pupil_repo / test_model.py
g30rv17ys's picture
Add files using upload-large-folder tool
fd4b932 verified
raw
history blame
3.04 kB
import tensorflow as tf
import numpy as np
from tensorflow.keras import backend as K
from adabelief_tf import AdaBeliefOptimizer
import matplotlib.pyplot as plt
import os
from glob import glob
# [Previous function definitions stay the same: iou_coef, dice_coef, etc.]
def visualize_prediction(original_img, mask_pred, tags_pred, save_path=None):
plt.figure(figsize=(15, 5))
# Original image
plt.subplot(1, 3, 1)
plt.imshow(original_img[:,:,0], cmap='gray')
plt.title('Original Image')
plt.axis('off')
# Predicted mask
plt.subplot(1, 3, 2)
plt.imshow(mask_pred[:,:,0], cmap='jet')
plt.title('Predicted Mask')
plt.axis('off')
# Overlay
plt.subplot(1, 3, 3)
plt.imshow(original_img[:,:,0], cmap='gray')
plt.imshow(mask_pred[:,:,0], cmap='jet', alpha=0.4)
plt.title(f'Overlay\nEye: {tags_pred[0]:.3f}, Blink: {tags_pred[1]:.3f}')
plt.axis('off')
plt.tight_layout()
if save_path:
plt.savefig(save_path)
plt.close()
else:
plt.show()
def test_single_image(image_path, model, output_dir=None):
print(f"\nTesting image: {os.path.basename(image_path)}")
img = load_image(image_path)
img_batch = tf.expand_dims(img, 0)
# Get predictions
mask_pred, tags_pred = model.predict(img_batch, verbose=0)
print("Predictions:")
print(f"Eye detection confidence: {tags_pred[0][0]:.3f}")
print(f"Blink detection confidence: {tags_pred[0][1]:.3f}")
# Visualize if output directory is provided
if output_dir:
base_name = os.path.splitext(os.path.basename(image_path))[0]
save_path = os.path.join(output_dir, f'{base_name}_prediction.png')
visualize_prediction(img.numpy(), mask_pred[0], tags_pred[0], save_path)
return mask_pred[0], tags_pred[0]
# Load the model
model_path = 'runs/b32_c-conv_d-|root|meye|data|NN_human_mouse_eyes|_g1.5_l0.001_num_c1_num_f16_num_s5_r128_se23_sp-random_up-relu_us0/best_model.h5'
print("Loading model...")
model = tf.keras.models.load_model(model_path, custom_objects=custom_objects)
output_dir = "/root/meye/test_predictions" # absolute path in /meye directory
os.makedirs(output_dir, exist_ok=True)
print(f"\nSaving predictions to: {output_dir}")
# Test directory with multiple images
test_dir = "/root/meye/data/NN_human_mouse_eyes/fullFrames"
image_files = glob(os.path.join(test_dir, "*.jpg"))[:10] # Test first 10 images
print(f"\nTesting {len(image_files)} images...")
results = []
for image_path in image_files:
mask_pred, tags_pred = test_single_image(image_path, model, output_dir)
results.append({
'image': os.path.basename(image_path),
'eye_conf': tags_pred[0],
'blink_conf': tags_pred[1]
})
# Print summary
print("\nSummary:")
df = pd.DataFrame(results)
print("\nAverage confidences:")
print(f"Eye detection: {df['eye_conf'].mean():.3f} ± {df['eye_conf'].std():.3f}")
print(f"Blink detection: {df['blink_conf'].mean():.3f} ± {df['blink_conf'].std():.3f}")