import argparse import imageio import numpy as np from tensorflow.keras.models import load_model from PIL import Image, ImageOps from tqdm import tqdm from utils import draw_predictions, compute_metrics def main(args): video = imageio.get_reader(args.video) n_frames = video.count_frames() fps = video.get_meta_data()['fps'] frame_w, frame_h = video.get_meta_data()['size'] model = load_model(args.model, compile=False) input_shape = model.input.shape[1:3] # default RoI if None in (args.rl, args.rt, args.rr, args.rb): side = min(frame_w, frame_h) args.rl = (frame_w - side) / 2 args.rt = (frame_h - side) / 2 args.rr = (frame_w + side) / 2 args.rb = (frame_h + side) / 2 crop = (args.rl, args.rt, args.rr, args.rb) def preprocess(frame): frame = Image.fromarray(frame) eye = frame.crop(crop) eye = ImageOps.grayscale(eye) eye = eye.resize(input_shape) return eye def predict(eye): eye = np.array(eye).astype(np.float32) / 255.0 eye = eye[None, :, :, None] return model.predict(eye) out_video = imageio.get_writer(args.output_video, fps=fps) cropped = map(preprocess, video) frames_and_predictions = map(lambda x: (x, predict(x)), cropped) with open(args.output_csv, 'w') as out_csv: print('frame,pupil-area,pupil-x,pupil-y,eye,blink', file=out_csv) for idx, (frame, predictions) in enumerate(tqdm(frames_and_predictions, total=n_frames)): pupil_map, tags = predictions is_eye, is_blink = tags.squeeze() (pupil_y, pupil_x), pupil_area = compute_metrics(pupil_map, thr=args.thr, nms=True) row = [idx, pupil_area, pupil_x, pupil_y, is_eye, is_blink] row = ','.join(list(map(str, row))) print(row, file=out_csv) img = draw_predictions(frame, predictions, thr=args.thr) img = np.array(img) out_video.append_data(img) out_video.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict on test video') parser.add_argument('model', type=str, help='Path to model') parser.add_argument('video', type=str, default='', help='Video file to process (use \'\' for webcam)') parser.add_argument('-t', '--thr', type=float, default=0.5, help='Map Threshold') parser.add_argument('-rl', type=int, help='RoI X coordinate of top left corner') parser.add_argument('-rt', type=int, help='RoI Y coordinate of top left corner') parser.add_argument('-rr', type=int, help='RoI X coordinate of right bottom corner') parser.add_argument('-rb', type=int, help='RoI Y coordinate of right bottom corner') parser.add_argument('-ov', '--output-video', default='predictions.mp4', help='Output video') parser.add_argument('-oc', '--output-csv', default='pupillometry.csv', help='Output CSV') args = parser.parse_args() main(args)