pan-li's picture
Upload folder using huggingface_hub
d7174d3 verified
from transformers import PretrainedConfig
import torch
class RAGPLMConfig(PretrainedConfig):
model_type = "ragplm"
def __init__(
self,
num_layers=28,
padded_vocab_size=65024,
hidden_size=4096,
ffn_hidden_size=13696,
kv_channels=128,
num_attention_heads=32,
add_str_emb_ln=False, # Add layer norm to the structure embedding layer
add_seq_emb_ln=False, # Add layer norm to the sequence embedding layer
str_vocab_size=None,
str_input_dim=None,
str_output_dim=None,
qseq_output_dim=None,
seq_length=2048,
hidden_dropout=0.0,
classifier_dropout=None,
attention_dropout=0.0,
layernorm_epsilon=1e-5,
glu_activation='geglu',
torch_dtype=torch.bfloat16,
rmsnorm=True,
deepnorm=True,
apply_residual_connection_post_layernorm=False,
post_layer_norm=True,
add_bias_linear=False,
add_qkv_bias=False,
bias_dropout_fusion=True,
multi_query_attention=False,
multi_query_group_num=1,
apply_query_key_layer_scaling=True,
attention_softmax_in_fp32=True,
fp32_residual_connection=False,
quantization_bit=0,
# pre_seq_len=None,
# prefix_projection=False,
rotary_embedding_2d=True,
rotary_freq_base=10000,
lora=False,
mlp_lora=False,
lora_before_position=False, ### Default the QKV LoRA is after the position encoding
lora_r=8,
lora_alpha=16,
lora_dropout=0,
use_pytorch_sdpa=True,
is_causal=True,
moe=False,
num_experts=16,
experts_per_token=2,
**kwargs
):
if not deepnorm and apply_residual_connection_post_layernorm:
print(f"Warning: deepnorm is False and apply_residual_connection_post_layernorm is True")
self.num_layers = num_layers
self.vocab_size = padded_vocab_size
self.padded_vocab_size = padded_vocab_size
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.kv_channels = kv_channels
self.num_attention_heads = num_attention_heads
self.add_str_emb_ln = add_str_emb_ln
self.add_seq_emb_ln = add_seq_emb_ln
self.str_vocab_size = str_vocab_size
self.str_input_dim = str_input_dim
self.str_output_dim = str_output_dim
self.qseq_output_dim = qseq_output_dim
self.seq_length = seq_length
self.hidden_dropout = hidden_dropout
self.classifier_dropout = classifier_dropout
self.attention_dropout = attention_dropout
self.layernorm_epsilon = layernorm_epsilon
self.torch_dtype = torch_dtype
self.glu_activation = glu_activation
self.rmsnorm = rmsnorm
self.deepnorm = deepnorm
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
self.post_layer_norm = post_layer_norm
self.add_bias_linear = add_bias_linear
self.add_qkv_bias = add_qkv_bias
self.bias_dropout_fusion = bias_dropout_fusion
self.multi_query_attention = multi_query_attention
self.multi_query_group_num = multi_query_group_num
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
self.fp32_residual_connection = fp32_residual_connection
self.quantization_bit = quantization_bit
#self.pre_seq_len = pre_seq_len
#self.prefix_projection = prefix_projection
self.rotary_embedding_2d = rotary_embedding_2d
self.rotary_freq_base = rotary_freq_base
self.is_causal = is_causal
self.lora = lora
self.mlp_lora = mlp_lora
self.lora_before_position = lora_before_position
self.lora_r = lora_r
self.lora_alpha = lora_alpha
self.lora_dropout = lora_dropout
self.use_pytorch_sdpa = use_pytorch_sdpa
self.moe = moe
self.num_experts = num_experts
self.experts_per_token = experts_per_token
super().__init__(**kwargs)
if isinstance(torch_dtype, str):
if torch_dtype.startswith('torch.'):
self.torch_dtype = eval(torch_dtype)
else:
self.torch_dtype = eval(f"torch.{torch_dtype}")