--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: tinybert_base_train_book_ent_15p_s_init_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8579520158298294 - name: F1 type: f1 value: 0.8032073467429668 --- # tinybert_base_train_book_ent_15p_s_init_qqp This model is a fine-tuned version of [gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init](https://huggingface.co/gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3183 - Accuracy: 0.8580 - F1: 0.8032 - Combined Score: 0.8306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4585 | 1.0 | 1422 | 0.3807 | 0.8173 | 0.7658 | 0.7915 | | 0.3589 | 2.0 | 2844 | 0.3712 | 0.8234 | 0.7913 | 0.8073 | | 0.3115 | 3.0 | 4266 | 0.3361 | 0.8477 | 0.8112 | 0.8294 | | 0.2742 | 4.0 | 5688 | 0.3183 | 0.8580 | 0.8032 | 0.8306 | | 0.2431 | 5.0 | 7110 | 0.3297 | 0.8611 | 0.8162 | 0.8386 | | 0.2161 | 6.0 | 8532 | 0.3238 | 0.8658 | 0.8248 | 0.8453 | | 0.1931 | 7.0 | 9954 | 0.3438 | 0.8626 | 0.8242 | 0.8434 | | 0.171 | 8.0 | 11376 | 0.3703 | 0.8672 | 0.8293 | 0.8482 | | 0.1516 | 9.0 | 12798 | 0.3969 | 0.8628 | 0.8281 | 0.8455 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1