Update README.md
Browse files
README.md
CHANGED
@@ -30,3 +30,42 @@ This checkpoint is not an officially supported Google product. See [TimesFM in B
|
|
30 |
- [Wikimedia Pageviews](https://meta.wikimedia.org/wiki/Pageviews_Analysis), cutoff Nov 2023 (see [paper](https://arxiv.org/abs/2310.10688) for details).
|
31 |
- [Google Trends](https://trends.google.com/trends/) top queries, cutoff EoY 2022 (see [paper](https://arxiv.org/abs/2310.10688) for details).
|
32 |
- Synthetic and augmented data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
- [Wikimedia Pageviews](https://meta.wikimedia.org/wiki/Pageviews_Analysis), cutoff Nov 2023 (see [paper](https://arxiv.org/abs/2310.10688) for details).
|
31 |
- [Google Trends](https://trends.google.com/trends/) top queries, cutoff EoY 2022 (see [paper](https://arxiv.org/abs/2310.10688) for details).
|
32 |
- Synthetic and augmented data.
|
33 |
+
|
34 |
+
### Install
|
35 |
+
|
36 |
+
`pip install` from PyPI coming soon. At this point, please run
|
37 |
+
|
38 |
+
```shell
|
39 |
+
git clone https://github.com/google-research/timesfm.git
|
40 |
+
cd timesfm
|
41 |
+
pip install -e .
|
42 |
+
```
|
43 |
+
|
44 |
+
### Code Example
|
45 |
+
|
46 |
+
```python
|
47 |
+
import numpy as np
|
48 |
+
import timesfm
|
49 |
+
model = timesfm.TimesFM_2p5_200M_torch()
|
50 |
+
model.load_checkpoint()
|
51 |
+
model.compile(
|
52 |
+
timesfm.ForecastConfig(
|
53 |
+
max_context=1024,
|
54 |
+
max_horizon=256,
|
55 |
+
normalize_inputs=True,
|
56 |
+
use_continuous_quantile_head=True,
|
57 |
+
force_flip_invariance=True,
|
58 |
+
infer_is_positive=True,
|
59 |
+
fix_quantile_crossing=True,
|
60 |
+
)
|
61 |
+
)
|
62 |
+
point_forecast, quantile_forecast = model.forecast(
|
63 |
+
horizon=12,
|
64 |
+
inputs=[
|
65 |
+
np.linspace(0, 1, 100),
|
66 |
+
np.sin(np.linspace(0, 20, 67)),
|
67 |
+
], # Two dummy inputs
|
68 |
+
)
|
69 |
+
point_forecast.shape # (2, 12)
|
70 |
+
quantile_forecast.shape # (2, 12, 10): mean, then 10th to 90th quantiles.
|
71 |
+
```
|