thomasker commited on
Commit
a52ff6f
·
verified ·
1 Parent(s): 3ba0f7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -21,22 +21,22 @@ tags:
21
  license: apache-2.0
22
  pipeline_tag: image-classification
23
  base_model:
24
- - galeio-research/nereus-sar-1
25
  ---
26
 
27
- # Model Card for Nereus-SAR-1-TenGeoP
28
 
29
  ## Model Details
30
 
31
  ### Model Description
32
 
33
- Nereus-SAR-1-TenGeoP is a linear probing head for classifying ocean geophysical phenomena, built on top of the Nereus-SAR-1 foundation model. It leverages the powerful features extracted by Nereus-SAR-1 to accurately identify 10 different geophysical phenomena in Synthetic Aperture Radar (SAR) imagery.
34
 
35
  - **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
36
  - **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
37
  - **Model type:** Linear Classification Head on Vision Foundation Model
38
  - **License:** Apache License 2.0
39
- - **Base model:** Nereus-SAR-1 (ResNet50/ViT variants)
40
  - **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
41
 
42
  ## Uses
@@ -68,14 +68,14 @@ import torch
68
  from transformers import AutoModelForImageClassification
69
 
70
  # Load the foundation model and classification head
71
- nereus = AutoModelForImageClassification.from_pretrained("galeio-research/nereus-sar-1-tengeo")
72
 
73
  # Prepare your SAR image (should be single-channel VV polarization)
74
  dummy_image = torch.randn(1, 1, 256, 256) # (B, C, H, W)
75
 
76
  # Extract features and classify geophysical phenomena
77
  with torch.no_grad():
78
- outputs = nereus(dummy_image)
79
  predicted_class = torch.argmax(outputs.logits, dim=1).item()
80
  ```
81
 
@@ -86,7 +86,7 @@ with torch.no_grad():
86
  - **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
87
  - **Labels:** 10 classes of ocean geophysical phenomena
88
  - **Size:** Balanced dataset across all classes
89
- - **Preprocessing:** Same as base Nereus-SAR-1 model
90
 
91
  ## Evaluation
92
 
@@ -120,11 +120,11 @@ The model outperforms existing approaches:
120
 
121
  - PyTorch >= 1.8.0
122
  - Transformers >= 4.30.0
123
- - Base Nereus-SAR-1 model
124
 
125
  ### Input Specifications
126
 
127
- - Same as base Nereus-SAR-1 model
128
  - Single channel (VV polarization) SAR images
129
  - 256x256 pixel resolution
130
 
 
21
  license: apache-2.0
22
  pipeline_tag: image-classification
23
  base_model:
24
+ - galeio-research/OceanSAR-1
25
  ---
26
 
27
+ # Model Card for OceanSAR-1-TenGeoP
28
 
29
  ## Model Details
30
 
31
  ### Model Description
32
 
33
+ OceanSAR-1-TenGeoP is a linear probing head for classifying ocean geophysical phenomena, built on top of the OceanSAR-1 foundation model. It leverages the powerful features extracted by OceanSAR-1 to accurately identify 10 different geophysical phenomena in Synthetic Aperture Radar (SAR) imagery.
34
 
35
  - **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
36
  - **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
37
  - **Model type:** Linear Classification Head on Vision Foundation Model
38
  - **License:** Apache License 2.0
39
+ - **Base model:** OceanSAR-1 (ResNet50/ViT variants)
40
  - **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
41
 
42
  ## Uses
 
68
  from transformers import AutoModelForImageClassification
69
 
70
  # Load the foundation model and classification head
71
+ oceansar = AutoModelForImageClassification.from_pretrained("galeio-research/OceanSAR-1-tengeop")
72
 
73
  # Prepare your SAR image (should be single-channel VV polarization)
74
  dummy_image = torch.randn(1, 1, 256, 256) # (B, C, H, W)
75
 
76
  # Extract features and classify geophysical phenomena
77
  with torch.no_grad():
78
+ outputs = oceansar(dummy_image)
79
  predicted_class = torch.argmax(outputs.logits, dim=1).item()
80
  ```
81
 
 
86
  - **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
87
  - **Labels:** 10 classes of ocean geophysical phenomena
88
  - **Size:** Balanced dataset across all classes
89
+ - **Preprocessing:** Same as base OceanSAR-1 model
90
 
91
  ## Evaluation
92
 
 
120
 
121
  - PyTorch >= 1.8.0
122
  - Transformers >= 4.30.0
123
+ - Base OceanSAR-1 model
124
 
125
  ### Input Specifications
126
 
127
+ - Same as base OceanSAR-1 model
128
  - Single channel (VV polarization) SAR images
129
  - 256x256 pixel resolution
130