--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tinybert_base_train_book_ent_15p_s_init_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.7882116053450485 --- # tinybert_base_train_book_ent_15p_s_init_qnli This model is a fine-tuned version of [gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init](https://huggingface.co/gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4444 - Accuracy: 0.7882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6384 | 1.0 | 410 | 0.5732 | 0.6985 | | 0.5415 | 2.0 | 820 | 0.4735 | 0.7642 | | 0.4624 | 3.0 | 1230 | 0.4444 | 0.7882 | | 0.4039 | 4.0 | 1640 | 0.4634 | 0.7964 | | 0.3496 | 5.0 | 2050 | 0.4948 | 0.7952 | | 0.2985 | 6.0 | 2460 | 0.5068 | 0.7946 | | 0.2571 | 7.0 | 2870 | 0.5432 | 0.7838 | | 0.2182 | 8.0 | 3280 | 0.6079 | 0.7873 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1