--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: tinybert_base_train_book_ent_15p_s_init_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7009803921568627 - name: F1 type: f1 value: 0.8038585209003215 --- # tinybert_base_train_book_ent_15p_s_init_mrpc This model is a fine-tuned version of [gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init](https://huggingface.co/gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5788 - Accuracy: 0.7010 - F1: 0.8039 - Combined Score: 0.7524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.626 | 1.0 | 15 | 0.5948 | 0.6936 | 0.8025 | 0.7481 | | 0.5902 | 2.0 | 30 | 0.5788 | 0.7010 | 0.8039 | 0.7524 | | 0.5641 | 3.0 | 45 | 0.6338 | 0.6961 | 0.8149 | 0.7555 | | 0.5567 | 4.0 | 60 | 0.5953 | 0.6912 | 0.7886 | 0.7399 | | 0.5118 | 5.0 | 75 | 0.6027 | 0.6912 | 0.7928 | 0.7420 | | 0.4615 | 6.0 | 90 | 0.6786 | 0.6814 | 0.7774 | 0.7294 | | 0.4065 | 7.0 | 105 | 0.7486 | 0.6789 | 0.7835 | 0.7312 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1