File size: 4,308 Bytes
8ca145f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
library_name: peft
license: other
base_model: mistralai/Ministral-8B-Instruct-2410
tags:
- generated_from_trainer
model-index:
- name: workspace/FinLoRA/lora/axolotl-output/sentiment_mistral_8b_8bits_r8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.10.0`
```yaml
base_model: mistralai/Ministral-8B-Instruct-2410
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
bnb_4bit_use_double_quant: false
bnb_4bit_quant_type: null
bnb_4bit_compute_dtype: null
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
- path: /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl
  type:
    system_prompt: ''
    field_system: system
    field_instruction: context
    field_output: target
    format: '[INST] {instruction} [/INST]'
    no_input_format: '[INST] {instruction} [/INST]'
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/sentiment_mistral_8b_8bits_r8
peft_use_dora: false
peft_use_rslora: false
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: sentiment_mistral_8b_8bits_r8
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>

# workspace/FinLoRA/lora/axolotl-output/sentiment_mistral_8b_8bits_r8

This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on the /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2546

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4461

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0      | 0    | 1.2940          |
| No log        | 0.2501 | 279  | 0.2580          |
| 0.2139        | 0.5002 | 558  | 0.2489          |
| 0.2139        | 0.7503 | 837  | 0.2483          |
| 0.1302        | 1.0    | 1116 | 0.2467          |
| 0.1302        | 1.2501 | 1395 | 0.2496          |
| 0.1022        | 1.5002 | 1674 | 0.2464          |
| 0.1022        | 1.7503 | 1953 | 0.2426          |
| 0.0953        | 2.0    | 2232 | 0.2412          |
| 0.0806        | 2.2501 | 2511 | 0.2506          |
| 0.0806        | 2.5002 | 2790 | 0.2422          |
| 0.0759        | 2.7503 | 3069 | 0.2443          |
| 0.0759        | 3.0    | 3348 | 0.2425          |
| 0.07          | 3.2501 | 3627 | 0.2573          |
| 0.07          | 3.5002 | 3906 | 0.2546          |
| 0.0595        | 3.7503 | 4185 | 0.2546          |


### Framework versions

- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.2