|
|
|
""" MEye: Semantic Segmentation """ |
|
|
|
import argparse |
|
import os |
|
|
|
os.sys.path += ['expman', 'models/deeplab'] |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
import math |
|
import numpy as np |
|
import pandas as pd |
|
import tensorflow as tf |
|
import tensorflowjs as tfjs |
|
from tensorflow.keras import backend as K |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler, CSVLogger |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import classification_report, roc_curve, auc, precision_recall_curve, average_precision_score |
|
from adabelief_tf import AdaBeliefOptimizer |
|
from tqdm.keras import TqdmCallback |
|
from tqdm import tqdm |
|
from functools import partial |
|
|
|
from dataloader import get_loader, load_datasets |
|
from deeplabv3p.models.deeplabv3p_mobilenetv3 import hard_swish |
|
from models.deeplab import build_model, AVAILABLE_BACKBONES |
|
from utils import visualize |
|
from expman import Experiment |
|
|
|
import evaluate |
|
|
|
|
|
def main(args): |
|
exp = Experiment(args, ignore=('epochs', 'resume')) |
|
print(exp) |
|
|
|
np.random.seed(args.seed) |
|
tf.random.set_seed(args.seed) |
|
|
|
data = load_datasets(args.data) |
|
|
|
|
|
if args.split == 'subjects': |
|
val_subjects = (6, 9, 11, 13, 16, 28, 30, 48, 49) |
|
test_subjects = (3, 4, 19, 38, 45, 46, 51, 52) |
|
train_data = data[~data['sub'].isin(val_subjects + test_subjects)] |
|
val_data = data[data['sub'].isin(val_subjects)] |
|
test_data = data[data['sub'].isin(test_subjects)] |
|
|
|
elif args.split == 'random': |
|
train_data, valtest_data = train_test_split(data, test_size=.3, shuffle=True) |
|
val_data, test_data = train_test_split(valtest_data, test_size=.33) |
|
|
|
lengths = map(len, (data, train_data, val_data, test_data)) |
|
print("Total: {} - Train / Val / Test: {} / {} / {}".format(*lengths)) |
|
|
|
x_shape = (args.resolution, args.resolution, 1) |
|
y_shape = (args.resolution, args.resolution, 1) |
|
|
|
train_gen, _ = get_loader(train_data, batch_size=args.batch_size, shuffle=True, augment=True, x_shape=x_shape) |
|
val_gen, val_categories = get_loader(val_data, batch_size=args.batch_size, x_shape=x_shape) |
|
|
|
|
|
log = exp.path_to('log.csv') |
|
|
|
|
|
best_weights_path = exp.path_to('best_weights.h5') |
|
best_mask_weights_path = exp.path_to('best_weights_mask.h5') |
|
|
|
|
|
best_ckpt_path = exp.path_to('best_model.h5') |
|
last_ckpt_path = exp.path_to('last_model.h5') |
|
|
|
if args.resume and os.path.exists(last_ckpt_path): |
|
custom_objects={'AdaBeliefOptimizer': AdaBeliefOptimizer, 'iou_coef': evaluate.iou_coef, 'dice_coef': evaluate.dice_coef, 'hard_swish': hard_swish} |
|
model = tf.keras.models.load_model(last_ckpt_path, custom_objects=custom_objects) |
|
optimizer = model.optimizer |
|
initial_epoch = len(pd.read_csv(log)) |
|
else: |
|
config = vars(args) |
|
model = build_model(x_shape, y_shape, config) |
|
optimizer = AdaBeliefOptimizer(learning_rate=args.lr, print_change_log=False) |
|
initial_epoch = 0 |
|
|
|
model.compile(optimizer=optimizer, |
|
loss='binary_crossentropy', |
|
metrics={'mask': [evaluate.iou_coef, evaluate.dice_coef], |
|
'tags': 'binary_accuracy'}) |
|
|
|
model_stopped_file = exp.path_to('early_stopped.txt') |
|
need_training = not os.path.exists(model_stopped_file) and initial_epoch < args.epochs |
|
if need_training: |
|
best_checkpointer = ModelCheckpoint(best_weights_path, monitor='val_loss', save_best_only=True, save_weights_only=True) |
|
best_mask_checkpointer = ModelCheckpoint(best_mask_weights_path, monitor='val_mask_dice_coef', mode='max', save_best_only=True, save_weights_only=True) |
|
last_checkpointer = ModelCheckpoint(last_ckpt_path, save_best_only=False, save_weights_only=False) |
|
logger = CSVLogger(log, append=args.resume) |
|
progress = TqdmCallback(verbose=1, initial=initial_epoch, dynamic_ncols=True) |
|
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_mask_dice_coef', mode='max', patience=100) |
|
|
|
callbacks = [best_checkpointer, best_mask_checkpointer, last_checkpointer, logger, progress, early_stop] |
|
|
|
model.fit(train_gen, |
|
epochs=args.epochs, |
|
callbacks=callbacks, |
|
initial_epoch=initial_epoch, |
|
steps_per_epoch=len(train_gen), |
|
validation_data=val_gen, |
|
validation_steps=len(val_gen), |
|
verbose=False) |
|
|
|
if model.stop_training: |
|
open(model_stopped_file, 'w').close() |
|
|
|
tf.keras.models.save_model(model, best_ckpt_path, include_optimizer=False) |
|
|
|
|
|
evaluate.evaluate(exp, force=need_training) |
|
|
|
|
|
model.load_weights(best_mask_weights_path) |
|
best_savedmodel_path = exp.path_to('best_savedmodel') |
|
model.save(best_savedmodel_path, save_traces=True) |
|
|
|
|
|
tfjs_model_dir = exp.path_to('tfjs') |
|
tfjs.converters.save_keras_model(model, tfjs_model_dir) |
|
|
|
|
|
if __name__ == '__main__': |
|
default_data = ['data/NN_human_mouse_eyes'] |
|
|
|
parser = argparse.ArgumentParser(description='Train DeepLab models') |
|
|
|
parser.add_argument('-d', '--data', nargs='+', default=default_data, help='Data directory (may be multiple)') |
|
parser.add_argument('--split', default='random', choices=('random', 'subjects'), help='How to split data') |
|
parser.add_argument('-r', '--resolution', type=int, default=128, help='Input image resolution') |
|
|
|
|
|
parser.add_argument('-a', '--backbone', default='resnet50', choices=AVAILABLE_BACKBONES, help='Backbone architecture') |
|
|
|
|
|
parser.add_argument('--lr', type=float, default=0.001, help='learning rate') |
|
parser.add_argument('-b', '--batch-size', type=int, default=32, help='Batch size') |
|
parser.add_argument('-e', '--epochs', type=int, default=500, help='Number of training epochs') |
|
parser.add_argument('-s', '--seed', type=int, default=23, help='Random seed') |
|
parser.add_argument('--resume', default=False, action='store_true', help='Resume training') |
|
|
|
args = parser.parse_args() |
|
main(args) |
|
|