Model save
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -43,62 +43,61 @@ The following hyperparameters were used during training:
|
|
43 |
- lr_scheduler_type: linear
|
44 |
- lr_scheduler_warmup_steps: 40000
|
45 |
- training_steps: 100000
|
46 |
-
- mixed_precision_training: Native AMP
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
|:-------------:|:-----:|:------:|:---------------:|
|
52 |
-
| No log | 2.5 | 2000 |
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
| 3.
|
66 |
-
| 3.
|
67 |
-
| 2.
|
68 |
-
| 2.
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
| 2.
|
76 |
-
| 2.
|
77 |
-
| 2.
|
78 |
-
| 2.
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
| 1.
|
86 |
-
| 1.
|
87 |
-
| 1.
|
88 |
-
| 1.
|
89 |
-
| 1.
|
90 |
-
| 1.
|
91 |
-
| 1.
|
92 |
-
| 1.
|
93 |
-
| 1.
|
94 |
-
| 1.
|
95 |
-
| 1.
|
96 |
-
| 1.
|
97 |
-
| 1.
|
98 |
-
| 1.
|
99 |
-
| 1.
|
100 |
-
| 1.
|
101 |
-
| 1.
|
102 |
|
103 |
|
104 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.8718
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
43 |
- lr_scheduler_type: linear
|
44 |
- lr_scheduler_warmup_steps: 40000
|
45 |
- training_steps: 100000
|
|
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
|:-------------:|:-----:|:------:|:---------------:|
|
51 |
+
| No log | 2.5 | 2000 | 7.2323 |
|
52 |
+
| 7.2283 | 5.0 | 4000 | 5.9768 |
|
53 |
+
| 7.2283 | 7.5 | 6000 | 5.8268 |
|
54 |
+
| 5.6892 | 10.0 | 8000 | 5.7444 |
|
55 |
+
| 5.6892 | 12.5 | 10000 | 5.6708 |
|
56 |
+
| 5.4694 | 15.0 | 12000 | 5.5713 |
|
57 |
+
| 5.4694 | 17.5 | 14000 | 5.5270 |
|
58 |
+
| 5.3091 | 20.0 | 16000 | 5.4483 |
|
59 |
+
| 5.3091 | 22.5 | 18000 | 5.3926 |
|
60 |
+
| 5.1707 | 25.0 | 20000 | 5.2315 |
|
61 |
+
| 5.1707 | 27.5 | 22000 | 4.9059 |
|
62 |
+
| 4.6992 | 30.0 | 24000 | 4.1680 |
|
63 |
+
| 4.6992 | 32.5 | 26000 | 3.6409 |
|
64 |
+
| 3.5699 | 35.0 | 28000 | 3.2064 |
|
65 |
+
| 3.5699 | 37.5 | 30000 | 3.0010 |
|
66 |
+
| 2.9074 | 40.0 | 32000 | 2.8509 |
|
67 |
+
| 2.9074 | 42.5 | 34000 | 2.7339 |
|
68 |
+
| 2.6073 | 45.0 | 36000 | 2.6182 |
|
69 |
+
| 2.6073 | 47.5 | 38000 | 2.5613 |
|
70 |
+
| 2.4166 | 50.0 | 40000 | 2.4946 |
|
71 |
+
| 2.4166 | 52.5 | 42000 | 2.4197 |
|
72 |
+
| 2.2667 | 55.0 | 44000 | 2.3687 |
|
73 |
+
| 2.2667 | 57.5 | 46000 | 2.2802 |
|
74 |
+
| 2.146 | 60.0 | 48000 | 2.2621 |
|
75 |
+
| 2.146 | 62.5 | 50000 | 2.2170 |
|
76 |
+
| 2.0465 | 65.0 | 52000 | 2.1907 |
|
77 |
+
| 2.0465 | 67.5 | 54000 | 2.1659 |
|
78 |
+
| 1.969 | 70.0 | 56000 | 2.1273 |
|
79 |
+
| 1.969 | 72.5 | 58000 | 2.0874 |
|
80 |
+
| 1.9056 | 75.0 | 60000 | 2.0743 |
|
81 |
+
| 1.9056 | 77.5 | 62000 | 2.0583 |
|
82 |
+
| 1.8492 | 80.0 | 64000 | 2.0371 |
|
83 |
+
| 1.8492 | 82.5 | 66000 | 2.0039 |
|
84 |
+
| 1.8024 | 85.0 | 68000 | 1.9901 |
|
85 |
+
| 1.8024 | 87.5 | 70000 | 1.9754 |
|
86 |
+
| 1.7652 | 90.0 | 72000 | 1.9566 |
|
87 |
+
| 1.7652 | 92.5 | 74000 | 1.9404 |
|
88 |
+
| 1.7344 | 95.0 | 76000 | 1.9128 |
|
89 |
+
| 1.7344 | 97.5 | 78000 | 1.9396 |
|
90 |
+
| 1.7055 | 100.0 | 80000 | 1.9591 |
|
91 |
+
| 1.7055 | 102.5 | 82000 | 1.9078 |
|
92 |
+
| 1.6779 | 105.0 | 84000 | 1.9178 |
|
93 |
+
| 1.6779 | 107.5 | 86000 | 1.9046 |
|
94 |
+
| 1.6529 | 110.0 | 88000 | 1.8918 |
|
95 |
+
| 1.6529 | 112.5 | 90000 | 1.9010 |
|
96 |
+
| 1.6347 | 115.0 | 92000 | 1.8959 |
|
97 |
+
| 1.6347 | 117.5 | 94000 | 1.9094 |
|
98 |
+
| 1.6225 | 120.0 | 96000 | 1.8838 |
|
99 |
+
| 1.6225 | 122.5 | 98000 | 1.8972 |
|
100 |
+
| 1.6132 | 125.0 | 100000 | 1.8718 |
|
101 |
|
102 |
|
103 |
### Framework versions
|