--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_100_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8543408360128617 - name: F1 type: f1 value: 0.8063020096700984 --- # bert_tiny_lda_100_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3551 - Accuracy: 0.8543 - F1: 0.8063 - Combined Score: 0.8303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4874 | 1.0 | 1422 | 0.4274 | 0.7980 | 0.7125 | 0.7553 | | 0.388 | 2.0 | 2844 | 0.3786 | 0.8224 | 0.7726 | 0.7975 | | 0.3354 | 3.0 | 4266 | 0.3613 | 0.8372 | 0.7899 | 0.8136 | | 0.2928 | 4.0 | 5688 | 0.3564 | 0.8447 | 0.7830 | 0.8139 | | 0.2583 | 5.0 | 7110 | 0.3614 | 0.8509 | 0.7997 | 0.8253 | | 0.2277 | 6.0 | 8532 | 0.3551 | 0.8543 | 0.8063 | 0.8303 | | 0.2014 | 7.0 | 9954 | 0.3854 | 0.8552 | 0.8093 | 0.8322 | | 0.1784 | 8.0 | 11376 | 0.3979 | 0.8545 | 0.8064 | 0.8305 | | 0.1578 | 9.0 | 12798 | 0.4261 | 0.8558 | 0.8102 | 0.8330 | | 0.1403 | 10.0 | 14220 | 0.4443 | 0.8588 | 0.8108 | 0.8348 | | 0.1246 | 11.0 | 15642 | 0.4678 | 0.8567 | 0.8093 | 0.8330 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3