whisper-medium-uk / README.md
gencgeray's picture
End of training
d45a40d verified
metadata
library_name: transformers
language:
  - uk
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Medium uk - Herai Hench KI-11
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: uk
          split: None
          args: 'config: uk, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 28.720238095238095

Whisper Medium uk - Herai Hench KI-11

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2959
  • Wer: 28.7202
  • Cer: 7.4673

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2705 0.6048 750 0.3558 33.9286 9.0582
0.1533 1.2097 1500 0.2959 28.7202 7.4673

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.5.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0