update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- allocine
|
7 |
+
model-index:
|
8 |
+
- name: model
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# model
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on the allocine dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.0254
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 64
|
40 |
+
- eval_batch_size: 64
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 20.0
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
50 |
+
| 2.4388 | 1.0 | 157 | 2.1637 |
|
51 |
+
| 2.288 | 2.0 | 314 | 2.1697 |
|
52 |
+
| 2.2444 | 3.0 | 471 | 2.1150 |
|
53 |
+
| 2.2166 | 4.0 | 628 | 2.0906 |
|
54 |
+
| 2.1754 | 5.0 | 785 | 2.0899 |
|
55 |
+
| 2.1604 | 6.0 | 942 | 2.0797 |
|
56 |
+
| 2.1299 | 7.0 | 1099 | 2.0589 |
|
57 |
+
| 2.1195 | 8.0 | 1256 | 2.0178 |
|
58 |
+
| 2.1258 | 9.0 | 1413 | 2.0348 |
|
59 |
+
| 2.1071 | 10.0 | 1570 | 2.0090 |
|
60 |
+
| 2.0888 | 11.0 | 1727 | 2.0047 |
|
61 |
+
| 2.0792 | 12.0 | 1884 | 2.0219 |
|
62 |
+
| 2.0687 | 13.0 | 2041 | 2.0080 |
|
63 |
+
| 2.0527 | 14.0 | 2198 | 2.0298 |
|
64 |
+
| 2.0589 | 15.0 | 2355 | 1.9869 |
|
65 |
+
| 2.0518 | 16.0 | 2512 | 2.0152 |
|
66 |
+
| 2.0409 | 17.0 | 2669 | 2.0247 |
|
67 |
+
| 2.0507 | 18.0 | 2826 | 1.9928 |
|
68 |
+
| 2.0366 | 19.0 | 2983 | 2.0175 |
|
69 |
+
| 2.0386 | 20.0 | 3140 | 1.9487 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.2
|
75 |
+
- Pytorch 1.12.1+cu113
|
76 |
+
- Datasets 2.4.0
|
77 |
+
- Tokenizers 0.12.1
|