Commit
·
dbeb0d0
1
Parent(s):
b9e6d62
Upload Generate TEVR Tokenizer.ipynb
Browse files- Generate TEVR Tokenizer.ipynb +390 -0
Generate TEVR Tokenizer.ipynb
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "8e94ea44",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# TODO: load large text dataset like OSCAR\n",
|
11 |
+
"all_sentences_de = [\"Über vier Jahrzehnte gehörte er zu den führenden Bildhauern Niederbayerns\", \"die katze ist niedlich\"] * 1000"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"id": "e9db6478",
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"from huggingface_hub import snapshot_download\n",
|
22 |
+
"data_folder = snapshot_download(\"fxtentacle/tevr-token-entropy-predictor-de\")"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 3,
|
28 |
+
"id": "8b37a91c",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"from transformers import T5ForConditionalGeneration\n",
|
33 |
+
"model = T5ForConditionalGeneration.from_pretrained(data_folder)\n",
|
34 |
+
"model.to('cuda')\n",
|
35 |
+
"model.eval()\n",
|
36 |
+
"None"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 4,
|
42 |
+
"id": "317a0bb2",
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"import torch\n",
|
47 |
+
"\n",
|
48 |
+
"def text_to_cross_entropy(text):\n",
|
49 |
+
" ttext = torch.tensor([[0]+list(text.encode('UTF-8'))],dtype=torch.int64).to('cuda')\n",
|
50 |
+
" tone = torch.tensor([[1]],dtype=torch.int32).to('cuda')\n",
|
51 |
+
" logits = model.forward(input_ids=tone, attention_mask=tone, decoder_input_ids=ttext, return_dict=False)[0].detach()\n",
|
52 |
+
" cross_entropy = torch.nn.functional.cross_entropy(input=logits[0][:-1], target=ttext[0][1:], reduction='none').detach().cpu().numpy()\n",
|
53 |
+
" return cross_entropy"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": 5,
|
59 |
+
"id": "aec4c1e1",
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [
|
62 |
+
{
|
63 |
+
"name": "stdout",
|
64 |
+
"output_type": "stream",
|
65 |
+
"text": [
|
66 |
+
"Über vier Jahrzehnte gehörte er zu den führenden Bildhauern Niederbayerns\n",
|
67 |
+
"Ü 7.254014\n",
|
68 |
+
"b 0.17521738\n",
|
69 |
+
"e 0.00046933602\n",
|
70 |
+
"r 0.01929327\n",
|
71 |
+
" 0.0003675739\n",
|
72 |
+
"v 0.20927554\n",
|
73 |
+
"i 6.13207\n",
|
74 |
+
"e 0.3896482\n",
|
75 |
+
"r 0.009583538\n",
|
76 |
+
" 2.07364\n",
|
77 |
+
"J 0.02978594\n",
|
78 |
+
"a 2.483246\n",
|
79 |
+
"h 0.1591908\n",
|
80 |
+
"r 0.0045124847\n",
|
81 |
+
"z 0.00028653807\n",
|
82 |
+
"e 4.0242333\n",
|
83 |
+
"h 0.031035878\n",
|
84 |
+
"n 0.028907888\n",
|
85 |
+
"t 0.003264101\n",
|
86 |
+
"e 0.0018929198\n",
|
87 |
+
" 0.05816966\n",
|
88 |
+
"g 1.2782481\n",
|
89 |
+
"e 3.5076692\n",
|
90 |
+
"h 0.694337\n",
|
91 |
+
"ö 0.5319732\n",
|
92 |
+
"r 0.48336726\n",
|
93 |
+
"t 0.0050443523\n",
|
94 |
+
"e 0.0017187123\n",
|
95 |
+
" 0.14511283\n",
|
96 |
+
"e 1.0435015\n",
|
97 |
+
"r 0.18165778\n",
|
98 |
+
" 1.0247636\n",
|
99 |
+
"z 0.3594512\n",
|
100 |
+
"u 0.0077577736\n",
|
101 |
+
" 2.072764\n",
|
102 |
+
"d 0.17377533\n",
|
103 |
+
"e 1.0727838\n",
|
104 |
+
"n 1.2805216\n",
|
105 |
+
" 0.24939628\n",
|
106 |
+
"f 0.27717885\n",
|
107 |
+
"ü 0.012466482\n",
|
108 |
+
"h 4.4356546\n",
|
109 |
+
"r 1.7371752\n",
|
110 |
+
"e 0.051492628\n",
|
111 |
+
"n 2.99407\n",
|
112 |
+
"d 0.009648594\n",
|
113 |
+
"e 0.19667451\n",
|
114 |
+
"n 0.007495021\n",
|
115 |
+
" 0.2529005\n",
|
116 |
+
"B 0.004451485\n",
|
117 |
+
"i 0.024661187\n",
|
118 |
+
"l 0.0028436247\n",
|
119 |
+
"d 2.6620464\n",
|
120 |
+
"h 2.825038\n",
|
121 |
+
"a 0.8215449\n",
|
122 |
+
"u 0.011406565\n",
|
123 |
+
"e 2.9599652\n",
|
124 |
+
"r 0.45834702\n",
|
125 |
+
"n 0.11848967\n",
|
126 |
+
" 0.5955992\n",
|
127 |
+
"N 0.010709903\n",
|
128 |
+
"i 1.5338714\n",
|
129 |
+
"e 0.1834471\n",
|
130 |
+
"d 5.668945\n",
|
131 |
+
"e 2.052247\n",
|
132 |
+
"r 0.7692907\n",
|
133 |
+
"b 0.0675718\n",
|
134 |
+
"a 0.028234791\n",
|
135 |
+
"y 0.0045266068\n",
|
136 |
+
"e 4.1125383\n",
|
137 |
+
"r 1.2630856\n",
|
138 |
+
"n 5.436057\n",
|
139 |
+
"s 0.46446246\n"
|
140 |
+
]
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"source": [
|
144 |
+
"text = all_sentences_de[0]\n",
|
145 |
+
"cross_entropy = text_to_cross_entropy(text)\n",
|
146 |
+
"print(text)\n",
|
147 |
+
"for i in range(len(text)):\n",
|
148 |
+
" print(text[i], cross_entropy[i])"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 6,
|
154 |
+
"id": "57350f0e",
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [
|
157 |
+
{
|
158 |
+
"name": "stderr",
|
159 |
+
"output_type": "stream",
|
160 |
+
"text": [
|
161 |
+
"100%|██████████| 2000/2000 [00:09<00:00, 219.00it/s]\n"
|
162 |
+
]
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"source": [
|
166 |
+
"from tqdm import tqdm \n",
|
167 |
+
"\n",
|
168 |
+
"sentence_data = all_sentences_de\n",
|
169 |
+
"\n",
|
170 |
+
"text_and_entropies = []\n",
|
171 |
+
"for text in tqdm(sentence_data):\n",
|
172 |
+
" text_and_entropies.append([text,text_to_cross_entropy(text)])"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 7,
|
178 |
+
"id": "502fdacc",
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [
|
181 |
+
{
|
182 |
+
"name": "stderr",
|
183 |
+
"output_type": "stream",
|
184 |
+
"text": [
|
185 |
+
"100%|██████████| 1999/1999 [00:00<00:00, 14645.88it/s]\n"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"name": "stdout",
|
190 |
+
"output_type": "stream",
|
191 |
+
"text": [
|
192 |
+
"[('lich', 1000), ('hnte', 999), ('rbay', 999), ('örte', 999), ('hört', 999), ('ahrz', 999), ('jahr', 999), ('bild', 999)]\n"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"name": "stderr",
|
197 |
+
"output_type": "stream",
|
198 |
+
"text": [
|
199 |
+
"100%|██████████| 1999/1999 [00:00<00:00, 18574.04it/s]\n"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"name": "stdout",
|
204 |
+
"output_type": "stream",
|
205 |
+
"text": [
|
206 |
+
"[('ist', 1000), ('den', 999), ('ber', 999), ('aue', 999), ('ern', 999), ('uer', 999)]\n"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"name": "stderr",
|
211 |
+
"output_type": "stream",
|
212 |
+
"text": [
|
213 |
+
"100%|██████████| 1999/1999 [00:00<00:00, 20827.32it/s]\n"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"name": "stdout",
|
218 |
+
"output_type": "stream",
|
219 |
+
"text": [
|
220 |
+
"[('ni', 1000), ('ge', 999), ('er', 999), ('fü', 999), ('vi', 999)]\n"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"name": "stderr",
|
225 |
+
"output_type": "stream",
|
226 |
+
"text": [
|
227 |
+
"100%|██████████| 1999/1999 [00:00<00:00, 19927.45it/s]"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"name": "stdout",
|
232 |
+
"output_type": "stream",
|
233 |
+
"text": [
|
234 |
+
"[('e', 2999), ('u', 999), ('n', 999), ('h', 999)]\n"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"name": "stderr",
|
239 |
+
"output_type": "stream",
|
240 |
+
"text": [
|
241 |
+
"\n"
|
242 |
+
]
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"source": [
|
246 |
+
"from collections import Counter\n",
|
247 |
+
"\n",
|
248 |
+
"# 4s\n",
|
249 |
+
"#target_lengths = [1]\n",
|
250 |
+
"#token_budgets = [36]\n",
|
251 |
+
"\n",
|
252 |
+
"# 4m\n",
|
253 |
+
"target_lengths = [4,3,2,1]\n",
|
254 |
+
"token_budgets = [40,80,96,36]\n",
|
255 |
+
"\n",
|
256 |
+
"# 4l\n",
|
257 |
+
"#target_lengths = [4,3,2,1]\n",
|
258 |
+
"#token_budgets = [384,320,160,36]\n",
|
259 |
+
"\n",
|
260 |
+
"ngrams = [Counter() for l in target_lengths]\n",
|
261 |
+
"tokens = []\n",
|
262 |
+
"\n",
|
263 |
+
"for tgi,tgl in enumerate(target_lengths):\n",
|
264 |
+
" for row in tqdm(text_and_entropies[1:]):\n",
|
265 |
+
" use_text = row[0]\n",
|
266 |
+
" use_scores = row[1]\n",
|
267 |
+
" for t in tokens:\n",
|
268 |
+
" use_text = use_text.replace(t[0],'#')\n",
|
269 |
+
" candidates = []\n",
|
270 |
+
" for i in range(len(use_text)-(tgl-1)):\n",
|
271 |
+
" part = use_text[i:i+tgl].lower()\n",
|
272 |
+
" if '#' in part: continue\n",
|
273 |
+
" if ' ' in part: continue\n",
|
274 |
+
" if '-' in part: continue\n",
|
275 |
+
" score = sum(use_scores[i:i+tgl])\n",
|
276 |
+
" # print(part, score)\n",
|
277 |
+
" candidates.append([score, part])\n",
|
278 |
+
" candidates.sort(reverse=False)\n",
|
279 |
+
" candidates = candidates[:max(1,int(len(candidates)/5))]\n",
|
280 |
+
" #print(candidates)\n",
|
281 |
+
" ngrams[tgi].update([c[1] for c in candidates])\n",
|
282 |
+
" new_tokens = ngrams[tgi].most_common(token_budgets[tgi])\n",
|
283 |
+
" print(new_tokens)\n",
|
284 |
+
" tokens += new_tokens\n",
|
285 |
+
" #break"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": 8,
|
291 |
+
"id": "323833ad",
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [
|
294 |
+
{
|
295 |
+
"name": "stdout",
|
296 |
+
"output_type": "stream",
|
297 |
+
"text": [
|
298 |
+
"27 ['<pad>', '<eos>', ' ', 'lich', 'hnte', 'rbay', 'örte', 'hört', 'ahrz', 'jahr', 'bild', 'ist', 'den', 'ber', 'aue', 'ern', 'uer', 'ni', 'ge', 'er', 'fü', 'vi', 'e', 'u', 'n', 'h', '?']\n"
|
299 |
+
]
|
300 |
+
}
|
301 |
+
],
|
302 |
+
"source": [
|
303 |
+
"all_tokens = ['<pad>','<eos>',' ']+[t[0] for t in tokens]+['?']\n",
|
304 |
+
"print(len(all_tokens), all_tokens)"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "code",
|
309 |
+
"execution_count": 9,
|
310 |
+
"id": "34724bef",
|
311 |
+
"metadata": {},
|
312 |
+
"outputs": [],
|
313 |
+
"source": [
|
314 |
+
"import json\n",
|
315 |
+
"with open('./tevr-tokenizer.txt','wt') as f:\n",
|
316 |
+
" json.dump(all_tokens, f)"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 10,
|
322 |
+
"id": "72a32893",
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"import sys\n",
|
327 |
+
"import os\n",
|
328 |
+
"sys.path.append(data_folder)\n",
|
329 |
+
"from text_tokenizer import HajoTextTokenizer"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "code",
|
334 |
+
"execution_count": 11,
|
335 |
+
"id": "a7405c3b",
|
336 |
+
"metadata": {},
|
337 |
+
"outputs": [],
|
338 |
+
"source": [
|
339 |
+
"text_tokenizer = HajoTextTokenizer('./tevr-tokenizer.txt')"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": 12,
|
345 |
+
"id": "5ceee8e3",
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [
|
348 |
+
{
|
349 |
+
"name": "stdout",
|
350 |
+
"output_type": "stream",
|
351 |
+
"text": [
|
352 |
+
"gehörte\n",
|
353 |
+
"[18, 25, 6]\n",
|
354 |
+
"['ge', 'h', 'örte']\n",
|
355 |
+
"['gehörte']\n"
|
356 |
+
]
|
357 |
+
}
|
358 |
+
],
|
359 |
+
"source": [
|
360 |
+
"sentence = \"gehörte\"\n",
|
361 |
+
"print(sentence)\n",
|
362 |
+
"encoded = text_tokenizer.encode(sentence)\n",
|
363 |
+
"print(encoded)\n",
|
364 |
+
"print([text_tokenizer.all_tokens[i] for i in encoded])\n",
|
365 |
+
"print([text_tokenizer.decode(encoded)])"
|
366 |
+
]
|
367 |
+
}
|
368 |
+
],
|
369 |
+
"metadata": {
|
370 |
+
"kernelspec": {
|
371 |
+
"display_name": "Python 3 (ipykernel)",
|
372 |
+
"language": "python",
|
373 |
+
"name": "python3"
|
374 |
+
},
|
375 |
+
"language_info": {
|
376 |
+
"codemirror_mode": {
|
377 |
+
"name": "ipython",
|
378 |
+
"version": 3
|
379 |
+
},
|
380 |
+
"file_extension": ".py",
|
381 |
+
"mimetype": "text/x-python",
|
382 |
+
"name": "python",
|
383 |
+
"nbconvert_exporter": "python",
|
384 |
+
"pygments_lexer": "ipython3",
|
385 |
+
"version": "3.7.5"
|
386 |
+
}
|
387 |
+
},
|
388 |
+
"nbformat": 4,
|
389 |
+
"nbformat_minor": 5
|
390 |
+
}
|