Fri Sep 9 01:19:04 2022 ] Epoch 54 Best Acc 70.13%
|
611 |
+
[ Fri Sep 9 01:19:04 2022 ] Training epoch: 109
|
612 |
+
[ Fri Sep 9 01:19:04 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Fri Sep 9 01:22:26 2022 ] Mean training loss: 0.0119.
|
614 |
+
[ Fri Sep 9 01:22:26 2022 ] Time consumption: [Data]01%, [Network]98%
|
615 |
+
[ Fri Sep 9 01:22:26 2022 ] Eval epoch: 109
|
616 |
+
[ Fri Sep 9 01:24:38 2022 ] Epoch 109 Curr Acc: (11179/16487)67.80%
|
617 |
+
[ Fri Sep 9 01:24:38 2022 ] Epoch 54 Best Acc 70.13%
|
618 |
+
[ Fri Sep 9 01:24:38 2022 ] Training epoch: 110
|
619 |
+
[ Fri Sep 9 01:24:38 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Fri Sep 9 01:28:00 2022 ] Mean training loss: 0.0118.
|
621 |
+
[ Fri Sep 9 01:28:00 2022 ] Time consumption: [Data]02%, [Network]98%
|
622 |
+
[ Fri Sep 9 01:28:00 2022 ] Eval epoch: 110
|
623 |
+
[ Fri Sep 9 01:30:12 2022 ] Epoch 110 Curr Acc: (11249/16487)68.23%
|
624 |
+
[ Fri Sep 9 01:30:12 2022 ] Epoch 54 Best Acc 70.13%
|
625 |
+
[ Fri Sep 9 01:30:12 2022 ] epoch: 54, best accuracy: 0.7013404500515558
|
626 |
+
[ Fri Sep 9 01:30:12 2022 ] Experiment: ./work_dir/ntu/xsub_j
|
627 |
+
[ Fri Sep 9 01:30:12 2022 ] # generator parameters: 2.896055 M.
|
628 |
+
[ Fri Sep 9 01:30:12 2022 ] Load weights from ./runs/ntu/xsub_j/runs-53-53244.pt.
|
629 |
+
[ Fri Sep 9 01:30:12 2022 ] Eval epoch: 1
|
630 |
+
[ Fri Sep 9 01:32:25 2022 ] Epoch 1 Curr Acc: (11563/16487)70.13%
|
631 |
+
[ Fri Sep 9 01:32:25 2022 ] Epoch 54 Best Acc 70.13%
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu/xsub_jm.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 60
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu/xsub_jm/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint_motion.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint_motion.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu/xsub_jm
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/epoch1_test_score.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a12cdadad8f353eda1d8d0c2215e1b376b764e52df61fea5d94dc748ff426cea
|
3 |
+
size 4979902
|
ckpt/Others/MST-GCN/ntu60_xsub/xsub_jm/log.txt
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 8 17:07:46 2022 ] # generator parameters: 2.896055 M.
|
2 |
+
[ Thu Sep 8 17:07:46 2022 ] Parameters:
|
3 |
+
{'work_dir': './work_dir/ntu/xsub_jm', 'model_saved_name': './runs/ntu/xsub_jm/runs', 'config': 'config/ntu/xsub_jm.yaml', 'phase': 'train', 'save_score': True, 'seed': 1, 'log_interval': 100, 'save_interval': 1, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.AEMST_GCN.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'block_args': [[3, 112, False, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 112, True, 1], [112, 224, True, 2], [224, 224, True, 1], [224, 224, True, 1], [224, 448, True, 2], [448, 448, True, 1], [448, 448, True, 1]], 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}, 'kernel_size': 9, 'block_type': 'ms', 'reduct_ratio': 2, 'expand_ratio': 0, 's_scale': 4, 't_scale': 4, 'layer_type': 'basic', 'act': 'relu', 'atten': 'None', 'bias': True}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.15, 'step': [50, 70, 90], 'device': [0], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 8, 'test_batch_size': 64, 'start_epoch': 0, 'model_path': '', 'num_epoch': 110, 'weight_decay': 0.0001, 'only_train_part': False, 'only_train_epoch': 0, 'warm_up_epoch': 10, 'local_rank': 0}
|
4 |
+
|
5 |
+
[ Thu Sep 8 17:07:46 2022 ] Training epoch: 1
|
6 |
+
[ Thu Sep 8 17:07:46 2022 ] Learning rate: 0.015
|
7 |
+
[ Thu Sep 8 17:11:08 2022 ] Mean training loss: 3.0683.
|
8 |
+
[ Thu Sep 8 17:11:08 2022 ] Time consumption: [Data]02%, [Network]98%
|
9 |
+
[ Thu Sep 8 17:11:08 2022 ] Training epoch: 2
|
10 |
+
[ Thu Sep 8 17:11:08 2022 ] Learning rate: 0.03
|
11 |
+
[ Thu Sep 8 17:14:28 2022 ] Mean training loss: 2.2041.
|
12 |
+
[ Thu Sep 8 17:14:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
13 |
+
[ Thu Sep 8 17:14:28 2022 ] Training epoch: 3
|
14 |
+
[ Thu Sep 8 17:14:28 2022 ] Learning rate: 0.045
|
15 |
+
[ Thu Sep 8 17:17:48 2022 ] Mean training loss: 1.7924.
|
16 |
+
[ Thu Sep 8 17:17:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
17 |
+
[ Thu Sep 8 17:17:48 2022 ] Training epoch: 4
|
18 |
+
[ Thu Sep 8 17:17:48 2022 ] Learning rate: 0.06
|
19 |
+
[ Thu Sep 8 17:21:09 2022 ] Mean training loss: 1.5479.
|
20 |
+
[ Thu Sep 8 17:21:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
21 |
+
[ Thu Sep 8 17:21:09 2022 ] Training epoch: 5
|
22 |
+
[ Thu Sep 8 17:21:09 2022 ] Learning rate: 0.075
|
23 |
+
[ Thu Sep 8 17:24:29 2022 ] Mean training loss: 1.3728.
|
24 |
+
[ Thu Sep 8 17:24:29 2022 ] Time consumption: [Data]01%, [Network]99%
|
25 |
+
[ Thu Sep 8 17:24:29 2022 ] Training epoch: 6
|
26 |
+
[ Thu Sep 8 17:24:29 2022 ] Learning rate: 0.09
|
27 |
+
[ Thu Sep 8 17:27:50 2022 ] Mean training loss: 1.2656.
|
28 |
+
[ Thu Sep 8 17:27:50 2022 ] Time consumption: [Data]01%, [Network]99%
|
29 |
+
[ Thu Sep 8 17:27:50 2022 ] Training epoch: 7
|
30 |
+
[ Thu Sep 8 17:27:50 2022 ] Learning rate: 0.10500000000000001
|
31 |
+
[ Thu Sep 8 17:31:11 2022 ] Mean training loss: 1.1959.
|
32 |
+
[ Thu Sep 8 17:31:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
33 |
+
[ Thu Sep 8 17:31:11 2022 ] Training epoch: 8
|
34 |
+
[ Thu Sep 8 17:31:11 2022 ] Learning rate: 0.12
|
35 |
+
[ Thu Sep 8 17:34:32 2022 ] Mean training loss: 1.1293.
|
36 |
+
[ Thu Sep 8 17:34:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
37 |
+
[ Thu Sep 8 17:34:32 2022 ] Training epoch: 9
|
38 |
+
[ Thu Sep 8 17:34:32 2022 ] Learning rate: 0.13499999999999998
|
39 |
+
[ Thu Sep 8 17:37:53 2022 ] Mean training loss: 1.1130.
|
40 |
+
[ Thu Sep 8 17:37:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
41 |
+
[ Thu Sep 8 17:37:53 2022 ] Training epoch: 10
|
42 |
+
[ Thu Sep 8 17:37:53 2022 ] Learning rate: 0.15
|
43 |
+
[ Thu Sep 8 17:41:15 2022 ] Mean training loss: 1.0630.
|
44 |
+
[ Thu Sep 8 17:41:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
45 |
+
[ Thu Sep 8 17:41:15 2022 ] Training epoch: 11
|
46 |
+
[ Thu Sep 8 17:41:15 2022 ] Learning rate: 0.15
|
47 |
+
[ Thu Sep 8 17:44:36 2022 ] Mean training loss: 1.0072.
|
48 |
+
[ Thu Sep 8 17:44:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
49 |
+
[ Thu Sep 8 17:44:36 2022 ] Training epoch: 12
|
50 |
+
[ Thu Sep 8 17:44:36 2022 ] Learning rate: 0.15
|
51 |
+
[ Thu Sep 8 17:47:57 2022 ] Mean training loss: 0.9853.
|
52 |
+
[ Thu Sep 8 17:47:57 2022 ] Time consumption: [Data]01%, [Network]99%
|
53 |
+
[ Thu Sep 8 17:47:57 2022 ] Training epoch: 13
|
54 |
+
[ Thu Sep 8 17:47:57 2022 ] Learning rate: 0.15
|
55 |
+
[ Thu Sep 8 17:51:18 2022 ] Mean training loss: 0.9481.
|
56 |
+
[ Thu Sep 8 17:51:18 2022 ] Time consumption: [Data]01%, [Network]99%
|
57 |
+
[ Thu Sep 8 17:51:18 2022 ] Training epoch: 14
|
58 |
+
[ Thu Sep 8 17:51:18 2022 ] Learning rate: 0.15
|
59 |
+
[ Thu Sep 8 17:54:39 2022 ] Mean training loss: 0.8977.
|
60 |
+
[ Thu Sep 8 17:54:39 2022 ] Time consumption: [Data]01%, [Network]99%
|
61 |
+
[ Thu Sep 8 17:54:39 2022 ] Training epoch: 15
|
62 |
+
[ Thu Sep 8 17:54:39 2022 ] Learning rate: 0.15
|
63 |
+
[ Thu Sep 8 17:57:59 2022 ] Mean training loss: 0.8794.
|
64 |
+
[ Thu Sep 8 17:57:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
65 |
+
[ Thu Sep 8 17:57:59 2022 ] Training epoch: 16
|
66 |
+
[ Thu Sep 8 17:57:59 2022 ] Learning rate: 0.15
|
67 |
+
[ Thu Sep 8 18:01:20 2022 ] Mean training loss: 0.8747.
|
68 |
+
[ Thu Sep 8 18:01:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
69 |
+
[ Thu Sep 8 18:01:20 2022 ] Training epoch: 17
|
70 |
+
[ Thu Sep 8 18:01:20 2022 ] Learning rate: 0.15
|
71 |
+
[ Thu Sep 8 18:04:40 2022 ] Mean training loss: 0.8299.
|
72 |
+
[ Thu Sep 8 18:04:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
73 |
+
[ Thu Sep 8 18:04:40 2022 ] Training epoch: 18
|
74 |
+
[ Thu Sep 8 18:04:40 2022 ] Learning rate: 0.15
|
75 |
+
[ Thu Sep 8 18:08:01 2022 ] Mean training loss: 0.8331.
|
76 |
+
[ Thu Sep 8 18:08:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
77 |
+
[ Thu Sep 8 18:08:01 2022 ] Training epoch: 19
|
78 |
+
[ Thu Sep 8 18:08:01 2022 ] Learning rate: 0.15
|
79 |
+
[ Thu Sep 8 18:11:22 2022 ] Mean training loss: 0.7954.
|
80 |
+
[ Thu Sep 8 18:11:22 2022 ] Time consumption: [Data]01%, [Network]99%
|
81 |
+
[ Thu Sep 8 18:11:22 2022 ] Training epoch: 20
|
82 |
+
[ Thu Sep 8 18:11:22 2022 ] Learning rate: 0.15
|
83 |
+
[ Thu Sep 8 18:14:43 2022 ] Mean training loss: 0.7783.
|
84 |
+
[ Thu Sep 8 18:14:43 2022 ] Time consumption: [Data]01%, [Network]99%
|
85 |
+
[ Thu Sep 8 18:14:43 2022 ] Training epoch: 21
|
86 |
+
[ Thu Sep 8 18:14:43 2022 ] Learning rate: 0.15
|
87 |
+
[ Thu Sep 8 18:18:05 2022 ] Mean training loss: 0.7715.
|
88 |
+
[ Thu Sep 8 18:18:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
89 |
+
[ Thu Sep 8 18:18:05 2022 ] Training epoch: 22
|
90 |
+
[ Thu Sep 8 18:18:05 2022 ] Learning rate: 0.15
|
91 |
+
[ Thu Sep 8 18:21:26 2022 ] Mean training loss: 0.7561.
|
92 |
+
[ Thu Sep 8 18:21:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
93 |
+
[ Thu Sep 8 18:21:26 2022 ] Training epoch: 23
|
94 |
+
[ Thu Sep 8 18:21:26 2022 ] Learning rate: 0.15
|
95 |
+
[ Thu Sep 8 18:24:48 2022 ] Mean training loss: 0.7335.
|
96 |
+
[ Thu Sep 8 18:24:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
97 |
+
[ Thu Sep 8 18:24:48 2022 ] Training epoch: 24
|
98 |
+
[ Thu Sep 8 18:24:48 2022 ] Learning rate: 0.15
|
99 |
+
[ Thu Sep 8 18:28:09 2022 ] Mean training loss: 0.7450.
|
100 |
+
[ Thu Sep 8 18:28:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
101 |
+
[ Thu Sep 8 18:28:09 2022 ] Training epoch: 25
|
102 |
+
[ Thu Sep 8 18:28:09 2022 ] Learning rate: 0.15
|
103 |
+
[ Thu Sep 8 18:31:30 2022 ] Mean training loss: 0.7210.
|
104 |
+
[ Thu Sep 8 18:31:30 2022 ] Time consumption: [Data]01%, [Network]98%
|
105 |
+
[ Thu Sep 8 18:31:30 2022 ] Training epoch: 26
|
106 |
+
[ Thu Sep 8 18:31:30 2022 ] Learning rate: 0.15
|
107 |
+
[ Thu Sep 8 18:34:49 2022 ] Mean training loss: 0.7067.
|
108 |
+
[ Thu Sep 8 18:34:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
109 |
+
[ Thu Sep 8 18:34:49 2022 ] Training epoch: 27
|
110 |
+
[ Thu Sep 8 18:34:49 2022 ] Learning rate: 0.15
|
111 |
+
[ Thu Sep 8 18:38:10 2022 ] Mean training loss: 0.7015.
|
112 |
+
[ Thu Sep 8 18:38:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
113 |
+
[ Thu Sep 8 18:38:10 2022 ] Training epoch: 28
|
114 |
+
[ Thu Sep 8 18:38:10 2022 ] Learning rate: 0.15
|
115 |
+
[ Thu Sep 8 18:41:30 2022 ] Mean training loss: 0.6972.
|
116 |
+
[ Thu Sep 8 18:41:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
117 |
+
[ Thu Sep 8 18:41:30 2022 ] Training epoch: 29
|
118 |
+
[ Thu Sep 8 18:41:30 2022 ] Learning rate: 0.15
|
119 |
+
[ Thu Sep 8 18:44:51 2022 ] Mean training loss: 0.6854.
|
120 |
+
[ Thu Sep 8 18:44:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
121 |
+
[ Thu Sep 8 18:44:51 2022 ] Training epoch: 30
|
122 |
+
[ Thu Sep 8 18:44:51 2022 ] Learning rate: 0.15
|
123 |
+
[ Thu Sep 8 18:48:11 2022 ] Mean training loss: 0.6598.
|
124 |
+
[ Thu Sep 8 18:48:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
125 |
+
[ Thu Sep 8 18:48:11 2022 ] Training epoch: 31
|
126 |
+
[ Thu Sep 8 18:48:11 2022 ] Learning rate: 0.15
|
127 |
+
[ Thu Sep 8 18:51:32 2022 ] Mean training loss: 0.6721.
|
128 |
+
[ Thu Sep 8 18:51:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
129 |
+
[ Thu Sep 8 18:51:32 2022 ] Training epoch: 32
|
130 |
+
[ Thu Sep 8 18:51:32 2022 ] Learning rate: 0.15
|
131 |
+
[ Thu Sep 8 18:54:53 2022 ] Mean training loss: 0.6566.
|
132 |
+
[ Thu Sep 8 18:54:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
133 |
+
[ Thu Sep 8 18:54:53 2022 ] Training epoch: 33
|
134 |
+
[ Thu Sep 8 18:54:53 2022 ] Learning rate: 0.15
|
135 |
+
[ Thu Sep 8 18:58:14 2022 ] Mean training loss: 0.6786.
|
136 |
+
[ Thu Sep 8 18:58:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
137 |
+
[ Thu Sep 8 18:58:14 2022 ] Training epoch: 34
|
138 |
+
[ Thu Sep 8 18:58:14 2022 ] Learning rate: 0.15
|
139 |
+
[ Thu Sep 8 19:01:35 2022 ] Mean training loss: 0.6565.
|
140 |
+
[ Thu Sep 8 19:01:35 2022 ] Time consumption: [Data]01%, [Network]99%
|
141 |
+
[ Thu Sep 8 19:01:35 2022 ] Training epoch: 35
|
142 |
+
[ Thu Sep 8 19:01:35 2022 ] Learning rate: 0.15
|
143 |
+
[ Thu Sep 8 19:04:56 2022 ] Mean training loss: 0.6696.
|
144 |
+
[ Thu Sep 8 19:04:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
145 |
+
[ Thu Sep 8 19:04:56 2022 ] Training epoch: 36
|
146 |
+
[ Thu Sep 8 19:04:56 2022 ] Learning rate: 0.15
|
147 |
+
[ Thu Sep 8 19:08:17 2022 ] Mean training loss: 0.6123.
|
148 |
+
[ Thu Sep 8 19:08:17 2022 ] Time consumption: [Data]01%, [Network]98%
|
149 |
+
[ Thu Sep 8 19:08:17 2022 ] Training epoch: 37
|
150 |
+
[ Thu Sep 8 19:08:17 2022 ] Learning rate: 0.15
|
151 |
+
[ Thu Sep 8 19:11:37 2022 ] Mean training loss: 0.6360.
|
152 |
+
[ Thu Sep 8 19:11:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
153 |
+
[ Thu Sep 8 19:11:37 2022 ] Training epoch: 38
|
154 |
+
[ Thu Sep 8 19:11:37 2022 ] Learning rate: 0.15
|
155 |
+
[ Thu Sep 8 19:14:59 2022 ] Mean training loss: 0.6435.
|
156 |
+
[ Thu Sep 8 19:14:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
157 |
+
[ Thu Sep 8 19:14:59 2022 ] Training epoch: 39
|
158 |
+
[ Thu Sep 8 19:14:59 2022 ] Learning rate: 0.15
|
159 |
+
[ Thu Sep 8 19:18:20 2022 ] Mean training loss: 0.6291.
|
160 |
+
[ Thu Sep 8 19:18:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
161 |
+
[ Thu Sep 8 19:18:20 2022 ] Training epoch: 40
|
162 |
+
[ Thu Sep 8 19:18:20 2022 ] Learning rate: 0.15
|
163 |
+
[ Thu Sep 8 19:21:42 2022 ] Mean training loss: 0.6281.
|
164 |
+
[ Thu Sep 8 19:21:42 2022 ] Time consumption: [Data]01%, [Network]98%
|
165 |
+
[ Thu Sep 8 19:21:42 2022 ] Training epoch: 41
|
166 |
+
[ Thu Sep 8 19:21:42 2022 ] Learning rate: 0.15
|
167 |
+
[ Thu Sep 8 19:25:03 2022 ] Mean training loss: 0.6269.
|
168 |
+
[ Thu Sep 8 19:25:03 2022 ] Time consumption: [Data]01%, [Network]98%
|
169 |
+
[ Thu Sep 8 19:25:03 2022 ] Training epoch: 42
|
170 |
+
[ Thu Sep 8 19:25:03 2022 ] Learning rate: 0.15
|
171 |
+
[ Thu Sep 8 19:28:24 2022 ] Mean training loss: 0.6014.
|
172 |
+
[ Thu Sep 8 19:28:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
173 |
+
[ Thu Sep 8 19:28:24 2022 ] Training epoch: 43
|
174 |
+
[ Thu Sep 8 19:28:24 2022 ] Learning rate: 0.15
|
175 |
+
[ Thu Sep 8 19:31:45 2022 ] Mean training loss: 0.6220.
|
176 |
+
[ Thu Sep 8 19:31:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
177 |
+
[ Thu Sep 8 19:31:45 2022 ] Training epoch: 44
|
178 |
+
[ Thu Sep 8 19:31:45 2022 ] Learning rate: 0.15
|
179 |
+
[ Thu Sep 8 19:35:05 2022 ] Mean training loss: 0.6377.
|
180 |
+
[ Thu Sep 8 19:35:05 2022 ] Time consumption: [Data]01%, [Network]99%
|
181 |
+
[ Thu Sep 8 19:35:05 2022 ] Training epoch: 45
|
182 |
+
[ Thu Sep 8 19:35:05 2022 ] Learning rate: 0.15
|
183 |
+
[ Thu Sep 8 19:38:26 2022 ] Mean training loss: 0.5951.
|
184 |
+
[ Thu Sep 8 19:38:26 2022 ] Time consumption: [Data]01%, [Network]99%
|
185 |
+
[ Thu Sep 8 19:38:26 2022 ] Training epoch: 46
|
186 |
+
[ Thu Sep 8 19:38:26 2022 ] Learning rate: 0.15
|
187 |
+
[ Thu Sep 8 19:41:47 2022 ] Mean training loss: 0.6152.
|
188 |
+
[ Thu Sep 8 19:41:47 2022 ] Time consumption: [Data]01%, [Network]99%
|
189 |
+
[ Thu Sep 8 19:41:47 2022 ] Training epoch: 47
|
190 |
+
[ Thu Sep 8 19:41:47 2022 ] Learning rate: 0.15
|
191 |
+
[ Thu Sep 8 19:45:07 2022 ] Mean training loss: 0.6070.
|
192 |
+
[ Thu Sep 8 19:45:07 2022 ] Time consumption: [Data]01%, [Network]99%
|
193 |
+
[ Thu Sep 8 19:45:07 2022 ] Training epoch: 48
|
194 |
+
[ Thu Sep 8 19:45:07 2022 ] Learning rate: 0.15
|
195 |
+
[ Thu Sep 8 19:48:28 2022 ] Mean training loss: 0.5967.
|
196 |
+
[ Thu Sep 8 19:48:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
197 |
+
[ Thu Sep 8 19:48:28 2022 ] Training epoch: 49
|
198 |
+
[ Thu Sep 8 19:48:28 2022 ] Learning rate: 0.15
|
199 |
+
[ Thu Sep 8 19:51:49 2022 ] Mean training loss: 0.5964.
|
200 |
+
[ Thu Sep 8 19:51:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
201 |
+
[ Thu Sep 8 19:51:49 2022 ] Training epoch: 50
|
202 |
+
[ Thu Sep 8 19:51:49 2022 ] Learning rate: 0.15
|
203 |
+
[ Thu Sep 8 19:55:10 2022 ] Mean training loss: 0.5941.
|
204 |
+
[ Thu Sep 8 19:55:10 2022 ] Time consumption: [Data]01%, [Network]99%
|
205 |
+
[ Thu Sep 8 19:55:10 2022 ] Training epoch: 51
|
206 |
+
[ Thu Sep 8 19:55:10 2022 ] Learning rate: 0.015
|
207 |
+
[ Thu Sep 8 19:58:31 2022 ] Mean training loss: 0.2782.
|
208 |
+
[ Thu Sep 8 19:58:31 2022 ] Time consumption: [Data]01%, [Network]99%
|
209 |
+
[ Thu Sep 8 19:58:31 2022 ] Eval epoch: 51
|
210 |
+
[ Thu Sep 8 20:00:43 2022 ] Epoch 51 Curr Acc: (10345/16487)62.75%
|
211 |
+
[ Thu Sep 8 20:00:43 2022 ] Epoch 51 Best Acc 62.75%
|
212 |
+
[ Thu Sep 8 20:00:43 2022 ] Training epoch: 52
|
213 |
+
[ Thu Sep 8 20:00:43 2022 ] Learning rate: 0.015
|
214 |
+
[ Thu Sep 8 20:04:04 2022 ] Mean training loss: 0.1700.
|
215 |
+
[ Thu Sep 8 20:04:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
216 |
+
[ Thu Sep 8 20:04:04 2022 ] Eval epoch: 52
|
217 |
+
[ Thu Sep 8 20:06:15 2022 ] Epoch 52 Curr Acc: (10828/16487)65.68%
|
218 |
+
[ Thu Sep 8 20:06:15 2022 ] Epoch 52 Best Acc 65.68%
|
219 |
+
[ Thu Sep 8 20:06:15 2022 ] Training epoch: 53
|
220 |
+
[ Thu Sep 8 20:06:15 2022 ] Learning rate: 0.015
|
221 |
+
[ Thu Sep 8 20:09:36 2022 ] Mean training loss: 0.1363.
|
222 |
+
[ Thu Sep 8 20:09:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
223 |
+
[ Thu Sep 8 20:09:36 2022 ] Eval epoch: 53
|
224 |
+
[ Thu Sep 8 20:11:47 2022 ] Epoch 53 Curr Acc: (10646/16487)64.57%
|
225 |
+
[ Thu Sep 8 20:11:47 2022 ] Epoch 52 Best Acc 65.68%
|
226 |
+
[ Thu Sep 8 20:11:47 2022 ] Training epoch: 54
|
227 |
+
[ Thu Sep 8 20:11:47 2022 ] Learning rate: 0.015
|
228 |
+
[ Thu Sep 8 20:15:08 2022 ] Mean training loss: 0.1032.
|
229 |
+
[ Thu Sep 8 20:15:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
230 |
+
[ Thu Sep 8 20:15:08 2022 ] Eval epoch: 54
|
231 |
+
[ Thu Sep 8 20:17:19 2022 ] Epoch 54 Curr Acc: (10731/16487)65.09%
|
232 |
+
[ Thu Sep 8 20:17:19 2022 ] Epoch 52 Best Acc 65.68%
|
233 |
+
[ Thu Sep 8 20:17:19 2022 ] Training epoch: 55
|
234 |
+
[ Thu Sep 8 20:17:19 2022 ] Learning rate: 0.015
|
235 |
+
[ Thu Sep 8 20:20:40 2022 ] Mean training loss: 0.0870.
|
236 |
+
[ Thu Sep 8 20:20:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
237 |
+
[ Thu Sep 8 20:20:40 2022 ] Eval epoch: 55
|
238 |
+
[ Thu Sep 8 20:22:51 2022 ] Epoch 55 Curr Acc: (10940/16487)66.36%
|
239 |
+
[ Thu Sep 8 20:22:51 2022 ] Epoch 55 Best Acc 66.36%
|
240 |
+
[ Thu Sep 8 20:22:51 2022 ] Training epoch: 56
|
241 |
+
[ Thu Sep 8 20:22:51 2022 ] Learning rate: 0.015
|
242 |
+
[ Thu Sep 8 20:26:11 2022 ] Mean training loss: 0.0690.
|
243 |
+
[ Thu Sep 8 20:26:11 2022 ] Time consumption: [Data]01%, [Network]99%
|
244 |
+
[ Thu Sep 8 20:26:11 2022 ] Eval epoch: 56
|
245 |
+
[ Thu Sep 8 20:28:22 2022 ] Epoch 56 Curr Acc: (10542/16487)63.94%
|
246 |
+
[ Thu Sep 8 20:28:22 2022 ] Epoch 55 Best Acc 66.36%
|
247 |
+
[ Thu Sep 8 20:28:22 2022 ] Training epoch: 57
|
248 |
+
[ Thu Sep 8 20:28:22 2022 ] Learning rate: 0.015
|
249 |
+
[ Thu Sep 8 20:31:42 2022 ] Mean training loss: 0.0608.
|
250 |
+
[ Thu Sep 8 20:31:42 2022 ] Time consumption: [Data]01%, [Network]99%
|
251 |
+
[ Thu Sep 8 20:31:43 2022 ] Eval epoch: 57
|
252 |
+
[ Thu Sep 8 20:33:54 2022 ] Epoch 57 Curr Acc: (10609/16487)64.35%
|
253 |
+
[ Thu Sep 8 20:33:54 2022 ] Epoch 55 Best Acc 66.36%
|
254 |
+
[ Thu Sep 8 20:33:54 2022 ] Training epoch: 58
|
255 |
+
[ Thu Sep 8 20:33:54 2022 ] Learning rate: 0.015
|
256 |
+
[ Thu Sep 8 20:37:14 2022 ] Mean training loss: 0.0489.
|
257 |
+
[ Thu Sep 8 20:37:14 2022 ] Time consumption: [Data]01%, [Network]99%
|
258 |
+
[ Thu Sep 8 20:37:14 2022 ] Eval epoch: 58
|
259 |
+
[ Thu Sep 8 20:39:25 2022 ] Epoch 58 Curr Acc: (10830/16487)65.69%
|
260 |
+
[ Thu Sep 8 20:39:25 2022 ] Epoch 55 Best Acc 66.36%
|
261 |
+
[ Thu Sep 8 20:39:25 2022 ] Training epoch: 59
|
262 |
+
[ Thu Sep 8 20:39:25 2022 ] Learning rate: 0.015
|
263 |
+
[ Thu Sep 8 20:42:45 2022 ] Mean training loss: 0.0413.
|
264 |
+
[ Thu Sep 8 20:42:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
265 |
+
[ Thu Sep 8 20:42:45 2022 ] Eval epoch: 59
|
266 |
+
[ Thu Sep 8 20:44:56 2022 ] Epoch 59 Curr Acc: (10588/16487)64.22%
|
267 |
+
[ Thu Sep 8 20:44:56 2022 ] Epoch 55 Best Acc 66.36%
|
268 |
+
[ Thu Sep 8 20:44:56 2022 ] Training epoch: 60
|
269 |
+
[ Thu Sep 8 20:44:56 2022 ] Learning rate: 0.015
|
270 |
+
[ Thu Sep 8 20:48:17 2022 ] Mean training loss: 0.0338.
|
271 |
+
[ Thu Sep 8 20:48:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
272 |
+
[ Thu Sep 8 20:48:17 2022 ] Eval epoch: 60
|
273 |
+
[ Thu Sep 8 20:50:28 2022 ] Epoch 60 Curr Acc: (10630/16487)64.48%
|
274 |
+
[ Thu Sep 8 20:50:28 2022 ] Epoch 55 Best Acc 66.36%
|
275 |
+
[ Thu Sep 8 20:50:28 2022 ] Training epoch: 61
|
276 |
+
[ Thu Sep 8 20:50:28 2022 ] Learning rate: 0.015
|
277 |
+
[ Thu Sep 8 20:53:48 2022 ] Mean training loss: 0.0319.
|
278 |
+
[ Thu Sep 8 20:53:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
279 |
+
[ Thu Sep 8 20:53:48 2022 ] Eval epoch: 61
|
280 |
+
[ Thu Sep 8 20:55:59 2022 ] Epoch 61 Curr Acc: (10636/16487)64.51%
|
281 |
+
[ Thu Sep 8 20:55:59 2022 ] Epoch 55 Best Acc 66.36%
|
282 |
+
[ Thu Sep 8 20:55:59 2022 ] Training epoch: 62
|
283 |
+
[ Thu Sep 8 20:55:59 2022 ] Learning rate: 0.015
|
284 |
+
[ Thu Sep 8 20:59:19 2022 ] Mean training loss: 0.0293.
|
285 |
+
[ Thu Sep 8 20:59:19 2022 ] Time consumption: [Data]01%, [Network]99%
|
286 |
+
[ Thu Sep 8 20:59:19 2022 ] Eval epoch: 62
|
287 |
+
[ Thu Sep 8 21:01:31 2022 ] Epoch 62 Curr Acc: (10644/16487)64.56%
|
288 |
+
[ Thu Sep 8 21:01:31 2022 ] Epoch 55 Best Acc 66.36%
|
289 |
+
[ Thu Sep 8 21:01:31 2022 ] Training epoch: 63
|
290 |
+
[ Thu Sep 8 21:01:31 2022 ] Learning rate: 0.015
|
291 |
+
[ Thu Sep 8 21:04:52 2022 ] Mean training loss: 0.0260.
|
292 |
+
[ Thu Sep 8 21:04:52 2022 ] Time consumption: [Data]01%, [Network]99%
|
293 |
+
[ Thu Sep 8 21:04:52 2022 ] Eval epoch: 63
|
294 |
+
[ Thu Sep 8 21:07:03 2022 ] Epoch 63 Curr Acc: (10884/16487)66.02%
|
295 |
+
[ Thu Sep 8 21:07:03 2022 ] Epoch 55 Best Acc 66.36%
|
296 |
+
[ Thu Sep 8 21:07:03 2022 ] Training epoch: 64
|
297 |
+
[ Thu Sep 8 21:07:03 2022 ] Learning rate: 0.015
|
298 |
+
[ Thu Sep 8 21:10:24 2022 ] Mean training loss: 0.0219.
|
299 |
+
[ Thu Sep 8 21:10:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
300 |
+
[ Thu Sep 8 21:10:24 2022 ] Eval epoch: 64
|
301 |
+
[ Thu Sep 8 21:12:35 2022 ] Epoch 64 Curr Acc: (10453/16487)63.40%
|
302 |
+
[ Thu Sep 8 21:12:35 2022 ] Epoch 55 Best Acc 66.36%
|
303 |
+
[ Thu Sep 8 21:12:35 2022 ] Training epoch: 65
|
304 |
+
[ Thu Sep 8 21:12:35 2022 ] Learning rate: 0.015
|
305 |
+
[ Thu Sep 8 21:15:56 2022 ] Mean training loss: 0.0255.
|
306 |
+
[ Thu Sep 8 21:15:56 2022 ] Time consumption: [Data]01%, [Network]99%
|
307 |
+
[ Thu Sep 8 21:15:56 2022 ] Eval epoch: 65
|
308 |
+
[ Thu Sep 8 21:18:07 2022 ] Epoch 65 Curr Acc: (10705/16487)64.93%
|
309 |
+
[ Thu Sep 8 21:18:07 2022 ] Epoch 55 Best Acc 66.36%
|
310 |
+
[ Thu Sep 8 21:18:07 2022 ] Training epoch: 66
|
311 |
+
[ Thu Sep 8 21:18:07 2022 ] Learning rate: 0.015
|
312 |
+
[ Thu Sep 8 21:21:28 2022 ] Mean training loss: 0.0226.
|
313 |
+
[ Thu Sep 8 21:21:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
314 |
+
[ Thu Sep 8 21:21:28 2022 ] Eval epoch: 66
|
315 |
+
[ Thu Sep 8 21:23:39 2022 ] Epoch 66 Curr Acc: (10797/16487)65.49%
|
316 |
+
[ Thu Sep 8 21:23:39 2022 ] Epoch 55 Best Acc 66.36%
|
317 |
+
[ Thu Sep 8 21:23:39 2022 ] Training epoch: 67
|
318 |
+
[ Thu Sep 8 21:23:39 2022 ] Learning rate: 0.015
|
319 |
+
[ Thu Sep 8 21:27:00 2022 ] Mean training loss: 0.0182.
|
320 |
+
[ Thu Sep 8 21:27:00 2022 ] Time consumption: [Data]01%, [Network]99%
|
321 |
+
[ Thu Sep 8 21:27:00 2022 ] Eval epoch: 67
|
322 |
+
[ Thu Sep 8 21:29:11 2022 ] Epoch 67 Curr Acc: (10685/16487)64.81%
|
323 |
+
[ Thu Sep 8 21:29:11 2022 ] Epoch 55 Best Acc 66.36%
|
324 |
+
[ Thu Sep 8 21:29:11 2022 ] Training epoch: 68
|
325 |
+
[ Thu Sep 8 21:29:11 2022 ] Learning rate: 0.015
|
326 |
+
[ Thu Sep 8 21:32:32 2022 ] Mean training loss: 0.0168.
|
327 |
+
[ Thu Sep 8 21:32:32 2022 ] Time consumption: [Data]01%, [Network]99%
|
328 |
+
[ Thu Sep 8 21:32:32 2022 ] Eval epoch: 68
|
329 |
+
[ Thu Sep 8 21:34:43 2022 ] Epoch 68 Curr Acc: (10819/16487)65.62%
|
330 |
+
[ Thu Sep 8 21:34:43 2022 ] Epoch 55 Best Acc 66.36%
|
331 |
+
[ Thu Sep 8 21:34:43 2022 ] Training epoch: 69
|
332 |
+
[ Thu Sep 8 21:34:43 2022 ] Learning rate: 0.015
|
333 |
+
[ Thu Sep 8 21:38:04 2022 ] Mean training loss: 0.0169.
|
334 |
+
[ Thu Sep 8 21:38:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
335 |
+
[ Thu Sep 8 21:38:04 2022 ] Eval epoch: 69
|
336 |
+
[ Thu Sep 8 21:40:15 2022 ] Epoch 69 Curr Acc: (9777/16487)59.30%
|
337 |
+
[ Thu Sep 8 21:40:15 2022 ] Epoch 55 Best Acc 66.36%
|
338 |
+
[ Thu Sep 8 21:40:15 2022 ] Training epoch: 70
|
339 |
+
[ Thu Sep 8 21:40:15 2022 ] Learning rate: 0.015
|
340 |
+
[ Thu Sep 8 21:43:36 2022 ] Mean training loss: 0.0226.
|
341 |
+
[ Thu Sep 8 21:43:36 2022 ] Time consumption: [Data]01%, [Network]99%
|
342 |
+
[ Thu Sep 8 21:43:36 2022 ] Eval epoch: 70
|
343 |
+
[ Thu Sep 8 21:45:47 2022 ] Epoch 70 Curr Acc: (10540/16487)63.93%
|
344 |
+
[ Thu Sep 8 21:45:47 2022 ] Epoch 55 Best Acc 66.36%
|
345 |
+
[ Thu Sep 8 21:45:47 2022 ] Training epoch: 71
|
346 |
+
[ Thu Sep 8 21:45:47 2022 ] Learning rate: 0.0015000000000000002
|
347 |
+
[ Thu Sep 8 21:49:08 2022 ] Mean training loss: 0.0186.
|
348 |
+
[ Thu Sep 8 21:49:08 2022 ] Time consumption: [Data]01%, [Network]99%
|
349 |
+
[ Thu Sep 8 21:49:08 2022 ] Eval epoch: 71
|
350 |
+
[ Thu Sep 8 21:51:19 2022 ] Epoch 71 Curr Acc: (10906/16487)66.15%
|
351 |
+
[ Thu Sep 8 21:51:19 2022 ] Epoch 55 Best Acc 66.36%
|
352 |
+
[ Thu Sep 8 21:51:19 2022 ] Training epoch: 72
|
353 |
+
[ Thu Sep 8 21:51:19 2022 ] Learning rate: 0.0015000000000000002
|
354 |
+
[ Thu Sep 8 21:54:40 2022 ] Mean training loss: 0.0140.
|
355 |
+
[ Thu Sep 8 21:54:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
356 |
+
[ Thu Sep 8 21:54:41 2022 ] Eval epoch: 72
|
357 |
+
[ Thu Sep 8 21:56:52 2022 ] Epoch 72 Curr Acc: (10678/16487)64.77%
|
358 |
+
[ Thu Sep 8 21:56:52 2022 ] Epoch 55 Best Acc 66.36%
|
359 |
+
[ Thu Sep 8 21:56:52 2022 ] Training epoch: 73
|
360 |
+
[ Thu Sep 8 21:56:52 2022 ] Learning rate: 0.0015000000000000002
|
361 |
+
[ Thu Sep 8 22:00:12 2022 ] Mean training loss: 0.0141.
|
362 |
+
[ Thu Sep 8 22:00:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
363 |
+
[ Thu Sep 8 22:00:12 2022 ] Eval epoch: 73
|
364 |
+
[ Thu Sep 8 22:02:23 2022 ] Epoch 73 Curr Acc: (10847/16487)65.79%
|
365 |
+
[ Thu Sep 8 22:02:23 2022 ] Epoch 55 Best Acc 66.36%
|
366 |
+
[ Thu Sep 8 22:02:23 2022 ] Training epoch: 74
|
367 |
+
[ Thu Sep 8 22:02:23 2022 ] Learning rate: 0.0015000000000000002
|
368 |
+
[ Thu Sep 8 22:05:44 2022 ] Mean training loss: 0.0123.
|
369 |
+
[ Thu Sep 8 22:05:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
370 |
+
[ Thu Sep 8 22:05:44 2022 ] Eval epoch: 74
|
371 |
+
[ Thu Sep 8 22:07:55 2022 ] Epoch 74 Curr Acc: (10615/16487)64.38%
|
372 |
+
[ Thu Sep 8 22:07:55 2022 ] Epoch 55 Best Acc 66.36%
|
373 |
+
[ Thu Sep 8 22:07:55 2022 ] Training epoch: 75
|
374 |
+
[ Thu Sep 8 22:07:55 2022 ] Learning rate: 0.0015000000000000002
|
375 |
+
[ Thu Sep 8 22:11:15 2022 ] Mean training loss: 0.0108.
|
376 |
+
[ Thu Sep 8 22:11:15 2022 ] Time consumption: [Data]01%, [Network]99%
|
377 |
+
[ Thu Sep 8 22:11:15 2022 ] Eval epoch: 75
|
378 |
+
[ Thu Sep 8 22:13:27 2022 ] Epoch 75 Curr Acc: (10935/16487)66.32%
|
379 |
+
[ Thu Sep 8 22:13:27 2022 ] Epoch 55 Best Acc 66.36%
|
380 |
+
[ Thu Sep 8 22:13:27 2022 ] Training epoch: 76
|
381 |
+
[ Thu Sep 8 22:13:27 2022 ] Learning rate: 0.0015000000000000002
|
382 |
+
[ Thu Sep 8 22:16:48 2022 ] Mean training loss: 0.0120.
|
383 |
+
[ Thu Sep 8 22:16:48 2022 ] Time consumption: [Data]01%, [Network]99%
|
384 |
+
[ Thu Sep 8 22:16:48 2022 ] Eval epoch: 76
|
385 |
+
[ Thu Sep 8 22:18:59 2022 ] Epoch 76 Curr Acc: (10867/16487)65.91%
|
386 |
+
[ Thu Sep 8 22:18:59 2022 ] Epoch 55 Best Acc 66.36%
|
387 |
+
[ Thu Sep 8 22:18:59 2022 ] Training epoch: 77
|
388 |
+
[ Thu Sep 8 22:18:59 2022 ] Learning rate: 0.0015000000000000002
|
389 |
+
[ Thu Sep 8 22:22:20 2022 ] Mean training loss: 0.0102.
|
390 |
+
[ Thu Sep 8 22:22:20 2022 ] Time consumption: [Data]01%, [Network]99%
|
391 |
+
[ Thu Sep 8 22:22:20 2022 ] Eval epoch: 77
|
392 |
+
[ Thu Sep 8 22:24:31 2022 ] Epoch 77 Curr Acc: (10603/16487)64.31%
|
393 |
+
[ Thu Sep 8 22:24:31 2022 ] Epoch 55 Best Acc 66.36%
|
394 |
+
[ Thu Sep 8 22:24:31 2022 ] Training epoch: 78
|
395 |
+
[ Thu Sep 8 22:24:31 2022 ] Learning rate: 0.0015000000000000002
|
396 |
+
[ Thu Sep 8 22:27:51 2022 ] Mean training loss: 0.0102.
|
397 |
+
[ Thu Sep 8 22:27:51 2022 ] Time consumption: [Data]01%, [Network]99%
|
398 |
+
[ Thu Sep 8 22:27:51 2022 ] Eval epoch: 78
|
399 |
+
[ Thu Sep 8 22:30:03 2022 ] Epoch 78 Curr Acc: (10937/16487)66.34%
|
400 |
+
[ Thu Sep 8 22:30:03 2022 ] Epoch 55 Best Acc 66.36%
|
401 |
+
[ Thu Sep 8 22:30:03 2022 ] Training epoch: 79
|
402 |
+
[ Thu Sep 8 22:30:03 2022 ] Learning rate: 0.0015000000000000002
|
403 |
+
[ Thu Sep 8 22:33:23 2022 ] Mean training loss: 0.0114.
|
404 |
+
[ Thu Sep 8 22:33:23 2022 ] Time consumption: [Data]01%, [Network]99%
|
405 |
+
[ Thu Sep 8 22:33:23 2022 ] Eval epoch: 79
|
406 |
+
[ Thu Sep 8 22:35:35 2022 ] Epoch 79 Curr Acc: (11049/16487)67.02%
|
407 |
+
[ Thu Sep 8 22:35:35 2022 ] Epoch 79 Best Acc 67.02%
|
408 |
+
[ Thu Sep 8 22:35:35 2022 ] Training epoch: 80
|
409 |
+
[ Thu Sep 8 22:35:35 2022 ] Learning rate: 0.0015000000000000002
|
410 |
+
[ Thu Sep 8 22:38:55 2022 ] Mean training loss: 0.0108.
|
411 |
+
[ Thu Sep 8 22:38:55 2022 ] Time consumption: [Data]01%, [Network]99%
|
412 |
+
[ Thu Sep 8 22:38:55 2022 ] Eval epoch: 80
|
413 |
+
[ Thu Sep 8 22:41:07 2022 ] Epoch 80 Curr Acc: (10682/16487)64.79%
|
414 |
+
[ Thu Sep 8 22:41:07 2022 ] Epoch 79 Best Acc 67.02%
|
415 |
+
[ Thu Sep 8 22:41:07 2022 ] Training epoch: 81
|
416 |
+
[ Thu Sep 8 22:41:07 2022 ] Learning rate: 0.0015000000000000002
|
417 |
+
[ Thu Sep 8 22:44:27 2022 ] Mean training loss: 0.0099.
|
418 |
+
[ Thu Sep 8 22:44:27 2022 ] Time consumption: [Data]01%, [Network]99%
|
419 |
+
[ Thu Sep 8 22:44:27 2022 ] Eval epoch: 81
|
420 |
+
[ Thu Sep 8 22:46:38 2022 ] Epoch 81 Curr Acc: (11079/16487)67.20%
|
421 |
+
[ Thu Sep 8 22:46:38 2022 ] Epoch 81 Best Acc 67.20%
|
422 |
+
[ Thu Sep 8 22:46:38 2022 ] Training epoch: 82
|
423 |
+
[ Thu Sep 8 22:46:38 2022 ] Learning rate: 0.0015000000000000002
|
424 |
+
[ Thu Sep 8 22:49:59 2022 ] Mean training loss: 0.0107.
|
425 |
+
[ Thu Sep 8 22:49:59 2022 ] Time consumption: [Data]01%, [Network]99%
|
426 |
+
[ Thu Sep 8 22:49:59 2022 ] Eval epoch: 82
|
427 |
+
[ Thu Sep 8 22:52:10 2022 ] Epoch 82 Curr Acc: (10525/16487)63.84%
|
428 |
+
[ Thu Sep 8 22:52:10 2022 ] Epoch 81 Best Acc 67.20%
|
429 |
+
[ Thu Sep 8 22:52:10 2022 ] Training epoch: 83
|
430 |
+
[ Thu Sep 8 22:52:10 2022 ] Learning rate: 0.0015000000000000002
|
431 |
+
[ Thu Sep 8 22:55:30 2022 ] Mean training loss: 0.0095.
|
432 |
+
[ Thu Sep 8 22:55:30 2022 ] Time consumption: [Data]01%, [Network]99%
|
433 |
+
[ Thu Sep 8 22:55:30 2022 ] Eval epoch: 83
|
434 |
+
[ Thu Sep 8 22:57:41 2022 ] Epoch 83 Curr Acc: (10832/16487)65.70%
|
435 |
+
[ Thu Sep 8 22:57:41 2022 ] Epoch 81 Best Acc 67.20%
|
436 |
+
[ Thu Sep 8 22:57:41 2022 ] Training epoch: 84
|
437 |
+
[ Thu Sep 8 22:57:41 2022 ] Learning rate: 0.0015000000000000002
|
438 |
+
[ Thu Sep 8 23:01:01 2022 ] Mean training loss: 0.0110.
|
439 |
+
[ Thu Sep 8 23:01:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
440 |
+
[ Thu Sep 8 23:01:02 2022 ] Eval epoch: 84
|
441 |
+
[ Thu Sep 8 23:03:13 2022 ] Epoch 84 Curr Acc: (10785/16487)65.42%
|
442 |
+
[ Thu Sep 8 23:03:13 2022 ] Epoch 81 Best Acc 67.20%
|
443 |
+
[ Thu Sep 8 23:03:13 2022 ] Training epoch: 85
|
444 |
+
[ Thu Sep 8 23:03:13 2022 ] Learning rate: 0.0015000000000000002
|
445 |
+
[ Thu Sep 8 23:06:33 2022 ] Mean training loss: 0.0099.
|
446 |
+
[ Thu Sep 8 23:06:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
447 |
+
[ Thu Sep 8 23:06:33 2022 ] Eval epoch: 85
|
448 |
+
[ Thu Sep 8 23:08:45 2022 ] Epoch 85 Curr Acc: (10775/16487)65.35%
|
449 |
+
[ Thu Sep 8 23:08:45 2022 ] Epoch 81 Best Acc 67.20%
|
450 |
+
[ Thu Sep 8 23:08:45 2022 ] Training epoch: 86
|
451 |
+
[ Thu Sep 8 23:08:45 2022 ] Learning rate: 0.0015000000000000002
|
452 |
+
[ Thu Sep 8 23:12:06 2022 ] Mean training loss: 0.0103.
|
453 |
+
[ Thu Sep 8 23:12:06 2022 ] Time consumption: [Data]01%, [Network]99%
|
454 |
+
[ Thu Sep 8 23:12:06 2022 ] Eval epoch: 86
|
455 |
+
[ Thu Sep 8 23:14:17 2022 ] Epoch 86 Curr Acc: (10707/16487)64.94%
|
456 |
+
[ Thu Sep 8 23:14:17 2022 ] Epoch 81 Best Acc 67.20%
|
457 |
+
[ Thu Sep 8 23:14:17 2022 ] Training epoch: 87
|
458 |
+
[ Thu Sep 8 23:14:17 2022 ] Learning rate: 0.0015000000000000002
|
459 |
+
[ Thu Sep 8 23:17:38 2022 ] Mean training loss: 0.0099.
|
460 |
+
[ Thu Sep 8 23:17:38 2022 ] Time consumption: [Data]01%, [Network]98%
|
461 |
+
[ Thu Sep 8 23:17:38 2022 ] Eval epoch: 87
|
462 |
+
[ Thu Sep 8 23:19:49 2022 ] Epoch 87 Curr Acc: (10859/16487)65.86%
|
463 |
+
[ Thu Sep 8 23:19:49 2022 ] Epoch 81 Best Acc 67.20%
|
464 |
+
[ Thu Sep 8 23:19:49 2022 ] Training epoch: 88
|
465 |
+
[ Thu Sep 8 23:19:49 2022 ] Learning rate: 0.0015000000000000002
|
466 |
+
[ Thu Sep 8 23:23:09 2022 ] Mean training loss: 0.0093.
|
467 |
+
[ Thu Sep 8 23:23:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
468 |
+
[ Thu Sep 8 23:23:09 2022 ] Eval epoch: 88
|
469 |
+
[ Thu Sep 8 23:25:20 2022 ] Epoch 88 Curr Acc: (10745/16487)65.17%
|
470 |
+
[ Thu Sep 8 23:25:20 2022 ] Epoch 81 Best Acc 67.20%
|
471 |
+
[ Thu Sep 8 23:25:20 2022 ] Training epoch: 89
|
472 |
+
[ Thu Sep 8 23:25:20 2022 ] Learning rate: 0.0015000000000000002
|
473 |
+
[ Thu Sep 8 23:28:40 2022 ] Mean training loss: 0.0092.
|
474 |
+
[ Thu Sep 8 23:28:40 2022 ] Time consumption: [Data]01%, [Network]99%
|
475 |
+
[ Thu Sep 8 23:28:40 2022 ] Eval epoch: 89
|
476 |
+
[ Thu Sep 8 23:30:51 2022 ] Epoch 89 Curr Acc: (10769/16487)65.32%
|
477 |
+
[ Thu Sep 8 23:30:51 2022 ] Epoch 81 Best Acc 67.20%
|
478 |
+
[ Thu Sep 8 23:30:51 2022 ] Training epoch: 90
|
479 |
+
[ Thu Sep 8 23:30:51 2022 ] Learning rate: 0.0015000000000000002
|
480 |
+
[ Thu Sep 8 23:34:12 2022 ] Mean training loss: 0.0092.
|
481 |
+
[ Thu Sep 8 23:34:12 2022 ] Time consumption: [Data]01%, [Network]99%
|
482 |
+
[ Thu Sep 8 23:34:12 2022 ] Eval epoch: 90
|
483 |
+
[ Thu Sep 8 23:36:24 2022 ] Epoch 90 Curr Acc: (10529/16487)63.86%
|
484 |
+
[ Thu Sep 8 23:36:24 2022 ] Epoch 81 Best Acc 67.20%
|
485 |
+
[ Thu Sep 8 23:36:24 2022 ] Training epoch: 91
|
486 |
+
[ Thu Sep 8 23:36:24 2022 ] Learning rate: 0.00015000000000000004
|
487 |
+
[ Thu Sep 8 23:39:45 2022 ] Mean training loss: 0.0094.
|
488 |
+
[ Thu Sep 8 23:39:45 2022 ] Time consumption: [Data]01%, [Network]99%
|
489 |
+
[ Thu Sep 8 23:39:45 2022 ] Eval epoch: 91
|
490 |
+
[ Thu Sep 8 23:41:56 2022 ] Epoch 91 Curr Acc: (10627/16487)64.46%
|
491 |
+
[ Thu Sep 8 23:41:56 2022 ] Epoch 81 Best Acc 67.20%
|
492 |
+
[ Thu Sep 8 23:41:56 2022 ] Training epoch: 92
|
493 |
+
[ Thu Sep 8 23:41:56 2022 ] Learning rate: 0.00015000000000000004
|
494 |
+
[ Thu Sep 8 23:45:17 2022 ] Mean training loss: 0.0101.
|
495 |
+
[ Thu Sep 8 23:45:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
496 |
+
[ Thu Sep 8 23:45:17 2022 ] Eval epoch: 92
|
497 |
+
[ Thu Sep 8 23:47:28 2022 ] Epoch 92 Curr Acc: (10965/16487)66.51%
|
498 |
+
[ Thu Sep 8 23:47:28 2022 ] Epoch 81 Best Acc 67.20%
|
499 |
+
[ Thu Sep 8 23:47:28 2022 ] Training epoch: 93
|
500 |
+
[ Thu Sep 8 23:47:28 2022 ] Learning rate: 0.00015000000000000004
|
501 |
+
[ Thu Sep 8 23:50:49 2022 ] Mean training loss: 0.0089.
|
502 |
+
[ Thu Sep 8 23:50:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
503 |
+
[ Thu Sep 8 23:50:49 2022 ] Eval epoch: 93
|
504 |
+
[ Thu Sep 8 23:53:00 2022 ] Epoch 93 Curr Acc: (10688/16487)64.83%
|
505 |
+
[ Thu Sep 8 23:53:00 2022 ] Epoch 81 Best Acc 67.20%
|
506 |
+
[ Thu Sep 8 23:53:00 2022 ] Training epoch: 94
|
507 |
+
[ Thu Sep 8 23:53:00 2022 ] Learning rate: 0.00015000000000000004
|
508 |
+
[ Thu Sep 8 23:56:20 2022 ] Mean training loss: 0.0093.
|
509 |
+
[ Thu Sep 8 23:56:20 2022 ] Time consumption: [Data]01%, [Network]98%
|
510 |
+
[ Thu Sep 8 23:56:20 2022 ] Eval epoch: 94
|
511 |
+
[ Thu Sep 8 23:58:31 2022 ] Epoch 94 Curr Acc: (10938/16487)66.34%
|
512 |
+
[ Thu Sep 8 23:58:31 2022 ] Epoch 81 Best Acc 67.20%
|
513 |
+
[ Thu Sep 8 23:58:31 2022 ] Training epoch: 95
|
514 |
+
[ Thu Sep 8 23:58:31 2022 ] Learning rate: 0.00015000000000000004
|
515 |
+
[ Fri Sep 9 00:01:53 2022 ] Mean training loss: 0.0093.
|
516 |
+
[ Fri Sep 9 00:01:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
517 |
+
[ Fri Sep 9 00:01:53 2022 ] Eval epoch: 95
|
518 |
+
[ Fri Sep 9 00:04:04 2022 ] Epoch 95 Curr Acc: (10874/16487)65.95%
|
519 |
+
[ Fri Sep 9 00:04:04 2022 ] Epoch 81 Best Acc 67.20%
|
520 |
+
[ Fri Sep 9 00:04:04 2022 ] Training epoch: 96
|
521 |
+
[ Fri Sep 9 00:04:04 2022 ] Learning rate: 0.00015000000000000004
|
522 |
+
[ Fri Sep 9 00:07:24 2022 ] Mean training loss: 0.0082.
|
523 |
+
[ Fri Sep 9 00:07:24 2022 ] Time consumption: [Data]01%, [Network]99%
|
524 |
+
[ Fri Sep 9 00:07:24 2022 ] Eval epoch: 96
|
525 |
+
[ Fri Sep 9 00:09:36 2022 ] Epoch 96 Curr Acc: (10877/16487)65.97%
|
526 |
+
[ Fri Sep 9 00:09:36 2022 ] Epoch 81 Best Acc 67.20%
|
527 |
+
[ Fri Sep 9 00:09:36 2022 ] Training epoch: 97
|
528 |
+
[ Fri Sep 9 00:09:36 2022 ] Learning rate: 0.00015000000000000004
|
529 |
+
[ Fri Sep 9 00:12:55 2022 ] Mean training loss: 0.0089.
|
530 |
+
[ Fri Sep 9 00:12:55 2022 ] Time consumption: [Data]01%, [Network]98%
|
531 |
+
[ Fri Sep 9 00:12:55 2022 ] Eval epoch: 97
|
532 |
+
[ Fri Sep 9 00:15:06 2022 ] Epoch 97 Curr Acc: (10844/16487)65.77%
|
533 |
+
[ Fri Sep 9 00:15:06 2022 ] Epoch 81 Best Acc 67.20%
|
534 |
+
[ Fri Sep 9 00:15:06 2022 ] Training epoch: 98
|
535 |
+
[ Fri Sep 9 00:15:06 2022 ] Learning rate: 0.00015000000000000004
|
536 |
+
[ Fri Sep 9 00:18:28 2022 ] Mean training loss: 0.0083.
|
537 |
+
[ Fri Sep 9 00:18:28 2022 ] Time consumption: [Data]01%, [Network]99%
|
538 |
+
[ Fri Sep 9 00:18:28 2022 ] Eval epoch: 98
|
539 |
+
[ Fri Sep 9 00:20:39 2022 ] Epoch 98 Curr Acc: (10985/16487)66.63%
|
540 |
+
[ Fri Sep 9 00:20:39 2022 ] Epoch 81 Best Acc 67.20%
|
541 |
+
[ Fri Sep 9 00:20:39 2022 ] Training epoch: 99
|
542 |
+
[ Fri Sep 9 00:20:39 2022 ] Learning rate: 0.00015000000000000004
|
543 |
+
[ Fri Sep 9 00:24:01 2022 ] Mean training loss: 0.0095.
|
544 |
+
[ Fri Sep 9 00:24:01 2022 ] Time consumption: [Data]01%, [Network]99%
|
545 |
+
[ Fri Sep 9 00:24:01 2022 ] Eval epoch: 99
|
546 |
+
[ Fri Sep 9 00:26:12 2022 ] Epoch 99 Curr Acc: (10930/16487)66.29%
|
547 |
+
[ Fri Sep 9 00:26:12 2022 ] Epoch 81 Best Acc 67.20%
|
548 |
+
[ Fri Sep 9 00:26:12 2022 ] Training epoch: 100
|
549 |
+
[ Fri Sep 9 00:26:12 2022 ] Learning rate: 0.00015000000000000004
|
550 |
+
[ Fri Sep 9 00:29:33 2022 ] Mean training loss: 0.0086.
|
551 |
+
[ Fri Sep 9 00:29:33 2022 ] Time consumption: [Data]01%, [Network]99%
|
552 |
+
[ Fri Sep 9 00:29:33 2022 ] Eval epoch: 100
|
553 |
+
[ Fri Sep 9 00:31:44 2022 ] Epoch 100 Curr Acc: (11079/16487)67.20%
|
554 |
+
[ Fri Sep 9 00:31:44 2022 ] Epoch 81 Best Acc 67.20%
|
555 |
+
[ Fri Sep 9 00:31:44 2022 ] Training epoch: 101
|
556 |
+
[ Fri Sep 9 00:31:44 2022 ] Learning rate: 0.00015000000000000004
|
557 |
+
[ Fri Sep 9 00:35:04 2022 ] Mean training loss: 0.0087.
|
558 |
+
[ Fri Sep 9 00:35:04 2022 ] Time consumption: [Data]01%, [Network]99%
|
559 |
+
[ Fri Sep 9 00:35:04 2022 ] Eval epoch: 101
|
560 |
+
[ Fri Sep 9 00:37:16 2022 ] Epoch 101 Curr Acc: (10870/16487)65.93%
|
561 |
+
[ Fri Sep 9 00:37:16 2022 ] Epoch 81 Best Acc 67.20%
|
562 |
+
[ Fri Sep 9 00:37:16 2022 ] Training epoch: 102
|
563 |
+
[ Fri Sep 9 00:37:16 2022 ] Learning rate: 0.00015000000000000004
|
564 |
+
[ Fri Sep 9 00:40:37 2022 ] Mean training loss: 0.0101.
|
565 |
+
[ Fri Sep 9 00:40:37 2022 ] Time consumption: [Data]01%, [Network]99%
|
566 |
+
[ Fri Sep 9 00:40:37 2022 ] Eval epoch: 102
|
567 |
+
[ Fri Sep 9 00:42:48 2022 ] Epoch 102 Curr Acc: (10517/16487)63.79%
|
568 |
+
[ Fri Sep 9 00:42:48 2022 ] Epoch 81 Best Acc 67.20%
|
569 |
+
[ Fri Sep 9 00:42:48 2022 ] Training epoch: 103
|
570 |
+
[ Fri Sep 9 00:42:48 2022 ] Learning rate: 0.00015000000000000004
|
571 |
+
[ Fri Sep 9 00:46:09 2022 ] Mean training loss: 0.0102.
|
572 |
+
[ Fri Sep 9 00:46:09 2022 ] Time consumption: [Data]01%, [Network]99%
|
573 |
+
[ Fri Sep 9 00:46:09 2022 ] Eval epoch: 103
|
574 |
+
[ Fri Sep 9 00:48:20 2022 ] Epoch 103 Curr Acc: (10707/16487)64.94%
|
575 |
+
[ Fri Sep 9 00:48:20 2022 ] Epoch 81 Best Acc 67.20%
|
576 |
+
[ Fri Sep 9 00:48:20 2022 ] Training epoch: 104
|
577 |
+
[ Fri Sep 9 00:48:20 2022 ] Learning rate: 0.00015000000000000004
|
578 |
+
[ Fri Sep 9 00:51:41 2022 ] Mean training loss: 0.0081.
|
579 |
+
[ Fri Sep 9 00:51:41 2022 ] Time consumption: [Data]01%, [Network]99%
|
580 |
+
[ Fri Sep 9 00:51:41 2022 ] Eval epoch: 104
|
581 |
+
[ Fri Sep 9 00:53:52 2022 ] Epoch 104 Curr Acc: (10923/16487)66.25%
|
582 |
+
[ Fri Sep 9 00:53:52 2022 ] Epoch 81 Best Acc 67.20%
|
583 |
+
[ Fri Sep 9 00:53:52 2022 ] Training epoch: 105
|
584 |
+
[ Fri Sep 9 00:53:52 2022 ] Learning rate: 0.00015000000000000004
|
585 |
+
[ Fri Sep 9 00:57:13 2022 ] Mean training loss: 0.0100.
|
586 |
+
[ Fri Sep 9 00:57:13 2022 ] Time consumption: [Data]01%, [Network]99%
|
587 |
+
[ Fri Sep 9 00:57:13 2022 ] Eval epoch: 105
|
588 |
+
[ Fri Sep 9 00:59:24 2022 ] Epoch 105 Curr Acc: (11071/16487)67.15%
|
589 |
+
[ Fri Sep 9 00:59:24 2022 ] Epoch 81 Best Acc 67.20%
|
590 |
+
[ Fri Sep 9 00:59:24 2022 ] Training epoch: 106
|
591 |
+
[ Fri Sep 9 00:59:24 2022 ] Learning rate: 0.00015000000000000004
|
592 |
+
[ Fri Sep 9 01:02:44 2022 ] Mean training loss: 0.0107.
|
593 |
+
[ Fri Sep 9 01:02:44 2022 ] Time consumption: [Data]01%, [Network]99%
|
594 |
+
[ Fri Sep 9 01:02:44 2022 ] Eval epoch: 106
|
595 |
+
[ Fri Sep 9 01:04:56 2022 ] Epoch 106 Curr Acc: (10881/16487)66.00%
|
596 |
+
[ Fri Sep 9 01:04:56 2022 ] Epoch 81 Best Acc 67.20%
|
597 |
+
[ Fri Sep 9 01:04:56 2022 ] Training epoch: 107
|
598 |
+
[ Fri Sep 9 01:04:56 2022 ] Learning rate: 0.00015000000000000004
|
599 |
+
[ Fri Sep 9 01:08:17 2022 ] Mean training loss: 0.0086.
|
600 |
+
[ Fri Sep 9 01:08:17 2022 ] Time consumption: [Data]01%, [Network]99%
|
601 |
+
[ Fri Sep 9 01:08:17 2022 ] Eval epoch: 107
|
602 |
+
[ Fri Sep 9 01:10:28 2022 ] Epoch 107 Curr Acc: (11012/16487)66.79%
|
603 |
+
[ Fri Sep 9 01:10:28 2022 ] Epoch 81 Best Acc 67.20%
|
604 |
+
[ Fri Sep 9 01:10:28 2022 ] Training epoch: 108
|
605 |
+
[ Fri Sep 9 01:10:28 2022 ] Learning rate: 0.00015000000000000004
|
606 |
+
[ Fri Sep 9 01:13:49 2022 ] Mean training loss: 0.0093.
|
607 |
+
[ Fri Sep 9 01:13:49 2022 ] Time consumption: [Data]01%, [Network]99%
|
608 |
+
[ Fri Sep 9 01:13:49 2022 ] Eval epoch: 108
|
609 |
+
[ Fri Sep 9 01:16:00 2022 ] Epoch 108 Curr Acc: (10579/16487)64.17%
|
610 |
+
[ Fri Sep 9 01:16:00 2022 ] Epoch 81 Best Acc 67.20%
|
611 |
+
[ Fri Sep 9 01:16:00 2022 ] Training epoch: 109
|
612 |
+
[ Fri Sep 9 01:16:00 2022 ] Learning rate: 0.00015000000000000004
|
613 |
+
[ Fri Sep 9 01:19:21 2022 ] Mean training loss: 0.0093.
|
614 |
+
[ Fri Sep 9 01:19:21 2022 ] Time consumption: [Data]01%, [Network]99%
|
615 |
+
[ Fri Sep 9 01:19:21 2022 ] Eval epoch: 109
|
616 |
+
[ Fri Sep 9 01:21:32 2022 ] Epoch 109 Curr Acc: (10492/16487)63.64%
|
617 |
+
[ Fri Sep 9 01:21:32 2022 ] Epoch 81 Best Acc 67.20%
|
618 |
+
[ Fri Sep 9 01:21:32 2022 ] Training epoch: 110
|
619 |
+
[ Fri Sep 9 01:21:32 2022 ] Learning rate: 0.00015000000000000004
|
620 |
+
[ Fri Sep 9 01:24:53 2022 ] Mean training loss: 0.0088.
|
621 |
+
[ Fri Sep 9 01:24:53 2022 ] Time consumption: [Data]01%, [Network]99%
|
622 |
+
[ Fri Sep 9 01:24:53 2022 ] Eval epoch: 110
|
623 |
+
[ Fri Sep 9 01:27:04 2022 ] Epoch 110 Curr Acc: (10646/16487)64.57%
|
624 |
+
[ Fri Sep 9 01:27:04 2022 ] Epoch 81 Best Acc 67.20%
|
625 |
+
[ Fri Sep 9 01:27:04 2022 ] epoch: 81, best accuracy: 0.6719839873839996
|
626 |
+
[ Fri Sep 9 01:27:04 2022 ] Experiment: ./work_dir/ntu/xsub_jm
|
627 |
+
[ Fri Sep 9 01:27:04 2022 ] # generator parameters: 2.896055 M.
|
628 |
+
[ Fri Sep 9 01:27:04 2022 ] Load weights from ./runs/ntu/xsub_jm/runs-80-79866.pt.
|
629 |
+
[ Fri Sep 9 01:27:04 2022 ] Eval epoch: 1
|
630 |
+
[ Fri Sep 9 01:29:16 2022 ] Epoch 1 Curr Acc: (11079/16487)67.20%
|
631 |
+
[ Fri Sep 9 01:29:16 2022 ] Epoch 81 Best Acc 67.20%
|
ckpt/Others/MST-GCN/ntu60_xview/xview_b/AEMST_GCN.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
from model.layers import Basic_Layer, Basic_TCN_layer, MS_TCN_layer, Temporal_Bottleneck_Layer, \
|
11 |
+
MS_Temporal_Bottleneck_Layer, Temporal_Sep_Layer, Basic_GCN_layer, MS_GCN_layer, Spatial_Bottleneck_Layer, \
|
12 |
+
MS_Spatial_Bottleneck_Layer, SpatialGraphCov, Spatial_Sep_Layer
|
13 |
+
from model.activations import Activations
|
14 |
+
from model.utils import import_class, conv_branch_init, conv_init, bn_init
|
15 |
+
from model.attentions import Attention_Layer
|
16 |
+
|
17 |
+
# import model.attentions
|
18 |
+
|
19 |
+
__block_type__ = {
|
20 |
+
'basic': (Basic_GCN_layer, Basic_TCN_layer),
|
21 |
+
'bottle': (Spatial_Bottleneck_Layer, Temporal_Bottleneck_Layer),
|
22 |
+
'sep': (Spatial_Sep_Layer, Temporal_Sep_Layer),
|
23 |
+
'ms': (MS_GCN_layer, MS_TCN_layer),
|
24 |
+
'ms_bottle': (MS_Spatial_Bottleneck_Layer, MS_Temporal_Bottleneck_Layer),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Model(nn.Module):
|
29 |
+
def __init__(self, num_class, num_point, num_person, block_args, graph, graph_args, kernel_size, block_type, atten,
|
30 |
+
**kwargs):
|
31 |
+
super(Model, self).__init__()
|
32 |
+
kwargs['act'] = Activations(kwargs['act'])
|
33 |
+
atten = None if atten == 'None' else atten
|
34 |
+
if graph is None:
|
35 |
+
raise ValueError()
|
36 |
+
else:
|
37 |
+
Graph = import_class(graph)
|
38 |
+
self.graph = Graph(**graph_args)
|
39 |
+
A = self.graph.A
|
40 |
+
|
41 |
+
self.data_bn = nn.BatchNorm1d(num_person * block_args[0][0] * num_point)
|
42 |
+
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i, block in enumerate(block_args):
|
46 |
+
if i == 0:
|
47 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
48 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type='basic',
|
49 |
+
atten=None, **kwargs))
|
50 |
+
else:
|
51 |
+
self.layers.append(MST_GCN_block(in_channels=block[0], out_channels=block[1], residual=block[2],
|
52 |
+
kernel_size=kernel_size, stride=block[3], A=A, block_type=block_type,
|
53 |
+
atten=atten, **kwargs))
|
54 |
+
|
55 |
+
self.gap = nn.AdaptiveAvgPool2d(1)
|
56 |
+
self.fc = nn.Linear(block_args[-1][1], num_class)
|
57 |
+
|
58 |
+
for m in self.modules():
|
59 |
+
if isinstance(m, SpatialGraphCov) or isinstance(m, Spatial_Sep_Layer):
|
60 |
+
for mm in m.modules():
|
61 |
+
if isinstance(mm, nn.Conv2d):
|
62 |
+
conv_branch_init(mm, self.graph.A.shape[0])
|
63 |
+
if isinstance(mm, nn.BatchNorm2d):
|
64 |
+
bn_init(mm, 1)
|
65 |
+
elif isinstance(m, nn.Conv2d):
|
66 |
+
conv_init(m)
|
67 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
68 |
+
bn_init(m, 1)
|
69 |
+
elif isinstance(m, nn.Linear):
|
70 |
+
nn.init.normal_(m.weight, 0, math.sqrt(2. / num_class))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
N, C, T, V, M = x.size()
|
74 |
+
|
75 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) # N C T V M --> N M V C T
|
76 |
+
x = self.data_bn(x)
|
77 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
78 |
+
|
79 |
+
for i, layer in enumerate(self.layers):
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
features = x
|
83 |
+
|
84 |
+
x = self.gap(x).view(N, M, -1).mean(dim=1)
|
85 |
+
x = self.fc(x)
|
86 |
+
|
87 |
+
return features, x
|
88 |
+
|
89 |
+
|
90 |
+
class MST_GCN_block(nn.Module):
|
91 |
+
def __init__(self, in_channels, out_channels, residual, kernel_size, stride, A, block_type, atten, **kwargs):
|
92 |
+
super(MST_GCN_block, self).__init__()
|
93 |
+
self.atten = atten
|
94 |
+
self.msgcn = __block_type__[block_type][0](in_channels=in_channels, out_channels=out_channels, A=A,
|
95 |
+
residual=residual, **kwargs)
|
96 |
+
self.mstcn = __block_type__[block_type][1](channels=out_channels, kernel_size=kernel_size, stride=stride,
|
97 |
+
residual=residual, **kwargs)
|
98 |
+
if atten is not None:
|
99 |
+
self.att = Attention_Layer(out_channels, atten, **kwargs)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return self.att(self.mstcn(self.msgcn(x))) if self.atten is not None else self.mstcn(self.msgcn(x))
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
import sys
|
107 |
+
import time
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
np.array([5, 6, 7, 8, 22, 23]) - 1, # left_arm
|
111 |
+
np.array([9, 10, 11, 12, 24, 25]) - 1, # right_arm
|
112 |
+
np.array([13, 14, 15, 16]) - 1, # left_leg
|
113 |
+
np.array([17, 18, 19, 20]) - 1, # right_leg
|
114 |
+
np.array([1, 2, 3, 4, 21]) - 1 # torso
|
115 |
+
]
|
116 |
+
|
117 |
+
warmup_iter = 3
|
118 |
+
test_iter = 10
|
119 |
+
sys.path.append('/home/chenzhan/mywork/MST-GCN/')
|
120 |
+
from thop import profile
|
121 |
+
basic_channels = 112
|
122 |
+
cfgs = {
|
123 |
+
'num_class': 2,
|
124 |
+
'num_point': 25,
|
125 |
+
'num_person': 1,
|
126 |
+
'block_args': [[2, basic_channels, False, 1],
|
127 |
+
[basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1], [basic_channels, basic_channels, True, 1],
|
128 |
+
[basic_channels, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1], [basic_channels*2, basic_channels*2, True, 1],
|
129 |
+
[basic_channels*2, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1], [basic_channels*4, basic_channels*4, True, 1]],
|
130 |
+
'graph': 'graph.ntu_rgb_d.Graph',
|
131 |
+
'graph_args': {'labeling_mode': 'spatial'},
|
132 |
+
'kernel_size': 9,
|
133 |
+
'block_type': 'ms',
|
134 |
+
'reduct_ratio': 2,
|
135 |
+
'expand_ratio': 0,
|
136 |
+
't_scale': 4,
|
137 |
+
'layer_type': 'sep',
|
138 |
+
'act': 'relu',
|
139 |
+
's_scale': 4,
|
140 |
+
'atten': 'stcja',
|
141 |
+
'bias': True,
|
142 |
+
'parts': parts
|
143 |
+
}
|
144 |
+
|
145 |
+
model = Model(**cfgs)
|
146 |
+
|
147 |
+
N, C, T, V, M = 4, 2, 16, 25, 1
|
148 |
+
inputs = torch.rand(N, C, T, V, M)
|
149 |
+
|
150 |
+
for i in range(warmup_iter + test_iter):
|
151 |
+
if i == warmup_iter:
|
152 |
+
start_time = time.time()
|
153 |
+
outputs = model(inputs)
|
154 |
+
end_time = time.time()
|
155 |
+
|
156 |
+
total_time = end_time - start_time
|
157 |
+
print('iter_with_CPU: {:.2f} s/{} iters, persample: {:.2f} s/iter '.format(
|
158 |
+
total_time, test_iter, total_time/test_iter/N))
|
159 |
+
|
160 |
+
print(outputs.size())
|
161 |
+
|
162 |
+
hereflops, params = profile(model, inputs=(inputs,), verbose=False)
|
163 |
+
print('# GFlops is {} G'.format(hereflops / 10 ** 9 / N))
|
164 |
+
print('# Params is {} M'.format(sum(param.numel() for param in model.parameters()) / 10 ** 6))
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
ckpt/Others/MST-GCN/ntu60_xview/xview_b/config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_lr: 0.15
|
2 |
+
batch_size: 8
|
3 |
+
config: config/ntu/xview_b.yaml
|
4 |
+
device:
|
5 |
+
- 0
|
6 |
+
eval_interval: 5
|
7 |
+
feeder: feeders.feeder.Feeder
|
8 |
+
ignore_weights: []
|
9 |
+
local_rank: 0
|
10 |
+
log_interval: 100
|
11 |
+
model: model.AEMST_GCN.Model
|
12 |
+
model_args:
|
13 |
+
act: relu
|
14 |
+
atten: None
|
15 |
+
bias: true
|
16 |
+
block_args:
|
17 |
+
- - 3
|
18 |
+
- 112
|
19 |
+
- false
|
20 |
+
- 1
|
21 |
+
- - 112
|
22 |
+
- 112
|
23 |
+
- true
|
24 |
+
- 1
|
25 |
+
- - 112
|
26 |
+
- 112
|
27 |
+
- true
|
28 |
+
- 1
|
29 |
+
- - 112
|
30 |
+
- 112
|
31 |
+
- true
|
32 |
+
- 1
|
33 |
+
- - 112
|
34 |
+
- 224
|
35 |
+
- true
|
36 |
+
- 2
|
37 |
+
- - 224
|
38 |
+
- 224
|
39 |
+
- true
|
40 |
+
- 1
|
41 |
+
- - 224
|
42 |
+
- 224
|
43 |
+
- true
|
44 |
+
- 1
|
45 |
+
- - 224
|
46 |
+
- 448
|
47 |
+
- true
|
48 |
+
- 2
|
49 |
+
- - 448
|
50 |
+
- 448
|
51 |
+
- true
|
52 |
+
- 1
|
53 |
+
- - 448
|
54 |
+
- 448
|
55 |
+
- true
|
56 |
+
- 1
|
57 |
+
block_type: ms
|
58 |
+
expand_ratio: 0
|
59 |
+
graph: graph.ntu_rgb_d.Graph
|
60 |
+
graph_args:
|
61 |
+
labeling_mode: spatial
|
62 |
+
kernel_size: 9
|
63 |
+
layer_type: basic
|
64 |
+
num_class: 60
|
65 |
+
num_person: 2
|
66 |
+
num_point: 25
|
67 |
+
reduct_ratio: 2
|
68 |
+
s_scale: 4
|
69 |
+
t_scale: 4
|
70 |
+
model_path: ''
|
71 |
+
model_saved_name: ./runs/ntu/xview_b/runs
|
72 |
+
nesterov: true
|
73 |
+
num_epoch: 110
|
74 |
+
num_worker: 32
|
75 |
+
only_train_epoch: 0
|
76 |
+
only_train_part: false
|
77 |
+
optimizer: SGD
|
78 |
+
phase: train
|
79 |
+
print_log: true
|
80 |
+
save_interval: 1
|
81 |
+
save_score: true
|
82 |
+
seed: 1
|
83 |
+
show_topk:
|
84 |
+
- 1
|
85 |
+
- 5
|
86 |
+
start_epoch: 0
|
87 |
+
step:
|
88 |
+
- 50
|
89 |
+
- 70
|
90 |
+
- 90
|
91 |
+
test_batch_size: 64
|
92 |
+
test_feeder_args:
|
93 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/val_data_bone.npy
|
94 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/val_label.pkl
|
95 |
+
train_feeder_args:
|
96 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/train_data_bone.npy
|
97 |
+
debug: false
|
98 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/train_label.pkl
|
99 |
+
normalization: false
|
100 |
+
random_choose: false
|
101 |
+
random_move: false
|
102 |
+
random_shift: false
|
103 |
+
window_size: -1
|
104 |
+
warm_up_epoch: 10
|
105 |
+
weight_decay: 0.0001
|
106 |
+
weights: null
|
107 |
+
work_dir: ./work_dir/ntu/xview_b
|