Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,141 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
|
|
|
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
|
|
126 |
|
127 |
-
###
|
128 |
|
129 |
-
|
|
|
|
|
130 |
|
131 |
-
|
132 |
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
##
|
190 |
-
|
191 |
-
[
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- resnet
|
5 |
+
- SAR
|
6 |
+
- RADAR
|
7 |
+
- EO
|
8 |
+
- classification
|
9 |
+
- linear-probe
|
10 |
+
- sentinel-1
|
11 |
+
- ocean
|
12 |
+
- tengeop
|
13 |
+
license: apache-2.0
|
14 |
+
pipeline_tag: image-classification
|
15 |
+
base_model:
|
16 |
+
- galeio-research/nereus-sar-1
|
17 |
---
|
18 |
|
19 |
+
# Model Card for Nereus-SAR-1-TenGeoP
|
|
|
|
|
|
|
|
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
### Model Description
|
24 |
|
25 |
+
Nereus-SAR-1-TenGeoP is a linear probing head for classifying ocean geophysical phenomena, built on top of the Nereus-SAR-1 foundation model. It leverages the powerful features extracted by Nereus-SAR-1 to accurately identify 10 different geophysical phenomena in Synthetic Aperture Radar (SAR) imagery.
|
|
|
|
|
26 |
|
27 |
+
- **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr)
|
28 |
+
- **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr)
|
29 |
+
- **Model type:** Linear Classification Head on Vision Foundation Model
|
30 |
+
- **License:** Apache License 2.0
|
31 |
+
- **Base model:** Nereus-SAR-1 (ResNet50/ViT variants)
|
32 |
+
- **Training data:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Uses
|
35 |
|
|
|
|
|
36 |
### Direct Use
|
37 |
|
38 |
+
This model is designed for automated classification of geophysical phenomena in SAR imagery over ocean surfaces. It can be used for:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
- Rapid identification of ocean features in SAR data
|
41 |
+
- Monitoring of maritime environments
|
42 |
+
- Automated analysis of large SAR datasets
|
43 |
+
- Ocean science and research applications
|
44 |
|
45 |
+
### Performance Results
|
46 |
|
47 |
+
The model achieves state-of-the-art performance on TenGeoP classification, with performance varying by backbone architecture:
|
48 |
|
49 |
+
| Backbone | TenGeoP Accuracy (%) |
|
50 |
+
|----------|---------------------|
|
51 |
+
| ResNet50 | 75.5 |
|
52 |
+
| ViT-S/16 | 78.6 |
|
53 |
+
| ViT-S/8 | 82.1 |
|
54 |
+
| ViT-B/8 | 83.6 |
|
55 |
|
56 |
+
## How to Use
|
57 |
|
58 |
+
```python
|
59 |
+
import torch
|
60 |
+
from transformers import AutoModelForImageClassification
|
61 |
|
62 |
+
# Load the foundation model and classification head
|
63 |
+
nereus = AutoModelForImageClassification.from_pretrained("galeio-research/nereus-sar-1-tengeo")
|
64 |
|
65 |
+
# Prepare your SAR image (should be single-channel VV polarization)
|
66 |
+
dummy_image = torch.randn(1, 1, 256, 256) # (B, C, H, W)
|
67 |
|
68 |
+
# Extract features and classify geophysical phenomena
|
69 |
+
with torch.no_grad():
|
70 |
+
outputs = nereus(dummy_image)
|
71 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
72 |
+
```
|
73 |
|
74 |
## Training Details
|
75 |
|
76 |
### Training Data
|
77 |
|
78 |
+
- **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with labeled geophysical phenomena
|
79 |
+
- **Labels:** 10 classes of ocean geophysical phenomena
|
80 |
+
- **Size:** Balanced dataset across all classes
|
81 |
+
- **Preprocessing:** Same as base Nereus-SAR-1 model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
## Evaluation
|
84 |
|
85 |
+
### Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
TenGeoP classification performance is evaluated using accuracy (%), achieving:
|
88 |
+
- 75.5% accuracy with ResNet50 backbone
|
89 |
+
- 78.6% accuracy with ViT-S/16 backbone
|
90 |
+
- 82.1% accuracy with ViT-S/8 backbone
|
91 |
+
- 83.6% accuracy with ViT-B/8 backbone
|
92 |
|
93 |
+
### Comparison to Other Backbones
|
94 |
|
95 |
+
The model outperforms existing approaches:
|
96 |
+
- CROMA (ViT-B/8): 65.4% accuracy
|
97 |
+
- MoCo (ResNet50): 60.9% accuracy
|
98 |
+
- DeCUR (ResNet50): 58.3% accuracy
|
99 |
+
- DOFA (ViT-B/16): 58.4% accuracy
|
100 |
+
- DOFA (ViT-L/16): 63.4% accuracy
|
101 |
+
- SoftCon (ViT-S/14): 73.2% accuracy
|
102 |
+
- SoftCon (ViT-B/14): 74.8% accuracy
|
103 |
|
104 |
+
## Technical Specifications
|
105 |
|
106 |
+
### Hardware Requirements
|
107 |
|
108 |
+
- Same as base model
|
109 |
+
- Minimal additional computational cost for inference
|
110 |
|
111 |
+
### Dependencies
|
112 |
|
113 |
+
- PyTorch >= 1.8.0
|
114 |
+
- Transformers >= 4.30.0
|
115 |
+
- Base Nereus-SAR-1 model
|
116 |
|
117 |
+
### Input Specifications
|
118 |
|
119 |
+
- Same as base Nereus-SAR-1 model
|
120 |
+
- Single channel (VV polarization) SAR images
|
121 |
+
- 256x256 pixel resolution
|
122 |
|
123 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
**BibTeX:**
|
126 |
+
```bibtex
|
127 |
+
@article{kerdreux2025efficientselfsupervisedlearningearth,
|
128 |
+
title={Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation},
|
129 |
+
author={Kerdreux, Thomas and Tuel, Alexandre and Febvre, Quentin and Mouche, Alexis and Chapron, Bertrand},
|
130 |
+
journal={arXiv preprint arXiv:2504.06962},
|
131 |
+
year={2025},
|
132 |
+
eprint={2504.06962},
|
133 |
+
archivePrefix={arXiv},
|
134 |
+
primaryClass={cs.CV},
|
135 |
+
url={https://arxiv.org/abs/2504.06962},
|
136 |
+
}
|
137 |
+
```
|
138 |
+
|
139 |
+
## Acknowledgements
|
140 |
+
|
141 |
+
This work was granted access to the HPC resources of IDRIS and TGCC under the allocation 2025-[A0171015666] made by GENCI.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|