|
import tensorflow as tf |
|
import numpy as np |
|
from tensorflow.keras import backend as K |
|
from adabelief_tf import AdaBeliefOptimizer |
|
import matplotlib.pyplot as plt |
|
import os |
|
from glob import glob |
|
|
|
|
|
|
|
def visualize_prediction(original_img, mask_pred, tags_pred, save_path=None): |
|
plt.figure(figsize=(15, 5)) |
|
|
|
|
|
plt.subplot(1, 3, 1) |
|
plt.imshow(original_img[:,:,0], cmap='gray') |
|
plt.title('Original Image') |
|
plt.axis('off') |
|
|
|
|
|
plt.subplot(1, 3, 2) |
|
plt.imshow(mask_pred[:,:,0], cmap='jet') |
|
plt.title('Predicted Mask') |
|
plt.axis('off') |
|
|
|
|
|
plt.subplot(1, 3, 3) |
|
plt.imshow(original_img[:,:,0], cmap='gray') |
|
plt.imshow(mask_pred[:,:,0], cmap='jet', alpha=0.4) |
|
plt.title(f'Overlay\nEye: {tags_pred[0]:.3f}, Blink: {tags_pred[1]:.3f}') |
|
plt.axis('off') |
|
|
|
plt.tight_layout() |
|
if save_path: |
|
plt.savefig(save_path) |
|
plt.close() |
|
else: |
|
plt.show() |
|
|
|
def test_single_image(image_path, model, output_dir=None): |
|
print(f"\nTesting image: {os.path.basename(image_path)}") |
|
img = load_image(image_path) |
|
img_batch = tf.expand_dims(img, 0) |
|
|
|
|
|
mask_pred, tags_pred = model.predict(img_batch, verbose=0) |
|
|
|
print("Predictions:") |
|
print(f"Eye detection confidence: {tags_pred[0][0]:.3f}") |
|
print(f"Blink detection confidence: {tags_pred[0][1]:.3f}") |
|
|
|
|
|
if output_dir: |
|
base_name = os.path.splitext(os.path.basename(image_path))[0] |
|
save_path = os.path.join(output_dir, f'{base_name}_prediction.png') |
|
visualize_prediction(img.numpy(), mask_pred[0], tags_pred[0], save_path) |
|
|
|
return mask_pred[0], tags_pred[0] |
|
|
|
|
|
model_path = 'runs/b32_c-conv_d-|root|meye|data|NN_human_mouse_eyes|_g1.5_l0.001_num_c1_num_f16_num_s5_r128_se23_sp-random_up-relu_us0/best_model.h5' |
|
print("Loading model...") |
|
model = tf.keras.models.load_model(model_path, custom_objects=custom_objects) |
|
|
|
output_dir = "/root/meye/test_predictions" |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
print(f"\nSaving predictions to: {output_dir}") |
|
|
|
|
|
test_dir = "/root/meye/data/NN_human_mouse_eyes/fullFrames" |
|
image_files = glob(os.path.join(test_dir, "*.jpg"))[:10] |
|
|
|
print(f"\nTesting {len(image_files)} images...") |
|
results = [] |
|
|
|
for image_path in image_files: |
|
mask_pred, tags_pred = test_single_image(image_path, model, output_dir) |
|
results.append({ |
|
'image': os.path.basename(image_path), |
|
'eye_conf': tags_pred[0], |
|
'blink_conf': tags_pred[1] |
|
}) |
|
|
|
|
|
print("\nSummary:") |
|
df = pd.DataFrame(results) |
|
print("\nAverage confidences:") |
|
print(f"Eye detection: {df['eye_conf'].mean():.3f} ± {df['eye_conf'].std():.3f}") |
|
print(f"Blink detection: {df['blink_conf'].mean():.3f} ± {df['blink_conf'].std():.3f}") |