File size: 7,772 Bytes
5d30583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import copy
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter


'''
Much of this code is taken from HuggingFace's OpenAI LM Implementation here:

https://github.com/huggingface/pytorch-openai-transformer-lm
'''


def gelu(x):
    return (0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) *
            (x + 0.044715 * torch.pow(x, 3)))))


def swish(x):
    return x * torch.sigmoid(x)


ACT_FNS = {
    'relu': nn.ReLU,
    'swish': swish,
    'gelu': gelu
}


class LayerNorm(nn.Module):
    "Construct a layernorm module in the OpenAI style \
    (epsilon inside the square root)."

    def __init__(self, n_state, e=1e-5):
        super(LayerNorm, self).__init__()
        self.g = nn.Parameter(torch.ones(n_state))
        self.b = nn.Parameter(torch.zeros(n_state))
        self.e = e

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.e)
        return self.g * x + self.b


class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
            self.w = Parameter(w)
            self.b = Parameter(torch.zeros(nf))
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
            x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w)
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
    def __init__(self, nx, n_ctx, cfg, scale=False):
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)

        assert n_state % cfg.nH == 0
        self.register_buffer('b', torch.tril(torch.ones(
            n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = cfg.nH
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
        self.attn_dropout = nn.Dropout(cfg.adpt)
        self.resid_dropout = nn.Dropout(cfg.rdpt)

    # dimensions of w: (batch_size x num_heads x seq_length x seq_length)
    def _attn(self, q, k, v, sequence_mask):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))

        b_subset = self.b[:, :, :w.size(-2), :w.size(-1)]

        if sequence_mask is not None:
            b_subset = b_subset * sequence_mask.view(
                sequence_mask.size(0), 1, -1)
            b_subset = b_subset.permute(1, 0, 2, 3)

        w = w * b_subset + -1e9 * (1 - b_subset)
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x, sequence_mask):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value, sequence_mask)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        return a


class MLP(nn.Module):
    def __init__(self, n_state, cfg):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = cfg.hSize
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
        self.act = ACT_FNS[cfg.afn]
        self.dropout = nn.Dropout(cfg.rdpt)

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
    def __init__(self, n_ctx, cfg, scale=False):
        super(Block, self).__init__()
        nx = cfg.hSize
        self.attn = Attention(nx, n_ctx, cfg, scale)
        self.ln_1 = LayerNorm(nx)
        self.mlp = MLP(4 * nx, cfg)
        self.ln_2 = LayerNorm(nx)

    def forward(self, x, sequence_mask):
        a = self.attn(x, sequence_mask)
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
        return h


class TransformerModel(nn.Module):
    """ Transformer model """

    def __init__(self, cfg, vocab=40990, n_ctx=512):
        super(TransformerModel, self).__init__()
        self.vocab = vocab
        self.embed = nn.Embedding(vocab, cfg.hSize)
        self.drop = nn.Dropout(cfg.edpt)
        block = Block(n_ctx, cfg, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block)
                                for _ in range(cfg.nL)])

        nn.init.normal_(self.embed.weight, std=0.02)

    def forward(self, x, sequence_mask):
        x = x.view(-1, x.size(-2), x.size(-1))
        e = self.embed(x)
        # Add the position information to the input embeddings
        h = e.sum(dim=2)
        for block in self.h:
            h = block(h, sequence_mask)
        return h
    

class LMModel(nn.Module):
    """ Transformer with language model head only """
    def __init__(self, cfg, vocab=40990, n_ctx=512,
                 return_probs=False, return_acts=False):
        super(LMModel, self).__init__()
        self.transformer = TransformerModel(cfg, vocab=vocab, n_ctx=n_ctx)
        self.lm_head = LMHead(self.transformer, cfg, trunc_and_reshape=False)
        self.return_probs = return_probs
        self.return_acts = return_acts
        if self.return_probs or self.return_acts:
            pos_emb_mask = torch.zeros(1, 1, vocab)
            pos_emb_mask[:, :, -n_ctx:] = -1e12
            self.register_buffer('pos_emb_mask', pos_emb_mask)

    def forward(self, x, sequence_mask=None):
        h = self.transformer(x, sequence_mask)
        lm_logits = self.lm_head(h)
        if self.return_probs:
            lm_logits = F.softmax(lm_logits + self.pos_emb_mask, dim=-1)
        elif self.return_acts:
            lm_logits = lm_logits + self.pos_emb_mask
        return lm_logits


class LMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model, cfg, trunc_and_reshape=True):
        super(LMHead, self).__init__()
        self.n_embd = cfg.hSize
        embed_shape = model.embed.weight.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.decoder.weight = model.embed.weight  # Tied weights
        self.trunc_and_reshape = trunc_and_reshape  # XD

    def forward(self, h):
        # Truncated Language modeling logits (we remove the last token)
        h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) \
            if self.trunc_and_reshape else h  # XD
        lm_logits = self.decoder(h_trunc)
        return lm_logits


class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__


DEFAULT_CONFIG = dotdict({
    'n_embd': 768,
    'n_head': 12,
    'n_layer': 12,
    'embd_pdrop': 0.1,
    'attn_pdrop': 0.1,
    'resid_pdrop': 0.1,
    'afn': 'gelu',
    'clf_pdrop': 0.1})