gbpatentdata commited on
Commit
d315354
·
verified ·
1 Parent(s): 65ef06c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -60
README.md CHANGED
@@ -12,17 +12,10 @@ tags:
12
 
13
  # gbpatentdata/lt-patent-inventor-linking
14
 
15
- This is a [LinkTransformer](https://linktransformer.github.io/) model. At its core this model this is a sentence transformer model [sentence-transformers](https://www.SBERT.net) model- it just wraps around the class.
16
- It is designed for quick and easy record linkage (entity-matching) through the LinkTransformer package. The tasks include clustering, deduplication, linking, aggregation and more.
17
- Notwithstanding that, it can be used for any sentence similarity task within the sentence-transformers framework as well.
18
- It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
19
  Take a look at the documentation of [sentence-transformers](https://www.sbert.net/index.html) if you want to use this model for more than what we support in our applications.
20
 
21
-
22
- This model has been fine-tuned on the model : sentence-transformers/all-mpnet-base-v2. It is pretrained for the language : - en.
23
-
24
-
25
- test
26
 
27
  ## Usage (LinkTransformer)
28
 
@@ -38,56 +31,18 @@ Then you can use the model like this:
38
  import linktransformer as lt
39
  import pandas as pd
40
 
41
- ##Load the two dataframes that you want to link. For example, 2 dataframes with company names that are written differently
42
- df1=pd.read_csv("data/df1.csv") ###This is the left dataframe with key CompanyName for instance
43
- df2=pd.read_csv("data/df2.csv") ###This is the right dataframe with key CompanyName for instance
44
-
45
- ###Merge the two dataframes on the key column!
46
- df_merged = lt.merge(df1, df2, on="CompanyName", how="inner")
47
-
48
- ##Done! The merged dataframe has a column called "score" that contains the similarity score between the two company names
49
-
50
- ```
51
-
52
-
53
- ## Training your own LinkTransformer model
54
- Any Sentence Transformers can be used as a backbone by simply adding a pooling layer. Any other transformer on HuggingFace can also be used by specifying the option add_pooling_layer==True
55
- The model was trained using SupCon loss.
56
- Usage can be found in the package docs.
57
- The training config can be found in the repo with the name LT_training_config.json
58
- To replicate the training, you can download the file and specify the path in the config_path argument of the training function. You can also override the config by specifying the training_args argument.
59
- Here is an example.
60
-
61
-
62
- ```python
63
-
64
- ##Consider the example in the paper that has a dataset of Mexican products and their tariff codes from 1947 and 1948 and we want train a model to link the two tariff codes.
65
- saved_model_path = train_model(
66
- model_path="hiiamsid/sentence_similarity_spanish_es",
67
- dataset_path=dataset_path,
68
- left_col_names=["description47"],
69
- right_col_names=['description48'],
70
- left_id_name=['tariffcode47'],
71
- right_id_name=['tariffcode48'],
72
- log_wandb=False,
73
- config_path=LINKAGE_CONFIG_PATH,
74
- training_args={"num_epochs": 1}
75
- )
76
 
77
  ```
78
 
 
79
 
80
- You can also use this package for deduplication (clusters a df on the supplied key column). Merging a fine class (like product) to a coarse class (like HS code) is also possible.
81
- Read our paper and the documentation for more!
82
-
83
-
84
-
85
- ## Evaluation Results
86
-
87
- <!--- Describe how your model was evaluated -->
88
-
89
- You can evaluate the model using the [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) package's inference functions.
90
- We have provided a few datasets in the package for you to try out. We plan to host more datasets on Huggingface and our website (Coming soon) that you can take a look at.
91
 
92
 
93
  ## Training
@@ -121,10 +76,7 @@ Parameters of the fit()-Method:
121
  "weight_decay": 0.01
122
  }
123
  ```
124
-
125
-
126
-
127
-
128
  LinkTransformer(
129
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
130
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
@@ -132,7 +84,21 @@ LinkTransformer(
132
  )
133
  ```
134
 
135
- ## Citing & Authors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
  ```
138
  @misc{arora2023linktransformer,
 
12
 
13
  # gbpatentdata/lt-patent-inventor-linking
14
 
15
+ This is a [LinkTransformer](https://linktransformer.github.io/) model. At its core this model this is a sentence transformer model [sentence-transformers](https://www.SBERT.net) model - it just wraps around the class.
 
 
 
16
  Take a look at the documentation of [sentence-transformers](https://www.sbert.net/index.html) if you want to use this model for more than what we support in our applications.
17
 
18
+ This model has been fine-tuned on the model: `sentence-transformers/all-mpnet-base-v2`. It is pretrained for the language: `en`.
 
 
 
 
19
 
20
  ## Usage (LinkTransformer)
21
 
 
31
  import linktransformer as lt
32
  import pandas as pd
33
 
34
+ df_lm_matched = lt.cluster_rows(df,
35
+ model='gbpatentdata/lt-patent-inventor-linking',
36
+ on=['name', 'occupation', 'year', 'address', 'firm', 'patent_title'],
37
+ cluster_type='SLINK',
38
+ cluster_params={'threshold': 0.1, 'min cluster size': 1, 'metric': 'cosine'}
39
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ```
42
 
43
+ ## Evaluation
44
 
45
+ We evaluate using the standard [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) information retrieval metrics. Our test set evaluations are available [here](https://huggingface.co/gbpatentdata/lt-patent-inventor-linking/blob/main/Information-Retrieval_evaluation_test_results.csv).
 
 
 
 
 
 
 
 
 
 
46
 
47
 
48
  ## Training
 
76
  "weight_decay": 0.01
77
  }
78
  ```
79
+ ```
 
 
 
80
  LinkTransformer(
81
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
82
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
 
84
  )
85
  ```
86
 
87
+ ## Citation
88
+
89
+ If you use our model or custom training/evaluation data in your research, please cite our accompanying paper as follows:
90
+
91
+ ```
92
+ @article{bct2025,
93
+ title = {300 Years of British Patents},
94
+ author = {Enrico Berkes and Matthew Lee Chen and Matteo Tranchero},
95
+ journal = {arXiv preprint arXiv:2401.12345},
96
+ year = {2025},
97
+ url = {https://arxiv.org/abs/2401.12345}
98
+ }
99
+ ```
100
+
101
+ Please also cite the original LinkTransformer authors:
102
 
103
  ```
104
  @misc{arora2023linktransformer,