goldfish-models commited on
Commit
7dc5b4a
·
verified ·
1 Parent(s): dba7447

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - que
6
+ datasets:
7
+ - allenai/nllb
8
+ - cis-lmu/Glot500
9
+ - sil-ai/bloom-lm
10
+ - statmt/cc100
11
+ - Llamacha/monolingual-quechua-iic
12
+ - legacy-datasets/wikipedia
13
+ - allenai/MADLAD-400
14
+ - oscar-corpus/OSCAR-2109
15
+ library_name: transformers
16
+ pipeline_tag: text-generation
17
+ tags:
18
+ - goldfish
19
+
20
+ ---
21
+
22
+ # que_latn_100mb
23
+
24
+ Goldfish is a suite of monolingual language models trained for 350 languages.
25
+ This model is the <b>Quechua</b> (Latin script) model trained on 100MB of data, after accounting for an estimated byte premium of 1.21; content-matched text in Quechua takes on average 1.21x as many UTF-8 bytes to encode as English.
26
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
27
+
28
+ Note: que_latn is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. Individual language codes quz_latn (Cusco Quechua) and quy_latn (Ayacucho Quechua) are included in Goldfish, although with less data.
29
+
30
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
31
+
32
+ Training code and sample usage: https://github.com/tylerachang/goldfish
33
+
34
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
35
+
36
+ ## Model details:
37
+
38
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
39
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
40
+ Details for this model specifically:
41
+
42
+ * Architecture: gpt2
43
+ * Parameters: 124770816
44
+ * Maximum sequence length: 512 tokens
45
+ * Training text data (raw): 121.48MB
46
+ * Training text data (byte premium scaled): 100.005MB
47
+ * Training tokens: 29125632 (x10 epochs)
48
+ * Vocabulary size: 50000
49
+ * Compute cost: 1.48688753393664e+17 FLOPs or ~14.1 NVIDIA A6000 GPU hours
50
+
51
+ Training datasets (percentages prior to deduplication):
52
+ * 66.54127%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
53
+ * 16.31458%: [AmericasNLP (excluding AmericasNLI)](https://turing.iimas.unam.mx/americasnlp/)
54
+ * 7.98999%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [BLOOM](https://huggingface.co/datasets/sil-ai/bloom-lm), [CC100](https://huggingface.co/datasets/statmt/cc100), [Earthlings](https://publicdata.canterbury.ac.nz/Research/Geocorpus/CCGLU_v5.0/), [OSCAR](https://oscar-project.org/), [Quechua-IIC](https://huggingface.co/datasets/Llamacha/monolingual-quechua-iic), [Tatoeba](https://tatoeba.org/en/), [W2C](https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0022-6133-9), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia)
55
+ * 5.28328%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
56
+ * 3.76909%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
57
+ * 0.09735%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
58
+ * 0.00445%: [Tatoeba](https://tatoeba.org/en/)
59
+
60
+
61
+ ## Citation
62
+
63
+ If you use this model, please cite:
64
+
65
+ ```
66
+ @article{chang-etal-2024-goldfish,
67
+ title={Goldfish: Monolingual Language Models for 350 Languages},
68
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
69
+ journal={Preprint},
70
+ year={2024},
71
+ }
72
+ ```