--- library_name: peft license: apache-2.0 base_model: allenai/led-base-16384 tags: - generated_from_trainer metrics: - rouge - bleu - precision - recall - f1 model-index: - name: Lora_LED_sum_outcome results: [] --- # Lora_LED_sum_outcome This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7652 - Rouge1: 0.3745 - Rouge2: 0.1523 - Rougel: 0.3056 - Rougelsum: 0.3055 - Gen Len: 25.92 - Bleu: 0.0641 - Precisions: 0.1432 - Brevity Penalty: 0.7677 - Length Ratio: 0.791 - Translation Length: 927.0 - Reference Length: 1172.0 - Precision: 0.8956 - Recall: 0.8832 - F1: 0.8892 - Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Precision | Recall | F1 | Hashcode | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:----------:|:---------------:|:------------:|:------------------:|:----------------:|:---------:|:------:|:------:|:---------------------------------------------------------:| | 8.3925 | 1.0 | 7 | 8.0434 | 0.2138 | 0.043 | 0.174 | 0.1733 | 32.0 | 0.0223 | 0.0541 | 1.0 | 1.1246 | 1318.0 | 1172.0 | 0.8553 | 0.8578 | 0.8564 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 6.8857 | 2.0 | 14 | 6.1890 | 0.3112 | 0.0956 | 0.2638 | 0.2638 | 30.08 | 0.0477 | 0.0915 | 1.0 | 1.0333 | 1211.0 | 1172.0 | 0.8775 | 0.8694 | 0.8733 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 5.1856 | 3.0 | 21 | 4.7196 | 0.3535 | 0.1502 | 0.2855 | 0.2871 | 23.4 | 0.0688 | 0.1552 | 0.7034 | 0.7398 | 867.0 | 1172.0 | 0.9014 | 0.8803 | 0.8906 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 4.2664 | 4.0 | 28 | 4.1945 | 0.354 | 0.1541 | 0.295 | 0.2952 | 23.14 | 0.0781 | 0.1725 | 0.643 | 0.6937 | 813.0 | 1172.0 | 0.904 | 0.8821 | 0.8928 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.898 | 5.0 | 35 | 3.9578 | 0.3777 | 0.1653 | 0.3107 | 0.3108 | 25.16 | 0.0912 | 0.1705 | 0.7434 | 0.7713 | 904.0 | 1172.0 | 0.9005 | 0.884 | 0.892 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.6798 | 6.0 | 42 | 3.8411 | 0.368 | 0.1556 | 0.2914 | 0.2907 | 23.92 | 0.0719 | 0.1621 | 0.6836 | 0.7244 | 849.0 | 1172.0 | 0.9039 | 0.8834 | 0.8934 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.5743 | 7.0 | 49 | 3.8041 | 0.3678 | 0.1445 | 0.2954 | 0.2956 | 27.28 | 0.0648 | 0.1358 | 0.809 | 0.8251 | 967.0 | 1172.0 | 0.8937 | 0.883 | 0.8883 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.5091 | 8.0 | 56 | 3.7772 | 0.371 | 0.1559 | 0.3051 | 0.3061 | 26.3 | 0.0755 | 0.1511 | 0.7709 | 0.7935 | 930.0 | 1172.0 | 0.896 | 0.8833 | 0.8895 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.4502 | 9.0 | 63 | 3.7611 | 0.3633 | 0.1495 | 0.3013 | 0.3013 | 25.8 | 0.0653 | 0.1423 | 0.7498 | 0.7765 | 910.0 | 1172.0 | 0.8952 | 0.881 | 0.8879 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | | 3.4484 | 10.0 | 70 | 3.7652 | 0.3745 | 0.1523 | 0.3056 | 0.3055 | 25.92 | 0.0641 | 0.1432 | 0.7677 | 0.791 | 927.0 | 1172.0 | 0.8956 | 0.8832 | 0.8892 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) | ### Framework versions - PEFT 0.15.2 - Transformers 4.53.1 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1