Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,198 +1,82 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: diffusers
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
### Training Procedure
|
| 84 |
-
|
| 85 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 86 |
-
|
| 87 |
-
#### Preprocessing [optional]
|
| 88 |
-
|
| 89 |
-
[More Information Needed]
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#### Training Hyperparameters
|
| 93 |
-
|
| 94 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 95 |
-
|
| 96 |
-
#### Speeds, Sizes, Times [optional]
|
| 97 |
-
|
| 98 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 99 |
-
|
| 100 |
-
[More Information Needed]
|
| 101 |
-
|
| 102 |
-
## Evaluation
|
| 103 |
-
|
| 104 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 105 |
-
|
| 106 |
-
### Testing Data, Factors & Metrics
|
| 107 |
-
|
| 108 |
-
#### Testing Data
|
| 109 |
-
|
| 110 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 111 |
-
|
| 112 |
-
[More Information Needed]
|
| 113 |
-
|
| 114 |
-
#### Factors
|
| 115 |
-
|
| 116 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 117 |
-
|
| 118 |
-
[More Information Needed]
|
| 119 |
-
|
| 120 |
-
#### Metrics
|
| 121 |
-
|
| 122 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 123 |
-
|
| 124 |
-
[More Information Needed]
|
| 125 |
-
|
| 126 |
-
### Results
|
| 127 |
-
|
| 128 |
-
[More Information Needed]
|
| 129 |
-
|
| 130 |
-
#### Summary
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
## Model Examination [optional]
|
| 135 |
-
|
| 136 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 137 |
-
|
| 138 |
-
[More Information Needed]
|
| 139 |
-
|
| 140 |
-
## Environmental Impact
|
| 141 |
-
|
| 142 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 143 |
-
|
| 144 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 145 |
-
|
| 146 |
-
- **Hardware Type:** [More Information Needed]
|
| 147 |
-
- **Hours used:** [More Information Needed]
|
| 148 |
-
- **Cloud Provider:** [More Information Needed]
|
| 149 |
-
- **Compute Region:** [More Information Needed]
|
| 150 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 151 |
-
|
| 152 |
-
## Technical Specifications [optional]
|
| 153 |
-
|
| 154 |
-
### Model Architecture and Objective
|
| 155 |
-
|
| 156 |
-
[More Information Needed]
|
| 157 |
-
|
| 158 |
-
### Compute Infrastructure
|
| 159 |
-
|
| 160 |
-
[More Information Needed]
|
| 161 |
-
|
| 162 |
-
#### Hardware
|
| 163 |
-
|
| 164 |
-
[More Information Needed]
|
| 165 |
-
|
| 166 |
-
#### Software
|
| 167 |
-
|
| 168 |
-
[More Information Needed]
|
| 169 |
-
|
| 170 |
-
## Citation [optional]
|
| 171 |
-
|
| 172 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 173 |
-
|
| 174 |
-
**BibTeX:**
|
| 175 |
-
|
| 176 |
-
[More Information Needed]
|
| 177 |
-
|
| 178 |
-
**APA:**
|
| 179 |
-
|
| 180 |
-
[More Information Needed]
|
| 181 |
-
|
| 182 |
-
## Glossary [optional]
|
| 183 |
-
|
| 184 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 185 |
-
|
| 186 |
-
[More Information Needed]
|
| 187 |
-
|
| 188 |
-
## More Information [optional]
|
| 189 |
-
|
| 190 |
-
[More Information Needed]
|
| 191 |
-
|
| 192 |
-
## Model Card Authors [optional]
|
| 193 |
-
|
| 194 |
-
[More Information Needed]
|
| 195 |
-
|
| 196 |
-
## Model Card Contact
|
| 197 |
-
|
| 198 |
-
[More Information Needed]
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: diffusers
|
| 3 |
+
pipeline_tag: image-to-image
|
| 4 |
+
inference:
|
| 5 |
+
parameters:
|
| 6 |
+
guidance_scale: 3.5
|
| 7 |
+
widget:
|
| 8 |
+
- src: example_input.jpg
|
| 9 |
+
text: GenEx Panoramic World Initialization
|
| 10 |
+
example_title: Panoramic generation from image crop
|
| 11 |
+
datasets:
|
| 12 |
+
- TaiMingLu/GenEx-DB-Panorama-World
|
| 13 |
+
base_model:
|
| 14 |
+
- black-forest-labs/FLUX.1-Fill-dev
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# GenEx-World-Initializer 🧭🌍
|
| 18 |
+
|
| 19 |
+
**GenEx World Initializer** is panorama generation pipeline built on top of the [FluxFillPipeline](https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev).
|
| 20 |
+
|
| 21 |
+
It transforms a **single view image** into a **360° panoramic image** using vision-conditioned inpainting.
|
| 22 |
+
|
| 23 |
+
- 🖼️ Input: One image (any size, will be center-cropped to square)
|
| 24 |
+
- 🧠 Prompt: Optional text to guide panoramic generation
|
| 25 |
+
- 🎯 Output: 2048 × 1024 equirectangular image
|
| 26 |
+
- 🧩 Mask: Uses a fixed panoramic mask
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+

|
| 31 |
+
|
| 32 |
+
## 📦 Usage
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
from diffusers import DiffusionPipeline
|
| 36 |
+
from PIL import Image
|
| 37 |
+
import torch
|
| 38 |
+
|
| 39 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 40 |
+
"TaiMingLu/GenEx-World-Initializer",
|
| 41 |
+
custom_pipeline="genex_world_initializer_pipeline",
|
| 42 |
+
torch_dtype=torch.bfloat16,
|
| 43 |
+
trust_remote_code=True
|
| 44 |
+
).to("cuda")
|
| 45 |
+
|
| 46 |
+
# Load your image (any resolution)
|
| 47 |
+
image = Image.open("example_input.jpg")
|
| 48 |
+
|
| 49 |
+
# Run inference
|
| 50 |
+
front_view, output = pipe(image=image)
|
| 51 |
+
output.images[0]
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
## 🏁 Mask
|
| 55 |
+
The following mask is used to train the inpainting diffuser.
|
| 56 |
+

|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
## 🔧 Requirements
|
| 60 |
+
|
| 61 |
+
```txt
|
| 62 |
+
diffusers>=0.33.1
|
| 63 |
+
transformers
|
| 64 |
+
numpy
|
| 65 |
+
pillow
|
| 66 |
+
sentencepiece
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
## ✨ BibTex
|
| 71 |
+
|
| 72 |
+
```
|
| 73 |
+
@misc{lu2025genexgeneratingexplorableworld,
|
| 74 |
+
title={GenEx: Generating an Explorable World},
|
| 75 |
+
author={Taiming Lu and Tianmin Shu and Junfei Xiao and Luoxin Ye and Jiahao Wang and Cheng Peng and Chen Wei and Daniel Khashabi and Rama Chellappa and Alan Yuille and Jieneng Chen},
|
| 76 |
+
year={2025},
|
| 77 |
+
eprint={2412.09624},
|
| 78 |
+
archivePrefix={arXiv},
|
| 79 |
+
primaryClass={cs.CV},
|
| 80 |
+
url={https://arxiv.org/abs/2412.09624},
|
| 81 |
+
}
|
| 82 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|