gscfwid commited on
Commit
fd1cff1
·
verified ·
1 Parent(s): 0c53afb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +68 -58
README.md CHANGED
@@ -12,11 +12,14 @@ tags:
12
  datasets:
13
  - perioperative-complications
14
  pipeline_tag: text-classification
 
 
 
15
  ---
16
 
17
  # PeriComp: Perioperative Complication Detection LoRA Adaptors
18
 
19
- ![PeriComp Performance](../figure6b.png)
20
  *Figure: Performance comparison of fine-tuned models across different sizes*
21
 
22
  ## 🩺 Model Overview
@@ -50,9 +53,9 @@ Perioperative complications affect millions of patients globally, with tradition
50
  - **High variability** in expert performance across institutions
51
  - **Cognitive load limitations** with complex documentation
52
 
53
- Our research demonstrates that targeted task decomposition combined with LoRA fine-tuning enables smaller models to achieve expert-level diagnostic capabilities while maintaining practical deployability.
54
 
55
- ![Strict Performance Evaluation](../figure7.png)
56
  *Figure: Strict performance evaluation requiring exact complication type and severity matching*
57
 
58
  ## 🚀 Quick Start
@@ -75,66 +78,42 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
75
  base_model = AutoModelForCausalLM.from_pretrained(model_name)
76
 
77
  # Load PeriComp adaptor
78
- adaptor_name = "your-username/Qwen3-8B-PeriComp"
79
  model = PeftModel.from_pretrained(base_model, adaptor_name)
80
 
81
  # Prepare clinical input
82
- clinical_text = '''
83
- Patient Demographics: 65-year-old male
84
- Procedure: Laparoscopic cholecystectomy
85
- Postoperative Course: POD#2 - Patient reports abdominal pain,
86
- fever 38.5°C, elevated WBC count 15,000/μL...
87
- '''
88
 
89
- # Generate complication assessment
90
- inputs = tokenizer(clinical_text, return_tensors="pt")
91
- outputs = model.generate(**inputs, max_new_tokens=512)
92
- result = tokenizer.decode(outputs[0], skip_special_tokens=True)
93
- ```
94
-
95
- ### Targeted Strategy Usage
96
 
97
- For optimal performance with smaller models, use our targeted strategy:
98
 
99
- ```python
100
- # Define complications to assess
101
- complications = [
102
- "acute_kidney_injury",
103
- "surgical_site_infection",
104
- "paralytic_ileus",
105
- # ... other complications
106
- ]
107
-
108
- # Assess each complication individually
109
- results = {}
110
- for complication in complications:
111
- prompt = f"Assess for {complication}: {clinical_text}"
112
- # ... inference code
113
- results[complication] = assessment
114
- ```
115
-
116
- ## 📈 Performance Metrics
117
 
118
- ### Validation Results (Micro-averaged F1 Scores)
 
119
 
120
- - **Center 1 (Primary)**: Complex tertiary care cases
121
- - **Center 2 (External)**: Community hospital validation
122
 
123
- | Model | Center 1 F1 | Center 2 F1 | Human Expert F1 |
124
- |-------|-------------|-------------|-----------------|
125
- | PeriComp-4B | 0.55 | 0.52 | 0.526 |
126
- | PeriComp-8B | 0.61 | 0.58 | 0.526 |
127
- | PeriComp-14B | 0.65 | 0.62 | 0.526 |
128
- | PeriComp-32B | 0.68 | 0.65 | 0.526 |
129
- | PeriComp-QwQ-32B | 0.70 | 0.67 | 0.526 |
130
 
131
- ### Key Advantages
 
 
 
132
 
133
- **Consistent Performance**: No degradation with document complexity
134
- **24/7 Availability**: Continuous monitoring capability
135
- **Standardized Assessment**: Eliminates inter-observer variability
136
- **Comprehensive Detection**: All 22 EPCO-defined complications
137
- ✅ **Privacy Compliant**: On-premises deployment option
138
 
139
  ## 🔧 Technical Details
140
 
@@ -157,9 +136,16 @@ lora_config = {
157
  }
158
  ```
159
 
 
 
 
 
 
 
 
160
  ## 📋 Supported Complications
161
 
162
- The models detect and grade 22 perioperative complications:
163
 
164
  1. **Cardiovascular**: Myocardial injury, cardiac arrhythmias
165
  2. **Respiratory**: Pneumonia, respiratory failure
@@ -175,6 +161,9 @@ Each complication is graded as:
175
  - **Moderate**: Significant medical management
176
  - **Severe**: Life-threatening, intensive intervention
177
 
 
 
 
178
  ## 🏥 Clinical Applications
179
 
180
  ### Primary Use Cases
@@ -209,26 +198,47 @@ Each complication is graded as:
209
  - Validate outputs against clinical judgment
210
  - Consider local adaptation for specific institutional practices
211
 
 
 
 
 
 
 
 
 
 
 
 
212
  ## 📚 Citation
213
 
214
  If you use PeriComp in your research, please cite:
215
 
216
  ```bibtex
217
- @article{pericomp2025,
218
- title={Enhancing Local Language Models for Perioperative Complication Detection: A Targeted Strategy with LoRa Fine-tuning},
219
- author={[Authors]},
220
- journal={[Journal]},
221
- year={2025}
 
 
 
 
222
  }
223
  ```
224
 
 
 
 
 
225
  ## 📧 Contact & Support
226
 
227
  For questions, issues, or collaboration opportunities:
228
 
229
  - **Research Team**: Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
230
  - **Technical Issues**: [email protected]
 
231
  - **Clinical Applications**: Perioperative Complications Detection
 
232
 
233
  ## 📄 License
234
 
 
12
  datasets:
13
  - perioperative-complications
14
  pipeline_tag: text-classification
15
+ paper_url: https://doi.org/10.1101/2025.06.11.25329235
16
+ paper_title: "Enhancing Privacy-Preserving Deployable Large Language Models for Perioperative Complication Detection: A Targeted Strategy with LoRA Fine-tuning"
17
+ repository: https://github.com/gscfwid/PeriComp
18
  ---
19
 
20
  # PeriComp: Perioperative Complication Detection LoRA Adaptors
21
 
22
+ ![PeriComp Performance](figure6b.png)
23
  *Figure: Performance comparison of fine-tuned models across different sizes*
24
 
25
  ## 🩺 Model Overview
 
53
  - **High variability** in expert performance across institutions
54
  - **Cognitive load limitations** with complex documentation
55
 
56
+ Our research, published as a preprint on [medRxiv](https://doi.org/10.1101/2025.06.11.25329235), demonstrates that targeted task decomposition combined with LoRA fine-tuning enables smaller models to achieve expert-level diagnostic capabilities while maintaining practical deployability.
57
 
58
+ ![Strict Performance Evaluation](figure7.png)
59
  *Figure: Strict performance evaluation requiring exact complication type and severity matching*
60
 
61
  ## 🚀 Quick Start
 
78
  base_model = AutoModelForCausalLM.from_pretrained(model_name)
79
 
80
  # Load PeriComp adaptor
81
+ adaptor_name = "gscfwid/Qwen3-8B-PeriComp"
82
  model = PeftModel.from_pretrained(base_model, adaptor_name)
83
 
84
  # Prepare clinical input
85
+ clinical_text = """
86
+ # Objective
87
+ The objective is to identify postoperative complications from patient data in medical records, mimicking the diagnostic expertise of a senior surgeon.
 
 
 
88
 
89
+ # Diagnostic Criteria
90
+ The diagnostic criteria for the 22 postoperative complications are as follows:
 
 
 
 
 
91
 
92
+ {the diagnostic criteria for the 22 postoperative complications}
93
 
94
+ # Guidelines of Output structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
+ The output format is specified as:
97
+ {defined the output structure}
98
 
99
+ # Data of medical records
 
100
 
101
+ - {General Information (De-identified)}
102
+ - {Postoperative Medical Record}
103
+ - {Abnormal Test Results}
104
+ - {Examination Results}
105
+ """
 
 
106
 
107
+ # Prompt preparation format details can be found in the example files:
108
+ # - comprehensive_prompt.json for QwQ 32B adapter
109
+ # - targeted_prompts.json for Qwen 3 adapters
110
+ # Note: Models are trained on Chinese clinical texts; performance on other languages is not validated
111
 
112
+ # Generate complication assessment
113
+ inputs = tokenizer(clinical_text, return_tensors="pt")
114
+ outputs = model.generate(**inputs, max_new_tokens=512)
115
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
116
+ ```
117
 
118
  ## 🔧 Technical Details
119
 
 
136
  }
137
  ```
138
 
139
+ ### 💻 Code and Data Access
140
+
141
+ - **GitHub Repository**: [gscfwid/PeriComp](https://github.com/gscfwid/PeriComp)
142
+ - **Complete Implementation**: Training scripts, evaluation code, and data processing pipelines
143
+ - **Prompt Engineering**: Optimized prompt templates for targeted complication detection
144
+ - **Clinical Data**: Available upon reasonable request through institutional collaboration with appropriate ethical approval
145
+
146
  ## 📋 Supported Complications
147
 
148
+ The models detect and grade 22 perioperative complications based on European Perioperative Clinical Outcome (EPCO) definitions¹:
149
 
150
  1. **Cardiovascular**: Myocardial injury, cardiac arrhythmias
151
  2. **Respiratory**: Pneumonia, respiratory failure
 
161
  - **Moderate**: Significant medical management
162
  - **Severe**: Life-threatening, intensive intervention
163
 
164
+ ---
165
+ ¹ Jammer, I. et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. *Eur J Anaesthesiol* 32, 88-105 (2015). DOI: 10.1097/EJA.0000000000000118
166
+
167
  ## 🏥 Clinical Applications
168
 
169
  ### Primary Use Cases
 
198
  - Validate outputs against clinical judgment
199
  - Consider local adaptation for specific institutional practices
200
 
201
+ ### Data Access
202
+
203
+ ⚠️ **Clinical datasets are not publicly available due to patient privacy protection**
204
+
205
+ **Data Request Process**:
206
+ - Clinical datasets can be requested from corresponding authors for legitimate research purposes
207
+ - Requests must include detailed research protocol and intended use
208
+ - Institutional ethical approval is required before data sharing
209
+ - Data sharing agreements must comply with local privacy regulations
210
+ - Contact: [email protected] for data access inquiries
211
+
212
  ## 📚 Citation
213
 
214
  If you use PeriComp in your research, please cite:
215
 
216
  ```bibtex
217
+ @article{gao2025pericomp,
218
+ title={Enhancing Privacy-Preserving Deployable Large Language Models for Perioperative Complication Detection: A Targeted Strategy with LoRA Fine-tuning},
219
+ author={Gao, Shaowei and Zhao, Xu and Chen, Lihui and Yu, Junrong and Tian, Shuning and Zhou, Huaqiang and Chen, Jingru and Long, Sizhe and He, Qiulan and Feng, Xia},
220
+ journal={medRxiv},
221
+ pages={2025.06.11.25329235},
222
+ year={2025},
223
+ doi={10.1101/2025.06.11.25329235},
224
+ url={https://doi.org/10.1101/2025.06.11.25329235},
225
+ publisher={Cold Spring Harbor Laboratory Press}
226
  }
227
  ```
228
 
229
+ **Paper**: [Enhancing Privacy-Preserving Deployable Large Language Models for Perioperative Complication Detection: A Targeted Strategy with LoRA Fine-tuning](https://doi.org/10.1101/2025.06.11.25329235)
230
+
231
+ **Code**: [GitHub Repository - gscfwid/PeriComp](https://github.com/gscfwid/PeriComp)
232
+
233
  ## 📧 Contact & Support
234
 
235
  For questions, issues, or collaboration opportunities:
236
 
237
  - **Research Team**: Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
238
  - **Technical Issues**: [email protected]
239
+ - **Clinical Data Requests**: [email protected] (requires ethical approval and institutional collaboration)
240
  - **Clinical Applications**: Perioperative Complications Detection
241
+ - **Code Repository**: [GitHub Issues](https://github.com/gscfwid/PeriComp/issues) for implementation questions
242
 
243
  ## 📄 License
244