gauneg commited on
Commit
a83d7cd
·
verified ·
1 Parent(s): 11a2f11

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -5,4 +5,55 @@ language:
5
  base_model:
6
  - google-bert/bert-base-uncased
7
  library_name: transformers
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  base_model:
6
  - google-bert/bert-base-uncased
7
  library_name: transformers
8
+ ---
9
+
10
+ This model requires custom code as it uses GridTaggingScheme to predict the labels on the input. For the convenience,
11
+ the custom code and model architecture has been included with the model.
12
+
13
+ ## Example Code for inferencing
14
+
15
+ ### STEP 1 (Installing huggingface libs)
16
+
17
+ ```bash
18
+ pip install --upgrade huggingface_hub
19
+ ```
20
+
21
+ ### STEP 2 (Download the custom code and model to predict opinion target, opinion span and sentiment polarity)
22
+ ```python
23
+
24
+ from huggingface_hub import hf_hub_download
25
+ import sys
26
+ # Download the custom model code
27
+ bert_gts_pretrained = hf_hub_download(repo_id="gauneg/bert-gts-absa-triple", filename="bert_gts_pretrained.py")
28
+ post = hf_hub_download(repo_id="gauneg/bert-gts-absa-triple", filename="post.py")
29
+
30
+ sys.path.append(bert_gts_pretrained)
31
+ sys.path.append(post)
32
+
33
+ from bert_gts_model import GTSBertBaseABSATriple
34
+ from token_decode_module import DecodeAndEvaluate
35
+ from bert_gts_pretrained import GTSBertBaseABSATriple
36
+ from post import DecodeAndEvaluate
37
+
38
+
39
+ from transformers import AutoTokenizer
40
+
41
+ model_id = 'gauneg/bert-gts-absa-triple'
42
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
43
+ model = GTSBertBaseABSATriple.from_pretrained(model_id)
44
+ dec_and_infer = DecodeAndEvaluate(tokenizer)
45
+ test_sentence0 = """I charge it at night and skip taking the cord with me because of the good battery life ."""
46
+ test_sentence = "The Dell Inspiron 14 Plus is the most well-rounded laptop with great display and battery life that money can buy."
47
+
48
+
49
+ # prediction
50
+ print(dec_and_infer.decode_predict_string_one(test_sentence, model))
51
+
52
+ ```
53
+ Expected output
54
+
55
+ ```bash
56
+ [['display', 'well - rounded', 'positive'],
57
+ ['display', 'great', 'positive'],
58
+ ['battery life', 'great', 'positive']]
59
+ ```