File size: 4,718 Bytes
5fb7835
 
9e2722b
 
5fb7835
 
 
 
 
 
 
 
 
 
 
 
 
9e2722b
5fb7835
9e2722b
 
5fb7835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
datasets:
- ai_light_dance
model-index:
- name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2

This model is a fine-tuned version of [gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_1](https://huggingface.co/gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_1) on the GARY109/AI_LIGHT_DANCE - ONSET-DRUMS_FOLD_2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4180
- Wer: 0.1433

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3238        | 0.99  | 69   | 0.4581          | 0.2081 |
| 0.275         | 1.99  | 138  | 0.6494          | 0.3343 |
| 0.2965        | 2.99  | 207  | 0.6193          | 0.2275 |
| 0.3406        | 3.99  | 276  | 0.6934          | 0.2615 |
| 0.3906        | 4.99  | 345  | 0.6265          | 0.1835 |
| 0.4643        | 5.99  | 414  | 0.5879          | 0.1899 |
| 0.4652        | 6.99  | 483  | 0.4961          | 0.1604 |
| 0.4512        | 7.99  | 552  | 0.5712          | 0.2801 |
| 0.5321        | 8.99  | 621  | 0.6898          | 0.2936 |
| 0.64          | 9.99  | 690  | 0.5916          | 0.2648 |
| 0.2959        | 10.99 | 759  | 0.5574          | 0.1745 |
| 0.2053        | 11.99 | 828  | 0.5216          | 0.2009 |
| 0.2433        | 12.99 | 897  | 0.4738          | 0.1643 |
| 0.2036        | 13.99 | 966  | 0.5063          | 0.1651 |
| 0.2654        | 14.99 | 1035 | 0.4904          | 0.1511 |
| 0.3641        | 15.99 | 1104 | 0.4660          | 0.1669 |
| 0.373         | 16.99 | 1173 | 0.5133          | 0.2106 |
| 0.4715        | 17.99 | 1242 | 0.5313          | 0.1912 |
| 0.4893        | 18.99 | 1311 | 0.5152          | 0.1712 |
| 0.4875        | 19.99 | 1380 | 0.5482          | 0.1718 |
| 0.1971        | 20.99 | 1449 | 0.4566          | 0.1449 |
| 0.1286        | 21.99 | 1518 | 0.4515          | 0.1478 |
| 0.1472        | 22.99 | 1587 | 0.5059          | 0.1418 |
| 0.1917        | 23.99 | 1656 | 0.5583          | 0.1457 |
| 0.2874        | 24.99 | 1725 | 0.5195          | 0.1503 |
| 0.2252        | 25.99 | 1794 | 0.4409          | 0.1506 |
| 0.3142        | 26.99 | 1863 | 0.4180          | 0.1433 |
| 0.385         | 27.99 | 1932 | 0.4708          | 0.1367 |
| 0.4296        | 28.99 | 2001 | 0.4740          | 0.1506 |
| 0.4404        | 29.99 | 2070 | 0.4652          | 0.1646 |
| 0.2466        | 30.99 | 2139 | 0.5013          | 0.1528 |
| 0.1017        | 31.99 | 2208 | 0.4578          | 0.1552 |
| 0.1383        | 32.99 | 2277 | 0.5026          | 0.1419 |
| 0.1719        | 33.99 | 2346 | 0.4651          | 0.1442 |
| 0.1808        | 34.99 | 2415 | 0.4499          | 0.1412 |
| 0.2429        | 35.99 | 2484 | 0.4523          | 0.1472 |
| 0.2651        | 36.99 | 2553 | 0.4544          | 0.1397 |
| 0.2748        | 37.99 | 2622 | 0.4181          | 0.1386 |
| 0.4171        | 38.99 | 2691 | 0.4385          | 0.1334 |
| 0.4119        | 39.99 | 2760 | 0.4568          | 0.1504 |
| 0.1453        | 40.99 | 2829 | 0.4425          | 0.1431 |
| 0.105         | 41.99 | 2898 | 0.4367          | 0.1353 |
| 0.1205        | 42.99 | 2967 | 0.4418          | 0.1340 |
| 0.2039        | 43.99 | 3036 | 0.4586          | 0.1379 |
| 0.1773        | 44.99 | 3105 | 0.4686          | 0.1391 |
| 0.2186        | 45.99 | 3174 | 0.4975          | 0.1446 |
| 0.2358        | 46.99 | 3243 | 0.4886          | 0.1448 |
| 0.3525        | 47.99 | 3312 | 0.4706          | 0.1398 |
| 0.3713        | 48.99 | 3381 | 0.4713          | 0.1388 |
| 0.3543        | 49.99 | 3450 | 0.4720          | 0.1388 |


### Framework versions

- Transformers 4.24.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1