Update README.md
Browse files
README.md
CHANGED
@@ -21,22 +21,22 @@ tags:
|
|
21 |
license: apache-2.0
|
22 |
pipeline_tag: image-classification
|
23 |
base_model:
|
24 |
-
- galeio-research/
|
25 |
---
|
26 |
|
27 |
-
# Model Card for
|
28 |
|
29 |
## Model Details
|
30 |
|
31 |
### Model Description
|
32 |
|
33 |
-
|
34 |
|
35 |
- **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
|
36 |
- **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
|
37 |
- **Model type:** Linear Classification Head on Vision Foundation Model
|
38 |
- **License:** Apache License 2.0
|
39 |
-
- **Base model:**
|
40 |
- **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
|
41 |
|
42 |
## Uses
|
@@ -68,14 +68,14 @@ import torch
|
|
68 |
from transformers import AutoModelForImageClassification
|
69 |
|
70 |
# Load the foundation model and classification head
|
71 |
-
|
72 |
|
73 |
# Prepare your SAR image (should be single-channel VV polarization)
|
74 |
dummy_image = torch.randn(1, 1, 256, 256) # (B, C, H, W)
|
75 |
|
76 |
# Extract features and classify geophysical phenomena
|
77 |
with torch.no_grad():
|
78 |
-
outputs =
|
79 |
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
80 |
```
|
81 |
|
@@ -86,7 +86,7 @@ with torch.no_grad():
|
|
86 |
- **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
|
87 |
- **Labels:** 10 classes of ocean geophysical phenomena
|
88 |
- **Size:** Balanced dataset across all classes
|
89 |
-
- **Preprocessing:** Same as base
|
90 |
|
91 |
## Evaluation
|
92 |
|
@@ -120,11 +120,11 @@ The model outperforms existing approaches:
|
|
120 |
|
121 |
- PyTorch >= 1.8.0
|
122 |
- Transformers >= 4.30.0
|
123 |
-
- Base
|
124 |
|
125 |
### Input Specifications
|
126 |
|
127 |
-
- Same as base
|
128 |
- Single channel (VV polarization) SAR images
|
129 |
- 256x256 pixel resolution
|
130 |
|
|
|
21 |
license: apache-2.0
|
22 |
pipeline_tag: image-classification
|
23 |
base_model:
|
24 |
+
- galeio-research/OceanSAR-1
|
25 |
---
|
26 |
|
27 |
+
# Model Card for OceanSAR-1-TenGeoP
|
28 |
|
29 |
## Model Details
|
30 |
|
31 |
### Model Description
|
32 |
|
33 |
+
OceanSAR-1-TenGeoP is a linear probing head for classifying ocean geophysical phenomena, built on top of the OceanSAR-1 foundation model. It leverages the powerful features extracted by OceanSAR-1 to accurately identify 10 different geophysical phenomena in Synthetic Aperture Radar (SAR) imagery.
|
34 |
|
35 |
- **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
|
36 |
- **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
|
37 |
- **Model type:** Linear Classification Head on Vision Foundation Model
|
38 |
- **License:** Apache License 2.0
|
39 |
+
- **Base model:** OceanSAR-1 (ResNet50/ViT variants)
|
40 |
- **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
|
41 |
|
42 |
## Uses
|
|
|
68 |
from transformers import AutoModelForImageClassification
|
69 |
|
70 |
# Load the foundation model and classification head
|
71 |
+
oceansar = AutoModelForImageClassification.from_pretrained("galeio-research/OceanSAR-1-tengeop")
|
72 |
|
73 |
# Prepare your SAR image (should be single-channel VV polarization)
|
74 |
dummy_image = torch.randn(1, 1, 256, 256) # (B, C, H, W)
|
75 |
|
76 |
# Extract features and classify geophysical phenomena
|
77 |
with torch.no_grad():
|
78 |
+
outputs = oceansar(dummy_image)
|
79 |
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
80 |
```
|
81 |
|
|
|
86 |
- **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
|
87 |
- **Labels:** 10 classes of ocean geophysical phenomena
|
88 |
- **Size:** Balanced dataset across all classes
|
89 |
+
- **Preprocessing:** Same as base OceanSAR-1 model
|
90 |
|
91 |
## Evaluation
|
92 |
|
|
|
120 |
|
121 |
- PyTorch >= 1.8.0
|
122 |
- Transformers >= 4.30.0
|
123 |
+
- Base OceanSAR-1 model
|
124 |
|
125 |
### Input Specifications
|
126 |
|
127 |
+
- Same as base OceanSAR-1 model
|
128 |
- Single channel (VV polarization) SAR images
|
129 |
- 256x256 pixel resolution
|
130 |
|