File size: 7,772 Bytes
5d30583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
'''
Much of this code is taken from HuggingFace's OpenAI LM Implementation here:
https://github.com/huggingface/pytorch-openai-transformer-lm
'''
def gelu(x):
return (0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) *
(x + 0.044715 * torch.pow(x, 3)))))
def swish(x):
return x * torch.sigmoid(x)
ACT_FNS = {
'relu': nn.ReLU,
'swish': swish,
'gelu': gelu
}
class LayerNorm(nn.Module):
"Construct a layernorm module in the OpenAI style \
(epsilon inside the square root)."
def __init__(self, n_state, e=1e-5):
super(LayerNorm, self).__init__()
self.g = nn.Parameter(torch.ones(n_state))
self.b = nn.Parameter(torch.zeros(n_state))
self.e = e
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.e)
return self.g * x + self.b
class Conv1D(nn.Module):
def __init__(self, nf, rf, nx):
super(Conv1D, self).__init__()
self.rf = rf
self.nf = nf
if rf == 1: # faster 1x1 conv
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.w = Parameter(w)
self.b = Parameter(torch.zeros(nf))
else: # was used to train LM
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w)
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, cfg, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
assert n_state % cfg.nH == 0
self.register_buffer('b', torch.tril(torch.ones(
n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = cfg.nH
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, 1, nx)
self.c_proj = Conv1D(n_state, 1, nx)
self.attn_dropout = nn.Dropout(cfg.adpt)
self.resid_dropout = nn.Dropout(cfg.rdpt)
# dimensions of w: (batch_size x num_heads x seq_length x seq_length)
def _attn(self, q, k, v, sequence_mask):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
b_subset = self.b[:, :, :w.size(-2), :w.size(-1)]
if sequence_mask is not None:
b_subset = b_subset * sequence_mask.view(
sequence_mask.size(0), 1, -1)
b_subset = b_subset.permute(1, 0, 2, 3)
w = w * b_subset + -1e9 * (1 - b_subset)
w = nn.Softmax(dim=-1)(w)
w = self.attn_dropout(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x, sequence_mask):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
a = self._attn(query, key, value, sequence_mask)
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
return a
class MLP(nn.Module):
def __init__(self, n_state, cfg): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = cfg.hSize
self.c_fc = Conv1D(n_state, 1, nx)
self.c_proj = Conv1D(nx, 1, n_state)
self.act = ACT_FNS[cfg.afn]
self.dropout = nn.Dropout(cfg.rdpt)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_ctx, cfg, scale=False):
super(Block, self).__init__()
nx = cfg.hSize
self.attn = Attention(nx, n_ctx, cfg, scale)
self.ln_1 = LayerNorm(nx)
self.mlp = MLP(4 * nx, cfg)
self.ln_2 = LayerNorm(nx)
def forward(self, x, sequence_mask):
a = self.attn(x, sequence_mask)
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
return h
class TransformerModel(nn.Module):
""" Transformer model """
def __init__(self, cfg, vocab=40990, n_ctx=512):
super(TransformerModel, self).__init__()
self.vocab = vocab
self.embed = nn.Embedding(vocab, cfg.hSize)
self.drop = nn.Dropout(cfg.edpt)
block = Block(n_ctx, cfg, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block)
for _ in range(cfg.nL)])
nn.init.normal_(self.embed.weight, std=0.02)
def forward(self, x, sequence_mask):
x = x.view(-1, x.size(-2), x.size(-1))
e = self.embed(x)
# Add the position information to the input embeddings
h = e.sum(dim=2)
for block in self.h:
h = block(h, sequence_mask)
return h
class LMModel(nn.Module):
""" Transformer with language model head only """
def __init__(self, cfg, vocab=40990, n_ctx=512,
return_probs=False, return_acts=False):
super(LMModel, self).__init__()
self.transformer = TransformerModel(cfg, vocab=vocab, n_ctx=n_ctx)
self.lm_head = LMHead(self.transformer, cfg, trunc_and_reshape=False)
self.return_probs = return_probs
self.return_acts = return_acts
if self.return_probs or self.return_acts:
pos_emb_mask = torch.zeros(1, 1, vocab)
pos_emb_mask[:, :, -n_ctx:] = -1e12
self.register_buffer('pos_emb_mask', pos_emb_mask)
def forward(self, x, sequence_mask=None):
h = self.transformer(x, sequence_mask)
lm_logits = self.lm_head(h)
if self.return_probs:
lm_logits = F.softmax(lm_logits + self.pos_emb_mask, dim=-1)
elif self.return_acts:
lm_logits = lm_logits + self.pos_emb_mask
return lm_logits
class LMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model, cfg, trunc_and_reshape=True):
super(LMHead, self).__init__()
self.n_embd = cfg.hSize
embed_shape = model.embed.weight.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model.embed.weight # Tied weights
self.trunc_and_reshape = trunc_and_reshape # XD
def forward(self, h):
# Truncated Language modeling logits (we remove the last token)
h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) \
if self.trunc_and_reshape else h # XD
lm_logits = self.decoder(h_trunc)
return lm_logits
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
DEFAULT_CONFIG = dotdict({
'n_embd': 768,
'n_head': 12,
'n_layer': 12,
'embd_pdrop': 0.1,
'attn_pdrop': 0.1,
'resid_pdrop': 0.1,
'afn': 'gelu',
'clf_pdrop': 0.1})
|