Balocre commited on
Commit
f0f9f57
·
verified ·
1 Parent(s): 8c1652d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -154
README.md CHANGED
@@ -1,199 +1,141 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
- #### Factors
 
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
 
 
 
 
 
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
126
 
127
- ### Results
128
 
129
- [More Information Needed]
 
 
130
 
131
- #### Summary
132
 
 
 
 
133
 
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - resnet
5
+ - SAR
6
+ - RADAR
7
+ - EO
8
+ - classification
9
+ - linear-probe
10
+ - sentinel-1
11
+ - ocean
12
+ - tengeop
13
+ license: apache-2.0
14
+ pipeline_tag: image-classification
15
+ base_model:
16
+ - galeio-research/nereus-sar-1
17
  ---
18
 
19
+ # Model Card for Nereus-SAR-1-TenGeoP
 
 
 
 
20
 
21
  ## Model Details
22
 
23
  ### Model Description
24
 
25
+ Nereus-SAR-1-TenGeoP is a linear probing head for classifying ocean geophysical phenomena, built on top of the Nereus-SAR-1 foundation model. It leverages the powerful features extracted by Nereus-SAR-1 to accurately identify 10 different geophysical phenomena in Synthetic Aperture Radar (SAR) imagery.
 
 
26
 
27
+ - **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
28
+ - **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
29
+ - **Model type:** Linear Classification Head on Vision Foundation Model
30
+ - **License:** Apache License 2.0
31
+ - **Base model:** Nereus-SAR-1 (ResNet50/ViT variants)
32
+ - **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
 
 
 
 
 
 
 
 
 
33
 
34
  ## Uses
35
 
 
 
36
  ### Direct Use
37
 
38
+ This model is designed for automated classification of geophysical phenomena in SAR imagery over ocean surfaces. It can be used for:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ - Rapid identification of ocean features in SAR data
41
+ - Monitoring of maritime environments
42
+ - Automated analysis of large SAR datasets
43
+ - Ocean science and research applications
44
 
45
+ ### Performance Results
46
 
47
+ The model achieves state-of-the-art performance on TenGeoP classification, with performance varying by backbone architecture:
48
 
49
+ | Backbone | TenGeoP Accuracy (%) |
50
+ |----------|---------------------|
51
+ | ResNet50 | 75.5 |
52
+ | ViT-S/16 | 78.6 |
53
+ | ViT-S/8 | 82.1 |
54
+ | ViT-B/8 | 83.6 |
55
 
56
+ ## How to Use
57
 
58
+ ```python
59
+ import torch
60
+ from transformers import AutoModelForImageClassification
61
 
62
+ # Load the foundation model and classification head
63
+ nereus = AutoModelForImageClassification.from_pretrained("galeio-research/nereus-sar-1-tengeo")
64
 
65
+ # Prepare your SAR image (should be single-channel VV polarization)
66
+ dummy_image = torch.randn(1, 1, 256, 256) # (B, C, H, W)
67
 
68
+ # Extract features and classify geophysical phenomena
69
+ with torch.no_grad():
70
+ outputs = nereus(dummy_image)
71
+ predicted_class = torch.argmax(outputs.logits, dim=1).item()
72
+ ```
73
 
74
  ## Training Details
75
 
76
  ### Training Data
77
 
78
+ - **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
79
+ - **Labels:** 10 classes of ocean geophysical phenomena
80
+ - **Size:** Balanced dataset across all classes
81
+ - **Preprocessing:** Same as base Nereus-SAR-1 model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
  ## Evaluation
84
 
85
+ ### Metrics
 
 
 
 
 
 
 
 
86
 
87
+ TenGeoP classification performance is evaluated using accuracy (%), achieving:
88
+ - 75.5% accuracy with ResNet50 backbone
89
+ - 78.6% accuracy with ViT-S/16 backbone
90
+ - 82.1% accuracy with ViT-S/8 backbone
91
+ - 83.6% accuracy with ViT-B/8 backbone
92
 
93
+ ### Comparison to Other Backbones
94
 
95
+ The model outperforms existing approaches:
96
+ - CROMA (ViT-B/8): 65.4% accuracy
97
+ - MoCo (ResNet50): 60.9% accuracy
98
+ - DeCUR (ResNet50): 58.3% accuracy
99
+ - DOFA (ViT-B/16): 58.4% accuracy
100
+ - DOFA (ViT-L/16): 63.4% accuracy
101
+ - SoftCon (ViT-S/14): 73.2% accuracy
102
+ - SoftCon (ViT-B/14): 74.8% accuracy
103
 
104
+ ## Technical Specifications
105
 
106
+ ### Hardware Requirements
107
 
108
+ - Same as base model
109
+ - Minimal additional computational cost for inference
110
 
111
+ ### Dependencies
112
 
113
+ - PyTorch >= 1.8.0
114
+ - Transformers >= 4.30.0
115
+ - Base Nereus-SAR-1 model
116
 
117
+ ### Input Specifications
118
 
119
+ - Same as base Nereus-SAR-1 model
120
+ - Single channel (VV polarization) SAR images
121
+ - 256x256 pixel resolution
122
 
123
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
  **BibTeX:**
126
+ ```bibtex
127
+ @article{kerdreux2025efficientselfsupervisedlearningearth,
128
+ title={Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation},
129
+ author={Kerdreux, Thomas and Tuel, Alexandre and Febvre, Quentin and Mouche, Alexis and Chapron, Bertrand},
130
+ journal={arXiv preprint arXiv:2504.06962},
131
+ year={2025},
132
+ eprint={2504.06962},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.CV},
135
+ url={https://arxiv.org/abs/2504.06962},
136
+ }
137
+ ```
138
+
139
+ ## Acknowledgements
140
+
141
+ This work was granted access to the HPC resources of IDRIS and TGCC under the allocation 2025-[A0171015666] made by GENCI.