--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Ernie-3.0-base-chinese-finetuned-ner results: [] --- # Ernie-3.0-base-chinese-finetuned-ner This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4856 - Precision: 0.6511 - Recall: 0.7535 - F1: 0.6986 - Accuracy: 0.9053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0667 | 1.0 | 126 | 0.4589 | 0.6387 | 0.7553 | 0.6921 | 0.9012 | | 0.0594 | 2.0 | 252 | 0.4656 | 0.6444 | 0.7515 | 0.6939 | 0.9057 | | 0.053 | 3.0 | 378 | 0.4524 | 0.6444 | 0.7477 | 0.6922 | 0.9064 | | 0.0473 | 4.0 | 504 | 0.4955 | 0.6298 | 0.7568 | 0.6875 | 0.9012 | | 0.0461 | 5.0 | 630 | 0.4892 | 0.6512 | 0.7505 | 0.6973 | 0.9077 | | 0.0438 | 6.0 | 756 | 0.5021 | 0.6450 | 0.7528 | 0.6947 | 0.9054 | | 0.0428 | 7.0 | 882 | 0.5048 | 0.6471 | 0.7576 | 0.6980 | 0.9050 | | 0.0583 | 8.0 | 1008 | 0.4990 | 0.6401 | 0.7533 | 0.6921 | 0.9038 | | 0.0582 | 9.0 | 1134 | 0.4833 | 0.6457 | 0.7513 | 0.6945 | 0.9064 | | 0.0635 | 10.0 | 1260 | 0.4856 | 0.6511 | 0.7535 | 0.6986 | 0.9053 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0