--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_100_v1_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6813725490196079 - name: F1 type: f1 value: 0.7916666666666669 --- # bert_tiny_lda_100_v1_mrpc This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5925 - Accuracy: 0.6814 - F1: 0.7917 - Combined Score: 0.7365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.631 | 1.0 | 15 | 0.5996 | 0.6961 | 0.8171 | 0.7566 | | 0.5947 | 2.0 | 30 | 0.5925 | 0.6814 | 0.7917 | 0.7365 | | 0.5708 | 3.0 | 45 | 0.5934 | 0.7010 | 0.8135 | 0.7572 | | 0.5419 | 4.0 | 60 | 0.5990 | 0.6912 | 0.7961 | 0.7436 | | 0.4984 | 5.0 | 75 | 0.6380 | 0.6789 | 0.7950 | 0.7370 | | 0.4277 | 6.0 | 90 | 0.7020 | 0.6495 | 0.7386 | 0.6940 | | 0.3467 | 7.0 | 105 | 0.8055 | 0.6299 | 0.7318 | 0.6808 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3